Journal Home > Volume 16 , Issue 5

As a widely used security device, the electronic passworded locker is designed to protect personal property and space. However, once the password is leaked to an unauthorized person, its security is lost. Here, with the assistance of triboelectric nanogenerators (TENGs), we present an intelligent electronic passworded locker (IEPL) based on unique and personalized security barriers, which can accurately extract users’ habits of entering passwords through integrated deep learning. The key of the IEPL adopts the single electrode mode of TENG that accurately recognizes the input behavior of a person based on machine learning, which serves as a reliable, unique, and unreproducible gate, with advantages of thin thickness, diversified structure, and simple preparation method. Finally, the proposed IEPL offers a reliable solution for improving the overall security of passworded lockers and extending the application of TENG-based sensors in the smart home.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Intelligent electronic passworded locker with unique and personalized security barriers for home security

Show Author's information Xiaoqing Huo1,2,§Xuelian Wei1,2,§Baocheng Wang1,2,§Xiaole Cao1,2Jiahui Xu1,2Jiaxin Yin1Zhiyi Wu1,2( )Zhong Lin Wang1,2,3( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
College of Nanoscience and Technology, University of Chinese Academy of Science, Beijing 100049, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

§ Xiaoqing Huo, Xuelian Wei, and Baocheng Wang contributed equally to this work.

Abstract

As a widely used security device, the electronic passworded locker is designed to protect personal property and space. However, once the password is leaked to an unauthorized person, its security is lost. Here, with the assistance of triboelectric nanogenerators (TENGs), we present an intelligent electronic passworded locker (IEPL) based on unique and personalized security barriers, which can accurately extract users’ habits of entering passwords through integrated deep learning. The key of the IEPL adopts the single electrode mode of TENG that accurately recognizes the input behavior of a person based on machine learning, which serves as a reliable, unique, and unreproducible gate, with advantages of thin thickness, diversified structure, and simple preparation method. Finally, the proposed IEPL offers a reliable solution for improving the overall security of passworded lockers and extending the application of TENG-based sensors in the smart home.

Keywords: deep learning, triboelectric nanogenerator, smart home, intelligent electronic passworded locker, unique and personalized security barriers

References(40)

[1]

Anthi, E.; Williams, L.; Słowińska, M.; Theodorakopoulos, G.; Burnap, P. A supervised intrusion detection system for smart home IoT devices. IEEE Internet Things J. 2019, 6, 9042–9053.

[2]

Bianchi, V.; Bassoli, M.; Lombardo, G.; Fornacciari, P.; Mordonini, M.; De Munari, I. IoT wearable sensor and deep learning: An integrated approach for personalized human activity recognition in a smart home environment. IEEE Internet Things J. 2019, 6, 8553–8562.

[3]

Marikyan, D.; Papagiannidis, S.; Alamanos, E. A systematic review of the smart home literature: A user perspective. Technol. Forecast. Soc. Change 2019, 138, 139–154.

[4]

Wazid, M.; Das, A. K.; Odelu, V.; Kumar, N.; Susilo, W. Secure remote user authenticated key establishment protocol for smart home environment. IEEE Trans. Dependable Secur. Comput. 2020, 17, 391–406.

[5]

Yassine, A.; Singh, S.; Hossain, M. S.; Muhammad, G. IoT big data analytics for smart homes with fog and cloud computing. Futur. Gener. Comp. Syst. 2019, 91, 563–573.

[6]

Sun, H. M.; Chen, R. S.; Chen, Y. C.; Wu, S. F. Using RFID technology to develop an intelligent equipment lock management system. Int. J. Comput. Sci. Eng. 2019, 20, 157–165.

[7]

Li, Q. X.; Zhang, X.; Zhu, L. X.; Yan, S. H.; Jia, A. A.; Luo, Y. K.; Wang, Y. N.; Wei, C. H.; Zhang, H. K.; Lv, M. J. et al. Intelligent and automatic laser frequency locking system using pattern recognition technology. Opt. Lasers Eng. 2020, 126, 105881.

