Journal Home > Volume 16 , Issue 5

The fabrication of heterointerface materials with hierarchical morphologies more than two levels is a challenging yet promising approach to achieve optimal electrocatalyst for hydrogen evolution reaction (HER). Here, using a facile two-step method, we are able to prepare the Ni2P/(Co,Ni)OOH heterointerface with a three-level hierarchy morphology. The multiple levels of hierarchy structures not only offer considerable area for active sites loading, but also facilitate the substance transportation, both beneficial for HER. Meanwhile, the strong charge transfer at the Ni2P/(Co,Ni)OOH heterointerface eliminates the spin asymmetry and achieves the thermos-neutral adsorption of active H species. Moreover, the resulted Coulomb attraction stacks the two materials firmly, facilitating the stability. Density functional theory (DFT) and in-situ Raman measurements reveal the sufficient Ni atoms acting as the active sites. With these merits, the Ni2P/(Co,Ni)OOH exhibits much better HER activity than the separate Ni2P or (Co,Ni)OOH, affording a current density of 100 mA/cm2 at an overpotential of 169 mV and a Tafel slope of 41 mV/dec, when tested in alkaline electrolyte. This work provides inspiration for optimizing the intrinsic HER activity utilizing multiple-level hierarchy structures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High activity and stability in Ni2P/(Co,Ni)OOH heterointerface with a multiple-hierarchy structure for alkaline hydrogen evolution reaction

Show Author's information LiLi Zhang1,2Zongpeng Wang2( )Jitang Zhang2Zhiping Lin2Qinghua Zhang3Wenwu Zhong2( )Guangfeng Wu1( )
College of Material Science and Engineering, Changchun University of Technology, Changchun 130051, China
Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
Institution of Physics, Chinese Academic of Science, Beijing 100190, China

Abstract

The fabrication of heterointerface materials with hierarchical morphologies more than two levels is a challenging yet promising approach to achieve optimal electrocatalyst for hydrogen evolution reaction (HER). Here, using a facile two-step method, we are able to prepare the Ni2P/(Co,Ni)OOH heterointerface with a three-level hierarchy morphology. The multiple levels of hierarchy structures not only offer considerable area for active sites loading, but also facilitate the substance transportation, both beneficial for HER. Meanwhile, the strong charge transfer at the Ni2P/(Co,Ni)OOH heterointerface eliminates the spin asymmetry and achieves the thermos-neutral adsorption of active H species. Moreover, the resulted Coulomb attraction stacks the two materials firmly, facilitating the stability. Density functional theory (DFT) and in-situ Raman measurements reveal the sufficient Ni atoms acting as the active sites. With these merits, the Ni2P/(Co,Ni)OOH exhibits much better HER activity than the separate Ni2P or (Co,Ni)OOH, affording a current density of 100 mA/cm2 at an overpotential of 169 mV and a Tafel slope of 41 mV/dec, when tested in alkaline electrolyte. This work provides inspiration for optimizing the intrinsic HER activity utilizing multiple-level hierarchy structures.

Keywords: hierarchy, hydrogen evolution reaction, heterointerface, Ni2P/(Co,Ni)OOH

References(51)

[1]

Geng, S.; Tian, F. Y.; Li, M. G.; Liu, Y. Q.; Sheng, J.; Yang, W. W.; Yu, Y. S.; Hou, Y. L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816.

[2]

Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Adv. Energy Mater. 2015, 5, 1401880.

[3]

Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline–amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

[4]

Shang, L.; Zhao, Y. X.; Kong, X. Y.; Shi, R.; Waterhouse, G. I. N.; Wen, L. P.; Zhang, T. R. Underwater superaerophobic Ni nanoparticle-decorated nickel-molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy 2020, 78, 105375.

[5]

Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

[6]

Zhang, L. L.; Lei, Y. T.; Zhou, D. N.; Xiong, C. L.; Jiang, Z. L.; Li, X. Y.; Shang, H. S.; Zhao, Y. F.; Chen, W. X.; Zhang, B. Interfacial engineering of 3D hollow CoSe2@ultrathin MoSe2 core@shell heterostructure for efficient pH-universal hydrogen evolution reaction. Nano Res. 2022, 15, 2895–2904.

[7]

Han, C.; Li, W. J.; Wang, J. Z.; Huang, Z. G. Boron leaching: Creating vacancy-rich Ni for enhanced hydrogen evolution. Nano Res. 2022, 15, 1868–1873.

