Journal Home > Volume 16 , Issue 3

The rational design of efficient artificial photosynthetic components requires thorough understandings towards (photo)electrochemical properties and kinetic processes at the solid/liquid interface. Electrochemical scanning probe microscopy (EC-SPM), which enables the high-spatial resolution imaging in an electrolyte environment, becomes an indispensable experimental technique for operando studies of (photo)electrochemistry. This review summarizes the latest results of relevant EC-SPM techniques to study the interfacial properties of electrocatalysts and photoelectrodes. Covered methods include atomic force microscopy, Kelvin probe force microscopy, conductive atomic force microscopy, scanning tunneling microscopy, scanning electrochemical microscopy, and other advanced SPM-based operando techniques. Finally, we offer some perspectives on the future outlook in this fascinating research area.


menu
Abstract
Full text
Outline
About this article

Electrochemical scanning probe microscopies for artificial photosynthesis

Show Author's information Chunlei YangTianhui SuYanbo HuaLiming Zhang( )
Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China

Abstract

The rational design of efficient artificial photosynthetic components requires thorough understandings towards (photo)electrochemical properties and kinetic processes at the solid/liquid interface. Electrochemical scanning probe microscopy (EC-SPM), which enables the high-spatial resolution imaging in an electrolyte environment, becomes an indispensable experimental technique for operando studies of (photo)electrochemistry. This review summarizes the latest results of relevant EC-SPM techniques to study the interfacial properties of electrocatalysts and photoelectrodes. Covered methods include atomic force microscopy, Kelvin probe force microscopy, conductive atomic force microscopy, scanning tunneling microscopy, scanning electrochemical microscopy, and other advanced SPM-based operando techniques. Finally, we offer some perspectives on the future outlook in this fascinating research area.

Keywords: atomic force microscopy, scanning tunneling microscopy, in-situ, (photo)electrocatalysis, scanning probe microscopies

References(127)

[1]

Hunter, B. M.; Gray, H. B.; Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 2016, 116, 14120–14136.

[2]

Stevens, M. B.; Enman, L. J.; Batchellor, A. S.; Cosby, M. R.; Vise, A. E.; Trang, C. D. M.; Boettcher, S. W. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater. 2017, 29, 120–140.

[3]

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

[4]

McKone, J. R.; Lewis, N. S.; Gray, H. B. Will solar-driven water-splitting devices see the light of day? Chem. Mater. 2014, 26, 407–414.

[5]

Calle-Vallejo, F.; Tymoczko, J.; Colic, V.; Vu, Q. H.; Pohl, M. D.; Morgenstern, K.; Loffreda, D.; Sautet, P.; Schuhmann, W.; Bandarenka, A. S. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 2015, 350, 185–189.

[6]

Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem 2010, 2, 724–761.

[7]

Chenna, S.; Crozier, P. A. Operando transmission electron microscopy: A technique for detection of catalysis using electron energy-loss spectroscopy in the transmission electron microscope. ACS Catal. 2012, 2, 2395–2402.

[8]

Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. 7 × 7 reconstruction on Si (111) resolved in real space. Phys. Rev. Lett. 1983, 50, 120–123.

[9]

Itaya, K.; Tomita, E. Scanning tunneling microscope for electrochemistry—A new concept for the in situ scanning tunneling microscope in electrolyte solutions. Surf. Sci. 1988, 201, L507–L512.

[10]

Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933.

[11]

Nonnenmacher, M.; O’Boyle, M. P.; Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 1991, 58, 2921–2923.

[12]

MacDonald, G. A.; Veneman, P. A.; Placencia, D.; Armstrong, N. R. Electrical property heterogeneity at transparent conductive oxide/organic semiconductor interfaces: Mapping contact ohmicity using conducting-tip atomic force microscopy. ACS Nano 2012, 6, 9623–9636.

[13]

Martin, Y.; Abraham, D. W.; Wickramasinghe, H. K. High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 1988, 52, 1103–1105.

[14]

Stern, J. E.; Terris, B. D.; Mamin, H. J.; Rugar, D. Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl. Phys. Lett. 1988, 53, 2717–2719.

