Journal Home > Volume 16 , Issue 6

Sulfurized polyacrylonitrile (S@pPAN) composite provides a conductive pathway for sulfur active material at the molecular level and has already become one of the most promising cathode materials in lithium-sulfur batteries because of its outstanding electrochemical performances via novel solid–solid conversion mechanism. Although there are a great number of researches on the S@pPAN composite material, the accurate structure of S@pPAN and its redox reaction mechanism during the charge–discharge process still have not been determined. The previous research and inferences about the structure of S@pPAN and its electrochemical reaction mechanism were summarized in this review, providing a reference for the future study of lithium-sulfur batteries.


menu
Abstract
Full text
Outline
About this article

Structure and reactions mechanism of sulfurized polyacrylonitrile as cathodes for rechargeable Li-S batteries

Show Author's information Xuan Zhang1Huiyang Ma3Jiqiong Liu1Jiahang Chen1Huichao Lu1Yudai Huang2Jiulin Wang2( )
Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830046, China
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

Abstract

Sulfurized polyacrylonitrile (S@pPAN) composite provides a conductive pathway for sulfur active material at the molecular level and has already become one of the most promising cathode materials in lithium-sulfur batteries because of its outstanding electrochemical performances via novel solid–solid conversion mechanism. Although there are a great number of researches on the S@pPAN composite material, the accurate structure of S@pPAN and its redox reaction mechanism during the charge–discharge process still have not been determined. The previous research and inferences about the structure of S@pPAN and its electrochemical reaction mechanism were summarized in this review, providing a reference for the future study of lithium-sulfur batteries.

Keywords: mechanism, structure, lithium-sulfur batteries, sulfurized polyacrylonitrile (S@pPAN) cathode

References(76)

[1]

Paul, P. P.; McShane, E. J.; Colclasure, A. M.; Balsara, N.; Brown, D. E.; Cao, C. T.; Chen, B. R.; Chinnam, P. R.; Cui, Y.; Dufek, E. J. et al. A review of existing and emerging methods for lithium detection and characterization in Li-ion and Li-metal batteries. Adv. Energy Mater. 2021, 11, 2100372.

[2]

Li, C.; Wang, Z. B.; Wang, Q.; Gu, D. M. Recent advances in cathode materials for Li-S battery: Structure and performance. Rare Met. 2017, 36, 365–380.

[3]

Gao, Y.; Guo, Q. Y.; Zhang, Q.; Cui, Y.; Zheng, Z. J. Fibrous materials for flexible Li-S battery. Adv. Energy Mater. 2021, 11, 2002580.

[4]

Chai, J. L.; Du, J. K.; Li, Q. M.; Han, N.; Zhang, W.; Tang, B. H. J. Recent breakthroughs in the bottleneck of cathode materials for Li-S batteries. Energy Fuels. 2021, 35, 15455–15471.

[5]

Zhou, L.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. Host materials anchoring polysulfides in Li-S batteries reviewed. Adv. Energy Mater. 2021, 11, 2001304.

[6]

Fang, C.; Zhang, G. Z.; Lau, J.; Liu, G. Recent advances in polysulfide mediation of lithium-sulfur batteries via facile cathode and electrolyte modification. APL Mater. 2019, 7, 080902.

[7]

Wang, J.; Yang, J.; Xie, J.; Xu, N. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 2002, 14, 963–965.

[8]

Xing, C.; Chen, H.; Qian, S. S.; Wu, Z. Z.; Nizami, A.; Li, X.; Zhang, S. Q.; Lai, C. Regulating liquid and solid-state electrolytes for solid-phase conversion in Li-S batteries. Chem 2022, 8, 1201–1230.

[9]

Zhang, P.; Liu, C.; Yang, Y. D.; Zheng, Y.; Huo, K. F. Recent advances of freestanding cathodes for Li-S batteries. Chem. Asian J. 2021, 16, 1172–1183.

[10]

Deng, C.; Wang, Z. W.; Feng, L. L.; Wang, S. P.; Yu, J. X. Electrocatalysis of sulfur and polysulfides in Li-S batteries. J. Mater. Chem. A 2020, 8, 19704–19728.

