Journal Home > Volume 16 , Issue 5

Li-O2 batteries are regarded as one of the most promising next-generation battery systems due to their high theoretical energy density, and finding effective cathode catalysts with fine-tuned structure is a key way to improve the performance. Herein, based on the structure of cubic zeolitic imidazolate framework-67 (ZIF-67), a series of hollow catalysts were synthesized by different chemical etching treatments. Firstly, from the perspective of metal, nickel nitrate is used for etching, and hollow Ni ZIF is obtained through Kirkendall effect. Secondly, hollow TA-ZIF is obtained by adding tannic acid to replace the methylimidazole ligand. Hollow structures have larger surface areas, and materials can expose more active sites, which can lead to better performance of Li-O2 batteries. On this basis, having more oxygen vacancies can also improve the battery performance. At the same time, further loading noble metal ruthenium on the synthesized cobalt-based catalyst can effectively reduce the overpotential of Li-O2 battery and improve the battery performance. For TA-ZIF with more stable hollow structure and more oxygen vacancies, the cycle performance reaches 330 cycles after loading Ru. Compared with the 64 cycles of solid Co3O4, it has a great improvement.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hollow catalysts through different etching treatments to improve active sites and oxygen vacancies for high-performance Li-O2 battery

Show Author's information Jiachen Qiu1,§Yuran Lin1,§Shuting Zhang1Jie Ma1Yu Zhang3Mengwei Yuan2Genban Sun1Caiyun Nan1( )
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

§ Jiachen Qiu and Yuran Lin contributed equally to this work.

Abstract

Li-O2 batteries are regarded as one of the most promising next-generation battery systems due to their high theoretical energy density, and finding effective cathode catalysts with fine-tuned structure is a key way to improve the performance. Herein, based on the structure of cubic zeolitic imidazolate framework-67 (ZIF-67), a series of hollow catalysts were synthesized by different chemical etching treatments. Firstly, from the perspective of metal, nickel nitrate is used for etching, and hollow Ni ZIF is obtained through Kirkendall effect. Secondly, hollow TA-ZIF is obtained by adding tannic acid to replace the methylimidazole ligand. Hollow structures have larger surface areas, and materials can expose more active sites, which can lead to better performance of Li-O2 batteries. On this basis, having more oxygen vacancies can also improve the battery performance. At the same time, further loading noble metal ruthenium on the synthesized cobalt-based catalyst can effectively reduce the overpotential of Li-O2 battery and improve the battery performance. For TA-ZIF with more stable hollow structure and more oxygen vacancies, the cycle performance reaches 330 cycles after loading Ru. Compared with the 64 cycles of solid Co3O4, it has a great improvement.

Keywords: Li-O2 battery, oxygen vacancies, hollow structure, noble metal, active sites, cathode catalyst

References(46)

[1]

McCloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J. Am. Chem. Soc. 2011, 133, 18038–18041.

[2]

Ma, J. L.; Meng, F. L.; Yu, Y.; Liu, D. P.; Yan, J. M.; Zhang, Y.; Zhang, X. B.; Jiang, Q. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries. Nat. Chem. 2019, 11, 64–70.

[3]

Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

[4]

Jung, K. N.; Kim, J.; Yamauchi, Y.; Park, M. S.; Lee, J. W.; Kim, J. H. Rechargeable lithium-air batteries: A perspective on the development of oxygen electrodes. J. Mater. Chem. A 2016, 4, 14050–14068.

[5]

Song, L. N.; Zhang, W.; Wang, Y.; Ge, X.; Zou, L. C.; Wang, H. F.; Wang, X. X.; Liu, Q. C.; Li, F.; Xu, J. J. Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat. Commun. 2020, 11, 2191.

[6]

Xia, C.; Kwok, C. Y.; Nazar, L. F. A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Science 2018, 361, 777–781.

[7]

Wang, P.; Ren, Y. Y.; Wang, R. T.; Zhang, P.; Ding, M. J.; Li, C. X.; Zhao, D. Y.; Qian, Z.; Zhang, Z. W.; Zhang, L. Y. et al. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 2020, 11, 1576.

[8]

Hong, M. S.; Yang, C. Z.; Wong, R. A.; Nakao, A.; Choi, H. C.; Byon, H. R. Determining the facile routes for oxygen evolution reaction by in situ probing of Li-O2 cells with conformal Li2O2 films. J. Am. Chem. Soc. 2018, 140, 6190–6193.

[9]

Yuan, M. W.; Wang, R.; Fu, W. B.; Lin, L.; Sun, Z. M.; Long, X. G.; Zhang, S. T.; Nan, C. Y.; Sun, G. B.; Li, H. F. et al. Ultrathin two-dimensional metal-organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li-O2 batteries. ACS Appl. Mater. Interfaces 2019, 11, 11403–11413.

[10]

Lin, J.; Zeng, C. H.; Lin, X. M.; Xu, C.; Xu, X.; Luo, Y. F. Metal-organic framework-derived hierarchical MnO/Co with oxygen vacancies toward elevated-temperature Li-ion battery. ACS Nano 2021, 15, 4594–4607.