[8]

Phawinee, S.; Cai, J. F.; Guo, Z. Y.; Zheng, H. Z.; Chen, G. C. Face recognition in an intelligent door lock with ResNet model based on deep learning. J. Intell. Fuzzy Syst. 2021, 40, 8021–8031.

[9]

Zhu, Z. G.; Cheng, Y. Application of attitude tracking algorithm for face recognition based on OpenCV in the intelligent door lock. Comput. Commun. 2020, 154, 390–397.

[10]
Ganjoo, R.; Purohit, A. Anti-spoofing door lock using face recognition and blink detection. In Proceedings of the 6th International Conference on Inventive Computation Technologies (ICICT 2021), Coimbatore, India, 2021, pp 1090–1096.
[11]

Sang, J.; Wang, H. X.; Qian, Q.; Wu, H. Z.; Chen, Y. An efficient fingerprint identification algorithm based on minutiae and invariant moment. Pers. Ubiquit. Comput. 2018, 22, 71–80.

[12]

Zhou, X.; Wang, Z. J.; Wang, T. Y.; Han, J.; Wang, Z. L.; Qian, Y. N. A novel method of user identity recognition based on finger trajectory. Intell. Autom. Soft Comput. 2022, 33, 473–481.

[13]

Bae, J.; Choi, H. S.; Kim, S.; Kang, M. Fingerprint image denoising and inpainting using convolutional neural network. J. Korean Soc. Ind. Appl. Math. 2020, 24, 363–374.

[14]

Lee, S.; Jeong, I. R. On the unlinkability of fingerprint shell. Secur. Commun. Netw. 2020, 2020, 8256929.

[15]

Shi, M. K.; Huang, Y. L.; Wang, G. L. Carrier leakage estimation method for cross-receiver specific emitter identification. IEEE Access 2021, 9, 26301–26312.

[16]

Siriviriyanun, A.; Imae, T. Anti-fingerprint properties of non-fluorinated organosiloxane self-assembled monolayer-coated glass surfaces. Chem. Eng. J. 2014, 246, 254–259.

[17]

Wang, G. Y.; Wang, H. R.; Guo, Z. G. A robust transparent and anti-fingerprint superhydrophobic film. Chem. Commun. 2013, 49, 7310–7312.

[18]

Wu, L. Y. L.; Ngian, S. K.; Chen, Z.; Xuan, D. T. T. Quantitative test method for evaluation of anti-fingerprint property of coated surfaces. Appl. Surf. Sci. 2011, 257, 2965–2969.

[19]

Cheng, P.; Guo, H. Y.; Wen, Z.; Zhang, C. L.; Yin, X.; Li, X. Y.; Liu, D.; Song, W. X.; Sun, X. H.; Wang, J. et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy 2019, 57, 432–439.

[20]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[21]

Liu, D.; Yin, X.; Guo, H. Y.; Zhou, L. L.; Li, X. Y.; Zhang, C. L.; Wang, J.; Wang, Z. L. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Sci. Adv. 2019, 5, eaav6437.

[22]

Zhao, G. R.; Zhang, Y. W.; Shi, N.; Liu, Z. R.; Zhang, X. D.; Wu, M. Q.; Pan, C. F.; Liu, H. L.; Li, L. L.; Wang, Z. L. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 2019, 59, 302–310.

[23]

Wen, R. M.; Feng, R.; Zhao, B.; Song, J. F.; Fan, L. M.; Zhai, J. Y. Controllable design of high-efficiency triboelectric materials by functionalized metal-organic frameworks with a large electron-withdrawing functional group. Nano Res. 2022, 15, 9386–9391.

[24]

Liu, W. L.; Wang, Z.; Wang, G.; Liu, G. L.; Chen, J.; Pu, X. J.; Xi, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426.