[8]

Wang, Z. P.; Shen, S. J.; Lin, Z. P.; Tao, W. Y.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Regulating the local spin state and band structure in Ni3S2 nanosheet for improved oxygen evolution activity. Adv. Funct. Mater. 2022, 32, 2112832.

[9]

Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MOS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

[10]

Lin, Z. P.; Xiao, B. B.; Wang, Z. P.; Tao, W. Y.; Shen, S. J.; Huang, L. G.; Zhang, J. T.; Meng, F. Q.; Zhang, Q. H.; Gu, L. et al. Planar-coordination PdSe2 nanosheets as highly active electrocatalyst for hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2102321.

[11]

Chen, J. X.; Long, Q. W.; Xiao, K.; Ouyang, T.; Li, N.; Ye, S. Y.; Liu, Z. Q. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Sci. Bull. 2021, 66, 1063–1072.

[12]

Lin, Z. P.; Xiao, B. B.; Huang, M.; Yan, L. H.; Wang, Z. P.; Huang, Y. C.; Shen, S. J.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Realizing negatively charged metal atoms through controllable d-electron transfer in ternary Ir1−xRhxSb intermetallic alloy for hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2200855.

[13]

Wang, T. T.; Wang, P. Y.; Pang, Y. J.; Wu, Y. T.; Yang, J.; Chen, H.; Gao, X. R.; Mu, S. C.; Kou, Z. K. Vertically mounting molybdenum disulfide nanosheets on dimolybdenum carbide nanomeshes enables efficient hydrogen evolution. Nano Res. 2022, 15, 3946–3951.

[14]

Wang, Z. P.; Xiao, B. B.; Lin, Z. P.; Xu, Y. P.; Lin, Y.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Fang, B. Z.; Guo, S. J. et al. PtSe2/Pt heterointerface with reduced coordination for boosted hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 23388–23393.

[15]

Wang, F.; Niu, S. W.; Liang, X. Q.; Wang, G. M.; Chen, M. H. Phosphorus incorporation activates the basal plane of tungsten disulfide for efficient hydrogen evolution catalysis. Nano Res. 2022, 15, 2855–2861.

[16]

Li, S.; Jiang, J. X.; Zhai, N. N.; Liu, J. Y.; Feng, K.; Chen, Y. F.; Wen, Z.; Sun, X. H.; Zhong, J. A half-wave rectifying triboelectric nanogenerator for self-powered water splitting towards hydrogen production. Nano Energy 2022, 93, 106870.

[17]

Lin, Z. P.; Wang, Z. P.; Shen, S. J.; Chen, Y. C.; Du, Z. X.; Tao, W. Y.; Xu, A. J.; Ye, X. F.; Zhong, W. W.; Feng, S. S. One-step method to achieve multiple decorations on lamellar MoS2 to synergistically enhance the electrocatalytic HER performance. J. Alloys Compd. 2020, 834, 155217.

[18]

Chen, X. L.; Liang, J. K.; Cong, W. Effect of high-angle diffraction data on Rietveld structure refinement. Acta Phys. Sin. 1995, 4, 259–267.

[19]

Peng, L. S.; Wang, C.; Wang, Q.; Shi, R.; Zhang, T. R.; Waterhouse, G. I. N. Rationally designed Ni–Ni3S2 interfaces for efficient overall water electrolysis. Adv. Energy Sustain. Res. 2021, 2, 2100078.

[20]

Fan, Z. Y.; Weng, W.; Zhou, J.; Gu, D.; Xiao, W. Catalytic decomposition of methane to produce hydrogen: A review. J. Energy Chem. 2021, 58, 415–430.

[21]

Ma, S. Y.; Deng, J.; Xu, Y. P.; Tao, W. Y.; Wang, X. Q.; Lin, Z. P.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Pollen-like self-supported FeIr alloy for improved hydrogen evolution reaction in acid electrolyte. J. Energy Chem. 2022, 66, 560–565.

[22]

Wu, J.; Zhou, Y. J.; Nie, H. D.; Wei, K. Q.; Huang, H.; Liao, F.; Liu, Y.; Shao, M. W.; Kang, Z. H. Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation. J. Energy Chem. 2022, 66, 61–67.