[11]

Liu, Z. J.; Zhao, Z. W.; Zhang, W.; Huang, Y.; Liu, Y.; Wu, D. L.; Wang, L.; Chou, S. L. Toward high-performance lithium-oxygen batteries with cobalt-based transition metal oxide catalysts: Advanced strategies and mechanical insights. InfoMat 2022, 4, e12260.

[12]

Débart, A.; Bao, J. L.; Armstrong, G.; Bruce, P. G. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J. Power Sources 2007, 174, 1177–1182.

[13]

Zhang, Y.; Hu, M. Z.; Yuan, M. W.; Sun, G. B.; Li, Y. F.; Zhou, K. B.; Chen, C.; Nan, C. Y.; Li, Y. D. Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries. Nano Res. 2019, 12, 299–302.

[14]

Gong, H.; Wang, T.; Xue, H. R.; Lu, X. Y.; Xia, W.; Song, L.; Zhang, S. T.; He, J. P.; Ma, R. Z. Spatially-controlled porous nanoflake arrays derived from MOFs: An efficiently long-life oxygen electrode. Nano Res. 2019, 12, 2528–2534.

[15]

Sun, Z. H.; Cao, X. C.; Tian, M.; Zeng, K.; Jiang, Y. X.; Rummeli, M. H.; Strasser, P.; Yang, R. Z. Synergized multimetal oxides with amorphous/crystalline heterostructure as efficient electrocatalysts for lithium-oxygen batteries. Adv. Energy Mater. 2021, 11, 2100110.

[16]

Feng, L. X.; Li, Y. L.; Sun, L. N.; Mi, H. W.; Ren, X. Z.; Zhang, P. X. Heterostructured CoO-Co3O4 nanoparticles anchored on nitrogen-doped hollow carbon spheres as cathode catalysts for Li-O2 batteries. Nanoscale 2019, 11, 14769–14776.

[17]

Zhang, Y. M.; Feng, L. X.; Zhan, W. T.; Li, S. J.; Li, Y. L.; Ren, X. Z.; Zhang, P. X.; Sun, L. N. Co3O4 hollow porous nanospheres with oxygen vacancies for enhanced Li-O2 batteries. ACS Appl. Energy Mater. 2020, 3, 4014–4022.

[18]

Zhu, W.; Chen, Z.; Pan, Y.; Dai, R. Y.; Wu, Y.; Zhuang, Z. B.; Wang, D. S.; Peng, Q.; Chen, C.; Li, Y. D. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction. Adv. Mater. 2019, 31, 1800426.

[19]

Wei, X. D.; Chai, Y. D.; Liu, N.; Qiao, S. Y.; Fu, Y. L.; Chong, S. K. ZIF67@MoO3 NSs@NF composite electrocatalysts reinforced by chemical bonds and oxygen vacancy for efficient oxygen evolution reaction and overall water-splitting. Int. J. Hyd. Energy 2022, 47, 9606–9615.

[20]

Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868–1872.

[21]

Park, G. D.; Lee, J. H.; Lee, J. K.; Kang, Y. C. Effect of esterification reaction of citric acid and ethylene glycol on the formation of multi-shelled cobalt oxide powders with superior electrochemical properties. Nano Res. 2014, 7, 1738–1748.

[22]

Lu, Y. Y.; Zhan, W. W.; He, Y.; Wang, Y. T.; Kong, X. J.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 2014, 6, 4186–4195.

[23]

Kaneti, Y. V.; Dutta, S.; Hossain, S. A.; Shiddiky, M. J. A.; Tung, K. L.; Shieh, F. K.; Tsung, C. K.; Wu, K. C. W.; Yamauchi, Y. Strategies for improving the functionality of zeolitic imidazolate frameworks: Tailoring nanoarchitectures for functional applications. Adv. Mater. 2017, 29, 1700213.

[24]

Nam, K. C.; Seon, Y. H.; Bandyopadhyay, P.; Cho, J. S.; Jeong, S. M. Porous nanofibers comprising hollow Co3O4/Fe3O4 nanospheres and nitrogen-doped carbon derived by Fe@ZIF-67 as anode materials for lithium-ion batteries. Int. J. Energy Res. 2022, 46, 8934–8948.

[25]

Guo, H.; Li, T. T.; Chen, W. W.; Liu, L. X.; Yang, X. J.; Wang, Y. P.; Guo, Y. C. General design of hollow porous CoFe2O4 nanocubes from metal-organic frameworks with extraordinary lithium storage. Nanoscale 2014, 6, 15168–15174.

[26]

Cho, J. S.; Hong, Y. J.; Kang, Y. C. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-ion batteries. Acs Nano 2015, 9, 4026–4035.

[27]

Zhang, P.; Wang, R. T.; He, M.; Lang, J. W.; Xu, S.; Yan, X. B. 3D hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries. Adv. Funct. Mater. 2016, 26, 1354–1364.

[28]

Xu, J. J.; Chang, Z. W.; Wang, Y.; Liu, D. P.; Zhang, Y.; Zhang, X. B. Cathode surface-induced, solvation-mediated, micrometer-sized Li2O2 Cycling for Li-O2 batteries. Adv. Mater. 2016, 28, 9620–9628.