[15]

Kajiyama, T.; Tanaka, K.; Takahara, A. Surface molecular motion of the monodisperse polystyrene films. Macromolecules 1997, 30, 280–285.

[16]

Yu, J. X.; Esfahani, E. N.; Zhu, Q. F.; Shan, D. L.; Jia, T. T.; Xie, S. H.; Li, J. Y. Quadratic electromechanical strain in silicon investigated by scanning probe microscopy. J. Appl. Phys. 2018, 123, 155104.

[17]

Bard, A. J.; Denuault, G.; Lee, C.; Mandler, D.; Wipf, D. O. Scanning electrochemical microscopy—A new technique for the characterization and modification of surfaces. Acc. Chem. Res. 1990, 23, 357–363.

[18]

Macpherson, J. V.; Unwin, P. R. Combined scanning electrochemical-atomic force microscopy. Anal. Chem. 2000, 72, 276–285.

[19]

Amatore, C.; Pebay, C.; Thouin, L.; Wang, A. F.; Warkocz, J. S. Difference between ultramicroelectrodes and microelectrodes: Influence of natural convection. Anal. Chem. 2010, 82, 6933–6939.

[20]

Macpherson, J. V.; Jones, C. E.; Barker, A. L.; Unwin, P. R. Electrochemical imaging of diffusion through single nanoscale pores. Anal. Chem. 2002, 74, 1841–1848.

[21]

Shen, C.; Wang, S. W.; Jin, Y.; Han, W. Q. In situ AFM imaging of solid electrolyte interfaces on HOPG with ethylene carbonate and fluoroethylene carbonate-based electrolytes. ACS Appl. Mater. Interfaces 2015, 7, 25441–25447.

[22]

Manne, S.; Massie, J.; Elings, V. B.; Hansma, P. K.; Gewirth, A. A. Electrochemistry on a gold surface observed with the atomic force microscope. J. Vac. Sci. Technol. B 1991, 9, 950–954.

[23]

Kim, Y. G.; Baricuatro, J. H.; Javier, A.; Gregoire, J. M.; Soriaga, M. P. The evolution of the polycrystalline copper surface, first to Cu (111) and then to Cu (100), at a fixed CO2RR potential: A study by operando EC-STM. Langmuir 2014, 30, 15053–15056.

[24]

Jacobse, L.; Huang, Y. F.; Koper, M. T. M.; Rost, M. J. Correlation of surface site formation to nanoisland growth in the electrochemical roughening of Pt (111). Nat. Mater. 2018, 17, 277–282.

[25]

Khalakhan, I.; Vorokhta, M.; Kúš, P.; Dopita, M.; Václavů, M.; Fiala, R.; Tsud, N.; Skála, T.; Matolín, V. In situ probing of magnetron sputtered Pt-Ni alloy fuel cell catalysts during accelerated durability test using EC-AFM. Electrochim. Acta 2017, 245, 760–769.

[26]

Grosse, P.; Yoon, A.; Rettenmaier, C.; Herzog, A.; Chee, S. W.; Roldan Cuenya, B. Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nat. Commun. 2021, 12, 6736.

[27]

Deng, X.; Galli, F.; Koper, M. T. M. In situ electrochemical AFM imaging of a Pt electrode in sulfuric acid under potential cycling conditions. J. Am. Chem. Soc. 2018, 140, 13285–13291.

[28]

Simon, G. H.; Kley, C. S.; Roldan Cuenya, B. Potential-dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ atomic force microscopy. Angew. Chem., Int. Ed. 2021, 60, 2561–2568.

[29]

Deng, Y. Q.; Liu, Z.; Wang, A. Z.; Sun, D. H.; Chen, Y. K.; Yang, L. J.; Pang, J. B.; Li, H.; Li, H. D.; Liu, H. et al. Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy 2019, 62, 338–347.