[11]

Rafie, A.; Kim, J. W.; Sarode, K. K.; Kalra, V. A review on the use of carbonate-based electrolytes in Li-S batteries: A comprehensive approach enabling solid–solid direct conversion reaction. Energy Storage Mater. 2022, 50, 197–224.

[12]

Wu, Z. H.; Bak, S. M.; Shadike, Z.; Yu, S. C.; Hu, E. Y.; Xing, X.; Du, Y. H.; Yang, X. Q.; Liu, H. D.; Liu, P. Understanding the roles of the electrode/electrolyte interface for enabling stable Li∥sulfurized polyacrylonitrile batteries. ACS Appl. Mater. Interfaces 2021, 13, 31733–31740.

[13]

Xue, W. Y.; Xu, W. C.; Wang, W.; Gao, G. X.; Wang, L. N. Iodine-doped fibrous sulfurized polyacrylonitrile with accelerated reaction kinetics. Compos. Commun. 2022, 30, 101078.

[14]

Fanous, J.; Wegner, M.; Grimminger, J.; Rolff, M.; Spera, M. B. M.; Tenzer, M.; Buchmeiser, M. R. Correlation of the electrochemistry of poly(acrylonitrile)-sulfur composite cathodes with their molecular structure. J. Mater. Chem. 2012, 22, 23240–23245.

[15]

Li, H. L.; Xue, W. Y.; Xu, W. C.; Wang, L. N.; Liu, T. X. Controllable synthesis of sulfurized polyacrylonitrile nanofibers for high performance lithium-sulfur batteries. Compos. Commun. 2021, 24, 100675.

[16]

Wang, L.; He, X. M.; Li, J. J.; Gao, J.; Guo, J. W.; Jiang, C. Y.; Wan, C. R. Analysis of the synthesis process of sulphur-poly(acrylonitrile)-based cathode materials for lithium batteries. J. Mater. Chem. 2012, 22, 22077–22081.

[17]

Wang, J.; Yang, J.; Wan, C.; Du, K.; Xie, J.; Xu, N. Sulfur composite cathode materials for rechargeable lithium batteries. Adv. Funct. Mater. 2003, 13, 487–492.

[18]

Yang, H. J.; Chen, J. H.; Yang, J.; Wang, J. L. Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2020, 132, 7374–7386.

[19]

Doan, T. N. L.; Ghaznavi, M.; Zhao, Y. G.; Zhang, Y.; Konarov, A.; Sadhu, M.; Tangirala, R.; Chen, P. Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode. J. Power Sources 2013, 241, 61–69.

[20]

Yu, X. G.; Xie, J. Y.; Yang, J.; Huang, H. J.; Wang, K.; Wen, Z. S. Lithium storage in conductive sulfur-containing polymers. J. Electroanal. Chem. 2004, 573, 121–128.

[21]

Fanous, J.; Wegner, M.; Grimminger, J.; Andresen, Ä.; Buchmeiser, M. R. Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries. Chem. Mater. 2011, 23, 5024–5028.

[22]

Zhang, S. S. Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery. Energies 2014, 7, 4588–4600.

[23]

Wei, S. Y.; Ma, L.; Hendrickson, K. E.; Tu, Z. Y.; Archer, L. A. Metal-sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc. 2015, 137, 12143–12152.

[24]

Wang, W. X.; Cao, Z.; Elia, G. A.; Wu, Y. Q.; Wahyudi, W.; Abou-Hamad, E.; Emwas, A. H.; Cavallo, L.; Li, L. J.; Ming, J. Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries. ACS Energy Lett. 2018, 3, 2899–2907.

[25]

Jin, Z. Q.; Liu, Y. G.; Wang, W. K.; Wang, A. B.; Hu, B. W.; Shen, M.; Gao, T.; Zhao, P. C.; Yang, Y. S. A new insight into the lithium storage mechanism of sulfurized polyacrylonitrile with no soluble intermediates. Energy Storage Mater. 2018, 14, 272–278.