[25]

Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

[26]

Wang, Z. L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 2020, 68, 104272.

[27]

Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

[28]

Jin, X.; Yuan, Z. H.; Shi, Y. P.; Sun, Y. G.; Li, R. N.; Chen, J. H.; Wang, L. F.; Wu, Z. Y.; Wang, Z. L. Triboelectric nanogenerator based on a rotational magnetic ball for harvesting transmission line magnetic energy. Adv. Funct. Mater. 2022, 32, 2108827.

[29]

Shi, Y. P.; Wei, X. L.; Wang, K. M.; He, D. D.; Yuan, Z. H.; Xu, J. H.; Wu, Z. Y.; Wang, Z. L. Integrated all-fiber electronic skin toward self-powered sensing sports systems. ACS Appl. Mater. Interfaces 2021, 13, 50329–50337.

[30]

Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

[31]

Wu, Z. Y.; Cheng, T. H.; Wang, Z. L. Self-powered sensors and systems based on nanogenerators. Sensors 2020, 20, 2925.

[32]

Hu, S. T.; Yuan, Z. H.; Li, R. N.; Cao, Z.; Zhou, H. L.; Wu, Z. Y.; Wang, Z. L. Vibration-driven triboelectric nanogenerator for vibration attenuation and condition monitoring for transmission lines. Nano Lett. 2022, 13, 5584–5591.

[33]

Li, R. N.; Wei, X. L.; Xu, J. H.; Chen, J. H.; Li, B.; Wu, Z. Y.; Wang, Z. L. Smart wearable sensors based on triboelectric nanogenerator for personal healthcare monitoring. Micromachines 2021, 12, 352.

[34]

Xu, J. H.; Wei, X. L.; Li, R. N.; Shi, Y. P.; Peng, Y. T.; Wu, Z. Y.; Wang, Z. L. Intelligent self-powered sensor based on triboelectric nanogenerator for take-off status monitoring in the sport of triple-jumping. Nano Res. 2022, 15, 6483–6489.

[35]

Cui, Z. A.; Huang, A. B.; Chen, J. L.; Gao, S. Piezoelectric touch sensing-based keystroke dynamic technique for multi-user authentication. IEEE Sens. J. 2021, 21, 26389–26396.

[36]

Huang, A. B.; Gao, S.; Chen, J. L.; Xu, L. J.; Nathan, A. High security user authentication enabled by piezoelectric keystroke dynamics and machine learning. IEEE Sens. J. 2020, 20, 13037–13046.

[37]

Jiang, M.; Li, B.; Jia, W. Z.; Zhu, Z. Y. Predicting output performance of triboelectric nanogenerators using deep learning model. Nano Energy 2022, 93, 106830.

[38]

Shi, Q. F.; Zhang, Z. X.; Yang, Y. Q.; Shan, X. C.; Salam, B.; Lee, C. Artificial intelligence of things (AIoT) enabled floor monitoring system for smart home applications. ACS Nano 2021, 15, 18312–18326.

[39]

Wei, X. L.; Wang, B. C.; Wu, Z. Y.; Wang, Z. L. An open-environment tactile sensing system: Toward simple and efficient material identification. Adv. Mater. 2022, 34, 2203073.

[40]

Zhang, Z. X.; He, T. Y. Y.; Zhu, M. L.; Sun, Z. D.; Shi, Q. F.; Zhu, J. X.; Dong, B. W.; Yuce, M. R.; Lee, C. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. Npj Flexible Electron. 2020, 4, 29.

Video
12274_2022_5321_MOESM1_ESM.mp4
12274_2022_5321_MOESM2_ESM.mp4
12274_2022_5321_MOESM3_ESM.mp4
File
12274_2022_5321_MOESM4_ESM.pdf (543.7 KB)
12274_2022_5321_MOESM5_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 September 2022
Revised: 10 November 2022
Accepted: 13 November 2022
Published: 21 December 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 61503051).

Return