[30]

Huang, J. X.; Pan, X. L.; Liao, X. B.; Yan, M. Y.; Dunn, B.; Luo, W.; Mai, L. Q. In situ monitoring of the electrochemically induced phase transition of thermodynamically metastable 1T-MoS2 at nanoscale. Nanoscale 2020, 12, 9246–9254.

[31]

Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

[32]

Du, J.; Li, F.; Sun, L. C. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 2663–2695.

[33]

Zhang, K. X.; Zou, R. Q. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges. Small 2021, 17, 2100129.

[34]

Deng, J.; Nellist, M. R.; Stevens, M. B.; Dette, C.; Wang, Y.; Boettcher, S. W. Morphology dynamics of single-layered Ni(OH)2/NiOOH nanosheets and subsequent Fe incorporation studied by in situ electrochemical atomic force microscopy. Nano Lett. 2017, 17, 6922–6926.

[35]

Dette, C.; Hurst, M. R.; Deng, J.; Nellist, M. R.; Boettcher, S. W. Structural evolution of metal (oxy)hydroxide nanosheets during the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 5590–5594.

[36]

Mefford, J. T.; Akbashev, A. R.; Kang, M.; Bentley, C. L.; Gent, W. E.; Deng, H. D.; Alsem, D. H.; Yu, Y. S.; Salmon, N. J.; Shapiro, D. A. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 2021, 593, 67–73.

[37]

Toma, F. M.; Cooper, J. K.; Kunzelmann, V.; McDowell, M. T.; Yu, J.; Larson, D. M.; Borys, N. J.; Abelyan, C.; Beeman, J. W.; Yu, K. M. et al. Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes. Nat. Commun. 2016, 7, 12012.

[38]
Akbashev, A. R.; Roddatis, V.; Baeumer, C.; Liu, T. C.; Mefford, J. T.; Chueh, W. C. Probing the stability of SrIrO3 during active water electrolysis via operando atomic force microscopy. ChemRxiv, in press, https://doi.org/10.26434/chemrxiv-2022-jg608-v3.
DOI
[39]

Raines, C. A. The Calvin cycle revisited. Photosynth. Res. 2003, 75, 1–10.

[40]

Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

[41]

Tan, X. Y.; Yu, C.; Ren, Y. W.; Cui, S.; Li, W. B.; Qiu, J. S. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ. Sci. 2021, 14, 765–780.

[42]

Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.

[43]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[44]

Saha, P.; Amanullah, S.; Dey, A. Selectivity in electrochemical CO2 reduction. Acc. Chem. Res. 2022, 55, 134–144.

[45]

Zou, Y. Q.; Wang, S. Y. An investigation of active sites for electrochemical CO2 reduction reactions: From in situ characterization to rational design. Adv. Sci. 2021, 8, 2003579.

[46]

Arán-Ais, R. M.; Gao, D. F.; Roldan Cuenya, B. Structure- and electrolyte-sensitivity in CO2 electroreduction. Acc. Chem. Res. 2018, 51, 2906–2917.

[47]

Gao, D. F.; Liu, T. F.; Wang, G. X.; Bao, X. H. Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett. 2021, 6, 713–727.

[48]

Ma, Y. B.; Wang, J.; Yu, J. L.; Zhou, J. W.; Zhou, X. C.; Li, H. X.; He, Z.; Long, H. W.; Wang, Y. H.; Lu, P. Y. et al. Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction. Matter 2021, 4, 888–926.

[49]

Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

[50]

Chen, K. J.; Cao, M. Q.; Lin, Y. Y.; Fu, J. W.; Liao, H. X.; Zhou, Y. J.; Li, H. M.; Qiu, X. Q.; Hu, J. H.; Zheng, X. S. et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv. Funct. Mater. 2022, 32, 2111322.

[51]

Yang, B. P.; Liu, K.; Li, H. J. W.; Liu, C. X.; Fu, J. W.; Li, H. M.; Huang, J. E.; Ou, P. F.; Alkayyali, T.; Cai, C. et al. Accelerating CO2 electroreduction to multicarbon products via synergistic electric-thermal field on copper nanoneedles. J. Am. Chem. Soc. 2022, 144, 3039–3049.