[26]

Weret, M. A.; Kuo, C. F. J.; Zeleke, T. S.; Beyene, T. T.; Tsai, M. C.; Huang, C. J.; Berhe, G. B.; Su, W. N.; Hwang, B. J. Mechanistic understanding of the sulfurized-poly(acrylonitrile) cathode for lithium-sulfur batteries. Energy Storage Mater. 2020, 26, 483–493.

[27]

Zhu, T. W.; Mueller, J. E.; Hanauer, M.; Sauter, U.; Jacob, T. Structural motifs for modeling sulfur-poly(acrylonitrile) composite materials in sulfur-lithium batteries. ChemElectroChem 2017, 4, 2494–2499.

[28]

Beltran, S. P.; Balbuena, P. B. Sulfurized polyacrylonitrile for high-performance lithium-sulfur batteries: In-depth computational approach revealing multiple sulfur’s reduction pathways and hidden Li+ storage mechanisms for extra discharge capacity. ACS Appl. Mater. Interfaces 2021, 13, 491–502.

[29]

Wang, X. F.; Qian, Y. M.; Wang, L. N.; Yang, H.; Li, H. L.; Zhao, Y.; Liu, T. X. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1902929.

[30]

Zhu, T. W.; Mueller, J. E.; Hanauer, M.; Sauter, U.; Jacob, T. Theoretical studies on the charging and discharging of poly(acrylonitrile)-based lithium-sulfur batteries. ChemElectroChem 2017, 4, 2975–2980.

[31]

Beltran, S. P.; Balbuena, P. B. Sulfurized polyacrylonitrile (SPAN): Changes in mechanical properties during electrochemical lithiation. J. Phys. Chem. C 2021, 125, 13185–13194.

[32]

Xiang, J. W.; Guo, Z. Z.; Yi, Z. Q.; Zhang, Y.; Yuan, L. X.; Cheng, Z. X.; Shen, Y.; Huang, Y. H. Facile synthesis of sulfurized polyacrylonitrile composite as cathode for high-rate lithium-sulfur batteries. J. Energy Chemistry 2020, 49, 161–165.

[33]

Zhao, X. H.; Wang, C. L.; Li, Z. W.; Hu, X. C.; Razzaq, A. A.; Deng, Z. Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: Advances and prospects. J. Mater. Chem. A 2021, 9, 19282–19297.

[34]

He, X. M.; Wang, L.; Pu, W. H.; Ren, J. G.; Wu, W.; Jiang, C. Y.; Wan, C. R. Thermal analysis of sulfurization of polyacrylonitrile with elemental sulfur. J. Therm. Anal. Calorim. 2008, 94, 151–155.

[35]

Páez Jerez, A. L.; Chemes, D. M.; Sham, E. L.; Davies, L. E.; Tesio, A. Y.; Flexer, V. Low-temperature synthesis of a sulfur-polyacrylonitrile composite cathode for lithium-sulfur batteries. ChemistrySelect 2020, 5, 5465–5472.

[36]

Shi, Z. P.; Bi, D. W.; Wang, L.; Xu, H. F.; Yue, H. Y.; Yin, Y. H.; Yang, S. T. Disulfide dichloride: A high efficiency vulcanizing agent for sulfurized polyacrylonitrile. ACS Appl. Energy Mater. 2022, 5, 8015–8022.

[37]

Niesen, S.; Kappler, J.; Trück, J.; Veith, L.; Weil, T.; Soczka-Guth, T.; Buchmeiser, M. R. Influence of the drying temperature on the performance and binder distribution of sulfurized poly(acrylonitrile) cathodes. J. Electrochem. Soc. 2021, 168, 050510.

[38]

Konarov, A.; Gosselink, D.; Doan, N. L.; Zhang, Y. G.; Zhao, Y.; Chen, P. Simple, scalable, and economical preparation of sulfur-PAN composite cathodes for Li/S batteries. J. Power Sources. 2014, 259, 183–187.