[29]

Feng, N. N.; He, P.; Zhou, H. S. Critical challenges in rechargeable aprotic Li-O2 batteries. Adv. Energy Mater. 2016, 6, 1502303.

[30]

Xie, J.; Yao, X. H.; Madden, I. P.; Jiang, D. E.; Chou, L. Y.; Tsung, C. K.; Wang, D. W. Selective deposition of Ru nanoparticles on TiSi2 nanonet and its utilization for Li2O2 formation and decomposition. J. Am. Chem. Soc. 2014, 136, 8903–8906.

[31]

Li, F. J.; Chen, Y.; Tang, D. M.; Jian, Z. L.; Liu, C.; Golberg, D.; Yamada, A.; Zhou, H. S. Performance-improved Li-O2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. Energy Environ. Sci. 2014, 7, 1648–1652.

[32]

Ma, Y. R.; Qu, H. Q.; Chi, Z. Z.; Liu, X. Q.; Yu, Y. Q.; Guo, Z. Y.; Wang, L. The highly dispersed Co-based nanoparticles encapsulated into porous N-doping carbon polyhedral with the low content of Ru modification as a promising cathode catalyst for long-life Li-O2 batteries. Nano Res. 2022, 15, 3204–3212.

[33]

Wang, P.; Li, C. X.; Dong, S. H.; Ge, X. L.; Zhang, P.; Miao, X. G.; Zhang, Z. W.; Wang, C. X.; Yin, L. W. One-step route synthesized Co2P/Ru/N-doped carbon nanotube hybrids as bifunctional electrocatalysts for high-performance Li-O2 batteries. Small 2019, 15, 1900001.

[34]

Hu, X. L.; Luo, G.; Zhao, Q. N.; Wu, D.; Yang, T. X.; Wen, J.; Wang, R. H.; Xu, C. H.; Hu, N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J. Am. Chem. Soc. 2020, 142, 16776–16786.

[35]

Zhao, X.; Li, H.; Zhang, M.; Pan, W.; Luo, Z. T.; Sun, X. D. Hierarchical nanocages assembled by NiCo-layered double hydroxide nanosheets for a high-performance hybrid supercapacitor. ACS Appl. Mater. Interfaces 2022, 14, 34781–34792.

[36]

Wang, W. S.; Dahl, M.; Yin, Y. D. Hollow nanocrystals through the nanoscale kirkendall effect. Chem. Mater. 2013, 25, 1179–1189.

[37]

Park, S. K.; Kim, J. K.; Kim, J. H.; Kang, Y. C. Metal-organic framework-templated hollow Co3O4 nanosphere aggregate/N-doped graphitic carbon composite powders showing excellent lithium-ion storage performances. Mater. Charact. 2017, 132, 320–329.

[38]

Ji, D. X.; Fan, L.; Tao, L.; Sun, Y. J.; Li, M. G.; Yang, G. R.; Tran, T. Q.; Ramakrishna, S.; Guo, S. J. The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13840–13844.

[39]

Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; van Koeverden, M. P.; Such, G. K.; Cui, J. W.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341, 154–157.

[40]

Rahim, A.; Kempe, K.; Mullner, M.; Ejima, H.; Ju, Y.; van Koeverden, M. P.; Suma, T.; Braunger, J. A.; Leeming, M. G.; Abrahams, B. F. et al. Surface-confined amorphous films from metal-coordinated simple phenolic ligands. Chem. Mater. 2015, 27, 5825–5832.

[41]

Hu, M.; Ju, Y.; Liang, K.; Suma, T.; Cui, J. W.; Caruso, F. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 2016, 26, 5827–5834.

[42]

Jiang, Z. L.; Sun, H.; Shi, W. K.; Zhou, T. H.; Hu, J. Y.; Cheng, J. Y.; Hu, P. F.; Sun, S. G. Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery. Nano Res. 2019, 12, 1555–1562.

[43]

Zhang, Y.; Zhang, S. T.; Ma, J.; Huang, A. J.; Yuan, M. W.; Li, Y. F.; Sun, G. B.; Chen, C.; Nan, C. Y. Oxygen vacancy-rich RuO2-Co3O4 nanohybrids as improved electrocatalysts for Li-O2 batteries. ACS Appl. Mater. Interfaces 2021, 13, 39239–39247.

[44]

Wei, Z.; Liu, Y. F.; Wang, J.; Zong, R. L.; Yao, W. Q.; Wang, J.; Zhu, Y. F. Controlled synthesis of a highly dispersed BiPO4 photocatalyst with surface oxygen vacancies. Nanoscale 2015, 7, 13943–13950.

[45]

Gao, X. R.; Jia, Z. R.; Wang, B. B.; Wu, X. M.; Sun, T.; Liu, X. H.; Chi, Q. G.; Wu, G. L. Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber. Chem. Eng. J. 2021, 419, 130019.

[46]

Morgan, D. J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 2015, 47, 1072–1079.

File
12274_2022_5330_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 August 2022
Revised: 14 November 2022
Accepted: 15 November 2022
Published: 22 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 21606021 and 21771024).

Return