[52]

Zhou, Y. J.; Liang, Y. Q.; Fu, J. W.; Liu, K.; Chen, Q.; Wang, X. Q.; Li, H. M.; Zhu, L.; Hu, J. H.; Pan, H. et al. Vertical Cu nanoneedle arrays enhance the local electric field promoting C2 hydrocarbons in the CO2 electroreduction. Nano Lett. 2022, 22, 1963–1970.

[53]

Handoko, A. D.; Wei, F. X.; Jenndy; Yeo, B. S.; Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 2018, 1, 922–934.

[54]

Chang, C. J.; Hung, S. F.; Hsu, C. S.; Chen, H. C.; Lin, S. C.; Liao, Y. F.; Chen, H. M. Quantitatively unraveling the redox shuttle of spontaneous oxidation/electroreduction of CuOx on silver nanowires using in situ X-ray absorption spectroscopy. ACS Cent. Sci. 2019, 5, 1998–2009.

[55]

Lin, S. C.; Chang, C. C.; Chiu, S. Y.; Pai, H. T.; Liao, T. Y.; Hsu, C. S.; Chiang, W. H.; Tsai, M. K.; Chen, H. M. Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO2 reduction. Nat. Commun. 2020, 11, 3525.

[56]

Wang, X. L.; Klingan, K.; Klingenhof, M.; Möller, T.; Ferreira de Araújo, J.; Martens, I.; Bagger, A.; Jiang, S.; Rossmeisl, J.; Dau, H. et al. Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 2021, 12, 794.

[57]

Grosse, P.; Gao, D. F.; Scholten, F.; Sinev, I.; Mistry, H.; Roldan Cuenya, B. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: Size and support effects. Angew. Chem., Int. Ed. 2018, 57, 6192–6197.

[58]

Nesbitt, N. T.; Smith, W. A. Operando topography and mechanical property mapping of CO2 reduction gas-diffusion electrodes operating at high current densities. J. Electrochem. Soc. 2021, 168, 044505.

[59]

Enevoldsen, G. H.; Glatzel, T.; Christensen, M. C.; Lauritsen, J. V.; Besenbacher, F. Atomic scale kelvin probe force microscopy studies of the surface potential variations on the TiO2 (110) surface. Phys. Rev. Lett. 2008, 100, 236104.

[60]

Wu, Z. Z.; Zhang, X. L.; Niu, Z. Z.; Gao, F. Y.; Yang, P. P.; Chi, L. P.; Shi, L.; Wei, W. S.; Liu, R.; Chen, Z. et al. Identification of Cu (100)/Cu (111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 2022, 144, 259–269.

[61]

Guo, C.; Zhou, J.; Chen, Y. T.; Zhuang, H. F.; Li, Q.; Li, J.; Tian, X.; Zhang, Y. L.; Yao, X. M.; Chen, Y. F. et al. Synergistic manipulation of hydrogen evolution and zinc ion flux in metal-covalent organic frameworks for dendrite-free Zn-based aqueous batteries. Angew. Chem., Int. Ed. 2022, 61, e202210871.

[62]

Lee, S.; Liang, C. W.; Martin, L. W. Synthesis, control, and characterization of surface properties of Cu2O nanostructures. ACS Nano 2011, 5, 3736–3743.

[63]

Zhang, Z.; Yates, J. T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551.

[64]

Yang, X. G.; Wang, D. W. Photocatalysis: From fundamental principles to materials and applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693.

[65]

Chen, R. T.; Zhu, J.; An, H. Y.; Fan, F. T.; Li, C. Unravelling charge separation via surface built-in electric fields within single particulate photocatalysts. Faraday Discuss. 2017, 198, 473–479.

[66]

Chen, R. T.; Fan, F. T.; Li, C. Unraveling charge-separation mechanisms in photocatalyst particles by spatially resolved surface photovoltage techniques. Angew. Chem., Int. Ed. 2022, 61, e202117567.