[23]

Hu, X. L.; Song, J. Y.; Luo, J. L.; Zhang, H.; Sun, Z. M.; Li, C. Q.; Zheng, S. L.; Liu, Q. X. Single-atomic Pt sites anchored on defective TiO2 nanosheets as a superior photocatalyst for hydrogen evolution. J. Energy Chem. 2021, 62, 1–10.

[24]

Wan, R. D.; Luo, M.; Wen, J. B.; Liu, S. L.; Kang, X. W.; Tian, Y. Pt-Co single atom alloy catalysts: Accelerated water dissociation and hydrogen evolution by strain regulation. J. Energy Chem. 2022, 69, 44–53.

[25]

Wang, Y.; Zhao, Y.; Ding, X.; Qiao, L. Recent advances in the electrochemistry of layered post-transition metal chalcogenide nanomaterials for hydrogen evolution reaction. J. Energy Chem. 2021, 60, 451–479.

[26]

Anantharaj, S.; Noda, S.; Jothi, V. R.; Yi, S.; Driess, M.; Menezes, P. W. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 18981–19006.

[27]

Dionigi, F.; Zhu, J.; Zeng, Z. H.; Merzdorf, T.; Sarodnik, H.; Gliech, M.; Pan, L. J.; Li, W. X.; Greeley, J.; Strasser, P. Intrinsic electrocatalytic activity for oxygen evolution of crystalline 3D-transition metal layered double hydroxides. Angew. Chem., Int. Ed. 2021, 60, 14446–14457.

[28]

Zhao, Y. M.; Cong, H. J.; Li, P.; Wu, D. A.; Chen, S. L.; Luo, W. Hexagonal RuSe2 nanosheets for highly efficient hydrogen evolution electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 7013–7017.

[29]

Sun, Y. Q.; Li, X. L.; Zhang, T.; Xu, K.; Yang, Y. S.; Chen, G. Z.; Li, C. C.; Xie, Y. Nitrogen-doped cobalt diselenide with cubic phase maintained for enhanced alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 21575–21582.

[30]

Zhang, H.; Zou, C.; Zhao, H. P.; Cai, Z. G.; Chen, C. L. Hydrogen-bonding-induced heterogenization of nickel and palladium catalysts for copolymerization of ethylene with polar monomers. Angew. Chem., Int. Ed. 2021, 60, 17446–17451.

[31]

Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

[32]

Ji, P. X.; Yu, R. H.; Wang, P. Y.; Pan, X. L.; Jin, H. H.; Zheng, D. Y.; Chen, D.; Zhu, J. W.; Pu, Z. H.; Wu, J. S. et al. Ultra-fast and in-depth reconstruction of transition metal fluorides in electrocatalytic hydrogen evolution processes. Adv. Sci. 2022, 9, 2103567.

[33]

Pu, Z. H.; Liu, T. T.; Zhang, G. X.; Chen, Z. S.; Li, D. S.; Chen, N.; Chen, W. F.; Chen, Z. X.; Sun, S. H. General synthesis of transition-metal-based carbon-group intermetallic catalysts for efficient electrocatalytic hydrogen evolution in wide pH range. Adv. Energy Mater. 2022, 12, 2200293.

[34]

Zhou, B. X.; Ding, S. S.; Yang, K. X.; Zhang, J.; Huang, G. F.; Pan, A. L.; Hu, W. Y.; Li, K.; Huang, W. Q. Generalized synthetic strategy for amorphous transition metal oxides-based 2D heterojunctions with superb photocatalytic hydrogen and oxygen evolution. Adv. Funct. Mater. 2021, 31, 2009230.

[35]

Yang, C. F.; Shen, K.; Zhao, R.; Xiang, H.; Wu, J.; Zhong, W. D.; Zhang, Q.; Li, X. K.; Yang, N. J. Balance effect: A universal strategy for transition metal carbides to enhance hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2108167.

[36]

Wu, M. Y.; Da, P. F.; Zhang, T.; Mao, J.; Liu, H.; Ling, T. Designing hybrid NiP2/NiO nanorod arrays for efficient alkaline hydrogen evolution. ACS Appl. Mater. Interfaces 2018, 10, 17896–17902.

[37]

Liu, J.; Li, C. Y.; Ye, Q.; Lin, L.; Wang, Y. F.; Sun, M.; Cheng, Y. L. Fe-doped Ni2P porous nanofibers as highly efficient electrocatalyst for oxygen evolution reaction. Catal. Commun. 2022, 163, 106416.