[39]

Mukkabla, R.; Buchmeiser, M. R. Cathode materials for lithium-sulfur batteries based on sulfur covalently bound to a polymeric backbone. J. Mater. Chem. A 2020, 8, 5379–5394.

[40]

Liu, Y. G.; Wang, W. K.; Wang, A. B.; Jin, Z. Q.; Zhao, H. L.; Yang, Y. S. Effect of vapor pressure on performance of sulfurized polyacrylonitrile cathodes for Li/S batteries. RSC Adv. 2016, 6, 106625–106630.

[41]

Lei, J. Y.; Chen, J. H.; Zhang, H. M.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. L. High molecular weight polyacrylonitrile precursor for S@pPAN composite cathode materials with high specific capacity for rechargeable lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 33702–33709.

[42]

Pu, W. H.; He, X. M.; Wang, L.; Tian, Z.; Jiang, C. Y.; Wan, C. R. Sulfur composite cathode materials: Comparative characterization of polyacrylonitrile precursor. Ionics 2007, 13, 273–276.

[43]

Zhang, Y. G.; Zhao, Y.; Bakenov, Z.; Konarov, A.; Chen, P. Preparation of novel network nanostructured sulfur composite cathode with enhanced stable cycle performance. J. Power Sources 2014, 270, 326–331.

[44]

Lei, J. Y.; Lu, H. C.; Chen, J. H.; Yang, J.; Nuli, Y.; Wang, J. L. Crosslinked polyacrylonitrile precursor for S@pPAN composite cathode materials for rechargeable lithium batteries. J. Energy Chem. 2022, 65, 186–193.

[45]

Fanous, J.; Wegner, M.; Spera, M. B. M.; Buchmeiser, M. R. High energy density poly(acrylonitrile)-sulfur composite-based lithium-sulfur batteries. J. Electrochem. Soc. 2013, 160, A1169–A1170.

[46]

Dong, G. X.; Li, H. J.; Wang, Y.; Jiang, W. J.; Ma, Z. S. Electrospun PAN/cellulose composite separator for high performance lithium-ion battery. Ionics 2021, 27, 2955–2965.

[47]

He, R. H.; Li, Y. B.; Wei, S. J.; Liu, H.; Zhang, S. Y.; Han, N.; Liu, H. H.; Wang, X. C.; Zhang, X. X. Construction of high-performance sulfurized poly(acrylonitrile) cathodes for lithium-sulfur batteries via catalytic and conductive regulation. J. Alloys Compd. 2022, 919, 165838.

[48]

Zhang, W.; Li, S. P.; Wang, L. H.; Wang, X. M.; Xie, J. Insight into sulfur-rich selenium sulfide/pyrolyzed polyacrylonitrile cathodes for Li-S batteries. Sustain. Energy Fuels 2020, 4, 3588–3596.

[49]

Chen, X.; Peng, L. F.; Wang, L. H.; Yang, J. Q.; Hao, Z. X.; Xiang, J. W.; Yuan, K.; Huang, Y. H.; Shan, B.; Yuan, L. X. et al. Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping. Nat. Commun. 2019, 10, 1021.

[50]

Jiang, M.; Wang, K. L.; Gao, S.; Wang, R. X.; Han, J.; Yan, J.; Cheng, S. J.; Jiang, K. Selenium as extra binding site for sulfur species in sulfurized polyacrylonitrile cathodes for high capacity lithium-sulfur batteries. Chem. Electro. Chem. 2019, 6, 1365–1370.

[51]

Razzaq, A. A.; Chen, G. W.; Zhao, X. H.; Yuan, X. T.; Hu, J. P.; Li, Z. W.; Chen, Y. F.; Xu, J. B.; Shah, R.; Zhong, J. et al. Cobalt coordination with pyridines in sulfurized polyacrylonitrile cathodes to form conductive pathways and catalytic M-N4S sites for accelerated Li-S kinetics. J. Energy Chem. 2021, 61, 170–178.