[67]

Duzhko, V.; Koch, F.; Dittrich, T. Transient photovoltage and dielectric relaxation time in porous silicon. J. Appl. Phys. 2002, 91, 9432–9434.

[68]

Dittrich, T.; Bönisch, S.; Zabel, P.; Dube, S. High precision differential measurement of surface photovoltage transients on ultrathin CdS layers. Rev. Sci. Instrum. 2008, 79, 113903.

[69]

Chen, R. T.; Fan, F. T.; Dittrich, T.; Li, C. Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy. Chem. Soc. Rev. 2018, 47, 8238–8262.

[70]

Chen, F.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv. Mater. 2021, 33, 2005256.

[71]

Wang, D.; Sheng, T.; Chen, J. F.; Wang, H. F.; Hu, P. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nat. Catal. 2018, 1, 291–299.

[72]

Liu, C.; Hwang, Y. J.; Jeong, H. E.; Yang, P. D. Light-induced charge transport within a single asymmetric nanowire. Nano Lett. 2011, 11, 3755–3758.

[73]

Li, R. G.; Zhang, F. X.; Wang, D. G.; Yang, J. X.; Li, M. R.; Zhu, J.; Zhou, X.; Han, H. X.; Li, C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432.

[74]

Li, R. G.; Tao, X. P.; Chen, R. T.; Fan, F. T.; Li, C. Synergetic effect of dual co-catalysts on the activity of p-type Cu2O crystals with anisotropic facets. Chem.—Eur. J. 2015, 21, 14337–14341.

[75]

Zhang, J.; Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem., Int. Ed. 2008, 47, 1766–1769.

[76]

Ai, Z. Z.; Zhao, G.; Zhong, Y. Y.; Shao, Y. L.; Huang, B. B.; Wu, Y. Z.; Hao, X. P. Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation. Appl. Catal. B: Environ. 2018, 221, 179–186.

[77]

Zhang, S. Q.; Si, Y. M.; Li, B.; Yang, L. X.; Dai, W. L.; Luo, S. L. Atomic-level and modulated interfaces of photocatalyst heterostructure constructed by external defect-induced strategy: A critical review. Small 2021, 17, 2004980.

[78]

Zhu, J.; Pang, S.; Dittrich, T.; Gao, Y. Y.; Nie, W.; Cui, J. Y.; Chen, R. T.; An, H. Y.; Fan, F. T.; Li, C. Visualizing the nano cocatalyst aligned electric fields on single photocatalyst particles. Nano Lett. 2017, 17, 6735–6741.

[79]

Zhu, J.; Fan, F. T.; Chen, R. T.; An, H. Y.; Feng, Z. C.; Li, C. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Chem., Int. Ed. 2015, 54, 9111–9114.

[80]

Gao, Y. Y.; Zhu, J.; An, H. Y.; Yan, P. L.; Huang, B. K.; Chen, R. T.; Fan, F. T.; Li, C. Directly probing charge separation at interface of TiO2 phase junction. J. Phys. Chem. Lett. 2017, 8, 1419–1423.

[81]

Chen, R. T.; Pang, S.; An, H. Y.; Dittrich, T.; Fan, F. T.; Li, C. Giant defect-induced effects on nanoscale charge separation in semiconductor photocatalysts. Nano Lett. 2019, 19, 426–432.

[82]

Chen, R. T.; Pang, S.; An, H. Y.; Zhu, J.; Ye, S.; Gao, Y. Y.; Fan, F. T.; Li, C. Charge separation via asymmetric illumination in photocatalytic Cu2O particles. Nat. Energy 2018, 3, 655–663.

[83]

Warren, S. C.; Voïtchovsky, K.; Dotan, H.; Leroy, C. M.; Cornuz, M.; Stellacci, F.; Hébert, C.; Rothschild, A.; Grätzel, M. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 2013, 12, 842–849.

[84]

Faraji, N.; Ulrich, C.; Wolff, N.; Kienle, L.; Adelung, R.; Mishra, Y. K.; Seidel, J. Visible-light driven nanoscale photoconductivity of grain boundaries in self-supported ZnO nano- and microstructured platelets. Adv. Electron. Mater. 2016, 2, 1600138.