[38]

Mabayoje, O.; Dunning, S. G.; Kawashima, K.; Wygant, B. R.; Ciufo, R. A.; Humphrey, S. M.; Mullins, C. B. Hydrogen evolution by Ni2P catalysts derived from phosphine MOFs. ACS Appl. Energy Mater. 2020, 3, 176–183.

[39]

Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

[40]

Hao, H.; Wang, X. D.; Li, H. Y.; Pi, M. Y.; Zhang, D. K.; Chen, S. J. Superhydrophilic Al-doped NiP2 nanosheets as efficient electrocatalysts for hydrogen evolution reaction. Energy Technol. 2020, 8, 1900936.

[41]

Peng, S. Q.; Wu, L.; Huang, M. T.; Li, Y. X. Synthesis of Ni2P/Ni12P5 composite for a highly efficient hydrogen production from formaldehyde solution. Reac. Kinet. Mech. Catal. 2021, 133, 229–243.

[42]

Wang, Y. C.; Wang, Y. G.; Bai, J.; Lau, W. M. Trace amount of NiP2 cooperative CoMoP nanosheets inducing efficient hydrogen evolution. ACS Omega 2021, 6, 33057–33066.

[43]

Wang, Z. K.; Wang, S. Y.; Ma, L. X.; Guo, Y. J.; Sun, J.; Zhang, N.; Jiang, R. B. Water-induced formation of Ni2P–Ni12P5 interfaces with superior electrocatalytic activity toward hydrogen evolution reaction. Small 2021, 17, 2006770.

[44]

Wang, X. D.; Hu, Q.; Li, G. D.; Wei, S. M.; Yang, H. P.; He, C. X. Regulation of the adsorption sites of Ni2P by Ru and S co-doping for ultra-efficient alkaline hydrogen evolution. J. Mater. Chem. A 2021, 9, 15648–15653.

[45]

Hu, C.; Lv, C.; Liu, S.; Shi, Y.; Song, J. F.; Zhang, Z.; Cai, J. G.; Watanabe, A. Nickel phosphide electrocatalysts for hydrogen evolution reaction. Catalysts 2020, 10, 188.

[46]

Ge, Z. H.; Fu, B.; Zhao, J. P.; Li, X.; Ma, B.; Chen, Y. T. A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides. J. Mater. Sci. 2020, 55, 14081–14104.

[47]

Ullah, H.; Loh, A.; Trudgeon, D. P.; Li, X. H. Density functional theory study of NiFeCo trinary oxy-hydroxides for an efficient and stable oxygen evolution reaction catalyst. ACS Omega 2020, 5, 20517–20524.

[48]

Hu, C. J.; Hu, Y. F.; Fan, C. H.; Yang, L.; Zhang, Y. T.; Li, H. X.; Xie, W. Surface-enhanced Raman spectroscopic evidence of key intermediate species and role of NiFe dual-catalytic center in water oxidation. Angew. Chem., Int. Ed. 2021, 60, 19774–19778.

[49]

Razmjooei, F.; Pak, C.; Yu, J. S. Phase diversity of nickel phosphides in oxygen reduction catalysis. ChemElectroChem 2018, 5, 1985–1994.

[50]

Xu, Y. L.; Yan, M. F.; Liu, Z.; Wang, J. Y.; Zhai, Z. Z.; Ren, B.; Dong, X. X.; Miao, J. F.; Liu, Z. F. Nanostructures Ni2P/MoP@N-doping porous carbon for efficient hydrogen evolution over a broad pH range. Electrochim. Acta 2020, 363, 137151.

[51]

Zhang, Y. X.; Sun, L.; Bai, L. Q.; Si, H. C.; Zhang, Y.; Zhang, Y. H. N-doped-carbon coated Ni2P-Ni sheets anchored on graphene with superior energy storage behavior. Nano Res. 2019, 12, 607–618.

File
12274_2022_5322_MOESM1_ESM.pdf (865.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 September 2022
Revised: 07 November 2022
Accepted: 13 November 2022
Published: 22 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This study was supported by the Major Research plan of the National Natural Science Foundation of China (No. 92163115), the National Natural Science Foundation (No. 52072255), the Science Fund for Distinguished Young Scholars of Zhejiang Province (No. LR22E020003), and the Natural Science Foundation of Zhejiang Province (Nos. LY21E020001 and LTY20E020001).

Return