[52]

Kim, H.; Hwang, J. Y.; Bang, S.; Jung, H. G.; Sun, Y. K. Geometrical engineering of a SPAN-graphene composite cathode for practical Li-S batteries. J. Mater. Chem. A 2022, 10, 10844–10853.

[53]

Yuan, X. M.; Zhu, B.; Feng, J. K.; Wang, C. G.; Cai, X.; Qin, R. M. Feasible catalytic-insoluble strategy enabled by sulfurized polyacrylonitrile with in situ built electrocatalysts for ultrastable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 50936–50947.

[54]

Qin, F. R.; Zhang, K.; Hong, B.; Zhang, L.; Zhang, Z. A.; Li, J.; Wang, X. W.; Lai, Y. Q. A new insight into capacity fading of sulfurized polyacrylonitrile composite in carbonate electrolyte. J. Electroanal. Chem. 2021, 882, 114964.

[55]

Yang, H. J.; Chen, J. H.; Yang, J.; Nuli, Y. N.; Wang, J. L. Dense and high loading sulfurized pyrolyzed poly (acrylonitrile)(S@pPAN) cathode for rechargeable lithium batteries. Energy Storage Materials 2020, 31, 187–194.

[56]

Li, J.; Li, K.; Li, M. Q.; Gosselink, D.; Zhang, Y. G.; Chen, P. A sulfur-polyacrylonitrile/graphene composite cathode for lithium batteries with excellent cyclability. J. Power Sources 2014, 252, 107–112.

[57]

Zhang, Y. Z.; Liu, S.; Li, G. C.; Li, G. R.; Gao, X. P. Sulfur/polyacrylonitrile/carbon multi-composites as cathode materials for lithium/sulfur battery in the concentrated electrolyte. J. Mater. Chem. A 2014, 2, 4652–4659.

[58]

Yin, L. C.; Wang, J. L.; Yu, X. L.; Monroe, C. W.; Nuli, Y.; Yang, J. Dual-mode sulfur-based cathode materials for rechargeable Li-S batteries. Chem. Commun. 2012, 48, 7868–7870.

[59]

Yin, L. C.; Wang, J. L.; Lin, F. J.; Yang, J.; Nuli, Y. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy Environ. Sci. 2012, 5, 6966–6972.

[60]

Yin, L. C.; Wang, J. L.; Yang, J.; Nuli, Y. A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. J. Mater. Chem. 2011, 21, 6807–6810.

[61]

Zhang, Y. G.; Zhao, Y.; Yermukhambetova, A.; Bakenov, Z.; Chen, P. Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries. J. Mater. Chem. A 2013, 1, 295–301.

[62]
Peng, Y. Q.; Zhao, M.; Chen, Z. X.; Cheng, Q.; Liu, Y. R.; Li, X. Y.; Song, Y. W.; Li, B. Q.; Huang, J. Q. Boosting sulfur redox kinetics by a pentacenetetrone redox mediator for high-energy-density lithium-sulfur batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-4584-z.
DOI
[63]

Zhao, C. X.; Chen, W. J.; Zhao, M.; Song, Y. W.; Liu, J. N.; Li, B. Q.; Yuan, T. Q.; Chen, C. M.; Zhang, Q.; Huang, J. Q. Redox mediator assists electron transfer in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat 2021, 3, e12066.

[64]

Liu, Y. G.; Wang, W. K.; Wang, A. B.; Jin, Z. Q.; Zhao, H. L.; Yang, Y. S. A polysulfide reduction accelerator—NiS2-modified sulfurized polyacrylonitrile as a high performance cathode material for lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 22120–22124.

[65]

Razzaq, A. A.; Yuan, X. T.; Chen, Y. J.; Hu, J. P.; Mu, Q. Q.; Ma, Y.; Zhao, X. H.; Miao, L. X.; Ahn, J. H.; Peng, Y. et al. Anchoring MOF-derived CoS2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 1298–1306.

[66]

Wang, Y.; Shuai, Y.; Chen, K. H. Diphenyl guanidine as vulcanization accelerators in sulfurized polyacrylonitrile for high performance lithium-sulfur battery. Chem. Eng. J. 2020, 388, 124378.