[85]

Eichhorn, J.; Kastl, C.; Cooper, J. K.; Ziegler, D.; Schwartzberg, A. M.; Sharp, I. D.; Toma, F. M. Nanoscale imaging of charge carrier transport in water splitting photoanodes. Nat. Commun. 2018, 9, 2597.

[86]

Zeng, G. S.; Pham, T. A.; Vanka, S.; Liu, G. J.; Song, C. Y.; Cooper, J. K.; Mi, Z. T.; Ogitsu, T.; Toma, F. M. Development of a photoelectrochemically self-improving Si/GaN photocathode for efficient and durable H2 production. Nat. Mater. 2021, 20, 1130–1135.

[87]

Zheng, J. Y.; Lyu, Y.; Wang, R. L.; Xie, C.; Zhou, H. J.; Jiang, S. P.; Wang, S. Y. Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode. Nat. Commun. 2018, 9, 3572.

[88]

Rogers, B. L.; Shapter, J. G.; Skinner, W. M.; Gascoigne, K. A method for production of cheap, reliable Pt-Ir tips. Rev. Sci. Instrum. 2000, 71, 1702–1705.

[89]

Mao, B. W.; Ye, J. H.; Zhuo, X. D.; Mu, J. Q.; Fen, Z. D.; Tian, Z. W. A new method of STM tip fabrication for in-situ electrochemical studies. Ultramicroscopy 1992, 42–44, 464–467.

[90]

Heo, Y.; Choi, S.; Bak, J.; Kim, H. S.; Bae, H. B.; Chung, S. Y. Symmetry-broken atom configurations at grain boundaries and oxygen evolution electrocatalysis in perovskite oxides. Adv. Energy Mater. 2018, 8, 1802481.

[91]

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

[92]

Jacobse, L.; Rost, M. J.; Koper, M. T. M. Atomic-scale identification of the electrochemical roughening of platinum. ACS Cent. Sci. 2019, 5, 1920–1928.

[93]

Hahn, C.; Hatsukade, T.; Kim, Y. G.; Vailionis, A.; Baricuatro, J. H.; Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F. Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl. Acad. Sci. USA 2017, 114, 5918–5923.

[94]

Sun, Z. Z.; Curto, A.; Rodríguez-Fernández, J.; Wang, Z. G.; Parikh, A.; Fester, J.; Dong, M. D.; Vojvodic, A.; Lauritsen, J. V. The effect of Fe dopant location in Co(Fe)OOHx nanoparticles for the oxygen evolution reaction. ACS Nano 2021, 15, 18226–18236.

[95]

Gu, J. Y.; Cai, Z. F.; Wang, D.; Wan, L. J. Single-molecule imaging of iron-phthalocyanine-catalyzed oxygen reduction reaction by in situ scanning tunneling microscopy. ACS Nano 2016, 10, 8746–8750.

[96]

Wang, X.; Cai, Z. F.; Wang, Y. Q.; Feng, Y. C.; Yan, H. J.; Wang, D.; Wan, L. J. In situ scanning tunneling microscopy of cobalt-phthalocyanine-catalyzed CO2 reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 16098–16103.

[97]

Pfisterer, J. H. K.; Liang, Y. C.; Schneider, O.; Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 2017, 549, 74–77.

[98]

Kosmala, T.; Baby, A.; Lunardon, M.; Perilli, D.; Liu, H. S.; Durante, C.; Di Valentin, C.; Agnoli, S.; Granozzi, G. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal–graphene interfaces. Nat. Catal. 2021, 4, 850–859.

[99]

Butt, H. J.; Cappella, B.; Kappl, M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 2005, 59, 1–152.

[100]

Dufrêne, Y. F.; Martínez-Martín, D.; Medalsy, I.; Alsteens, D.; Müller, D. J. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat. Methods 2013, 10, 847–854.

[101]

Zhong, Y. X.; Yan, J. W.; Li, M. G.; Zhang, X.; He, D. W.; Mao, B. W. Resolving fine structures of the electric double layer of electrochemical interfaces in ionic liquids with an AFM tip modification strategy. J. Am. Chem. Soc. 2014, 136, 14682–14685.

[102]

Li, M. G.; Chen, L.; Zhong, Y. X.; Chen, Z. B.; Yan, J. W.; Mao, B. W. The electrochemical interface of Ag (111) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid—A combined in-situ scanning probe microscopy and impedance study. Electrochim. Acta 2016, 197, 282–289.

[103]

Liu, X. R.; Deng, X.; Liu, R. R.; Yan, H. J.; Guo, Y. G.; Wang, D.; Wan, L. J. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: Solid electrolyte interphase growth and mechanical properties. ACS Appl. Mater. Interfaces 2014, 6, 20317–20323.

[104]

Huang, S. Q.; Cheong, L. Z.; Wang, D. Y.; Shen, C. Thermal stability of solid electrolyte interphase of lithium-ion batteries. Appl. Surf. Sci. 2018, 454, 61–67.

[105]

Wang, W. W.; Gu, Y.; Yan, H.; Li, S.; He, J. W.; Xu, H. Y.; Wu, Q. H.; Yan, J. W.; Mao, B. W. Evaluating solid-electrolyte interphases for lithium and lithium-free anodes from nanoindentation features. Chem 2020, 6, 2728–2745.

[106]

Zhu, Q. S.; Murphy, C. J.; Baker, L. R. Opportunities for electrocatalytic CO2 reduction enabled by surface ligands. J. Am. Chem. Soc. 2022, 144, 2829–2840.

[107]

Kim, J.; Kim, B. K.; Cho, S. K.; Bard, A. J. Tunneling ultramicroelectrode: Nanoelectrodes and nanoparticle collisions. J. Am. Chem. Soc. 2014, 136, 8173–8176.

[108]

Wittstock, G.; Burchardt, M.; Pust, S. E.; Shen, Y.; Zhao, C. Scanning electrochemical microscopy for direct imaging of reaction rates. Angew. Chem., Int. Ed. 2007, 46, 1584–1617.

[109]

Amphlett, J. L.; Denuault, G. Scanning electrochemical microscopy (SECM): An investigation of the effects of tip geometry on amperometric tip response. J. Phys. Chem. B 1998, 102, 9946–9951.

[110]

Sun, T.; Yu, Y.; Zacher, B. J.; Mirkin, M. V. Scanning electrochemical microscopy of individual catalytic nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 14120–14123.

[111]

Nie, W.; Zhu, Q. H.; Gao, Y. Y.; Wang, Z. Y.; Liu, Y.; Wang, X.; Chen, R. T.; Fan, F. T.; Li, C. Visualizing the spatial heterogeneity of electron transfer on a metallic nanoplate prism. Nano Lett. 2021, 21, 8901–8909.

[112]

Kolagatla, S.; Subramanian, P.; Schechter, A. Nanoscale mapping of catalytic hotspots on Fe, N-modified HOPG by scanning electrochemical microscopy-atomic force microscopy. Nanoscale 2018, 10, 6962–6970.

[113]

Ahn, H. S.; Bard, A. J. Surface interrogation of CoPi water oxidation catalyst by scanning electrochemical microscopy. J. Am. Chem. Soc. 2015, 137, 612–615.

[114]

Ahn, H. S.; Bard, A. J. Surface interrogation scanning electrochemical microscopy of Ni1−xFexOOH (0 < x < 0.27) oxygen evolving catalyst: Kinetics of the “fast” iron sites. J. Am. Chem. Soc. 2016, 138, 313–318.

[115]

Jin, Z. Y.; Bard, A. J. Surface interrogation of electrodeposited MnOx and CaMnO3 Perovskites by scanning electrochemical microscopy: Probing active sites and kinetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 794–799.

[116]

Li, P. P.; Jin, Z. Y.; Fang, Z. W.; Yu, G. A surface-strained and geometry-tailored nanoreactor that promotes ammonia electrosynthesis. Angew. Chem., Int. Ed. 2020, 59, 22610–22616.