[67]

Wang, K. Y.; Ju, S. L.; Gao, Q. L.; Xia, G. L.; Wang, G. F.; Yan, H. X.; Dong, L. X.; Yang, Z. X.; Yu, X. B. Porous sulfurized poly(acrylonitrile) nanofiber as a long-life and high-capacity cathode for lithium-sulfur batteries. J. Alloys Compd. 2021, 860, 158445.

[68]

Wang, K.; Zhao, T.; Zhang, N. X.; Feng, T.; Li, L.; Wu, F.; Chen, R. J. Powering lithium-sulfur batteries by ultrathin sulfurized polyacrylonitrile nanosheets. Nanoscale 2021, 13, 16690–16695.

[69]

Weret, M. A.; Kuo, C. F. J.; Su, W. N.; Zeleke, T. S.; Huang, C. J.; Sahalie, N. A.; Zegeye, T. A.; Wondimkun, Z. T.; Fenta, F. W.; Jote, B. A. et al. Fibrous organosulfur cathode materials with high bonded sulfur for high-performance lithium-sulfur batteries. J. Power Sources 2022, 541, 231693.

[70]

Frey, M.; Zenn, R. K.; Warneke, S.; Müller, K.; Hintennach, A.; Dinnebier, R. E.; Buchmeiser, M. R. Easily accessible, textile fiber-based sulfurized poly(acrylonitrile) as Li/S cathode material: Correlating electrochemical performance with morphology and structure. ACS Energy Lett. 2017, 2, 595–604.

[71]

Liu, Y.; Haridas, A. K.; Cho, K. K.; Lee, Y.; Ahn, J. H. Highly ordered mesoporous sulfurized polyacrylonitrile cathode material for high-rate lithium sulfur batteries. J. Phys. Chem. C 2017, 121, 26172–26179.

[72]

Zhang, Y. Z.; Wu, Z. Z.; Pan, G. L.; Liu, S.; Gao, X. P. Microporous carbon polyhedrons encapsulated polyacrylonitrile nanofibers as sulfur immobilizer for lithium-sulfur battery. ACS Appl. Mater. Interfaces 2017, 9, 12436–12444.

[73]

Liu, Y.; Haridas, A. K.; Lee, Y.; Cho, K. K.; Ahn, J. H. Freestanding porous sulfurized polyacrylonitrile fiber as a cathode material for advanced lithium sulfur batteries. Appl. Surf. Sci. 2019, 472, 135–142.

[74]

Song, Y.; Lai, J. B.; Li, X. Y.; Huo, J. R.; Zhao, C. X.; He, C. Z. Steaming inspired 3D porous architecture for improving the capability and stability of sulfurized polyacrylonitrile cathode. Mater. Lett. 2021, 296, 129933.

[75]

Dai, Z. D.; Wang, M.; Zhang, Y.; Wang, B. Y.; Luo, H.; Zhang, X. M.; Wang, Q.; Zhang, Y.; Wu, H. Engineering bifunctional host materials of sulfur and lithium-metal based on nitrogen-enriched polyacrylonitrile for Li-S batteries. Chem.—Eur. J. 2020, 26, 8784–8793.

[76]

Wang, T.; Zhang, Q. S.; Zhong, J.; Chen, M. X.; Deng, H. L.; Cao, J. H.; Wang, L.; Peng, L. L.; Zhu, J.; Lu, B. G. 3D holey graphene/polyacrylonitrile sulfur composite architecture for high loading lithium sulfur batteries. Adv. Energy Mater. 2021, 11, 2100448.

Publication history
Copyright
Acknowledgements

Publication history

Received: 29 August 2022
Revised: 24 October 2022
Accepted: 14 November 2022
Published: 02 March 2023
Issue date: June 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development (R&D) Program of China (No. 2021YFB2400300), the National Natural Science Foundation of China (No. 22179083), Program of Shanghai Academic Research Leader (No. 20XD1401900), and Key-Area Research and Development Program of Guangdong Province (No. 2019B090908001).

Return