[117]

Sun, T.; Wang, D. C.; Mirkin, M. V.; Cheng, H.; Zheng, J. C.; Richards, R. M.; Lin, F.; Xin, H. L. Direct high-resolution mapping of electrocatalytic activity of semi-two-dimensional catalysts with single-edge sensitivity. Proc. Natl. Acad. Sci. USA 2019, 116, 11618–11623.

[118]

Monteiro, M. C. O.; Dattila, F.; Hagedoorn, B.; García-Muelas, R.; López, N.; Koper, M. T. M. Absence of CO2 electroreduction on copper, gold, and silver electrodes without metal cations in solution. Nat. Catal. 2021, 4, 654–662.

[119]

Li, M. Y.; Ye, K. H.; Qiu, W. T.; Wang, Y. F.; Ren, H. Heterogeneity between and within single hematite nanorods as electrocatalysts for oxygen evolution reaction. J. Am. Chem. Soc. 2022, 144, 5247–5252.

[120]

Liu, G.; Hao, L. Z.; Li, H.; Zhang, K. M.; Yu, X.; Li, D.; Zhu, X. D.; Hao, D. N.; Ma, Y. Q.; Ma, L. Topography mapping with scanning electrochemical cell microscopy. Anal. Chem. 2022, 94, 5248–5254.

[121]

Nellist, M. R.; Laskowski, F. A. L.; Qiu, J. J.; Hajibabaei, H.; Sivula, K.; Hamann, T. W.; Boettcher, S. W. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. Nat. Energy 2018, 3, 46–52.

[122]

Nellist, M. R.; Qiu, J. J.; Laskowski, F. A. L.; Toma, F. M.; Boettcher, S. W. Potential-sensing electrochemical AFM shows CoPi as a hole collector and oxygen evolution catalyst on BiVO4 water-splitting photoanodes. ACS Energy Lett. 2018, 3, 2286–2291.

[123]

Laskowski, F. A. L.; Oener, S. Z.; Nellist, M. R.; Gordon, A. M.; Bain, D. C.; Fehrs, J. L.; Boettcher, S. W. Nanoscale semiconductor/catalyst interfaces in photoelectrochemistry. Nat. Mater. 2020, 19, 69–76.

[124]

Pobelov, I. V.; Mohos, M.; Yoshida, K.; Kolivoska, V.; Avdic, A.; Lugstein, A.; Bertagnolli, E.; Leonhardt, K.; Denuault, G.; Gollas, B. et al. Electrochemical current-sensing atomic force microscopy in conductive solutions. Nanotechnology 2013, 24, 115501.

[125]

Nellist, M. R.; Chen, Y. K.; Mark, A.; Gödrich, S.; Stelling, C.; Jiang, J. J.; Poddar, R.; Li, C. Z.; Kumar, R.; Papastavrou, G. et al. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion, and nanoelectrical imaging. Nanotechnology 2017, 28, 095711.

[126]

Strelcov, E.; Arble, C.; Guo, H. X.; Hoskins, B. D.; Yulaev, A.; Vlassiouk, I. V.; Zhitenev, N. B.; Tselev, A.; Kolmakov, A. Nanoscale mapping of the double layer potential at the graphene–electrolyte interface. Nano Lett. 2020, 20, 1336–1344.

[127]

Zeng, Z. C.; Huang, S. C.; Wu, D. Y.; Meng, L. Y.; Li, M. H.; Huang, T. X.; Zhong, J. H.; Wang, X.; Yang, Z. L.; Ren, B. Electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2015, 137, 11928–11931.

Publication history
Copyright
Acknowledgements

Publication history

Received: 29 June 2022
Revised: 03 November 2022
Accepted: 10 November 2022
Published: 03 January 2023
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is funded by the National Natural Science Foundation of China (Nos. 21872039 and 22072030), the Fundamental Research Funds for the Central Universities (No. 20720220008), and the Science and Technology Commission of Shanghai Municipality (No. 22520711100).

Return