AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Red organic light-emitting diodes based photobiomodulation therapy enabling prominent hair growth

Shuang-Qiao Sun1,§Jing-Jing Shen1,§Yu-Fei Wang1,§Yu-Tong Jiang1Lin-Fu Chen1Hua Xin1,2,3Jiang-Nan Wang3Xiao-Bo Shi3Xiao-Zhao Zhu3Qi Sun1Liang-Sheng Liao1,2,3Qian Chen1( )Man-Keung Fung1,2,3( )Shuit-Tong Lee1,2,3( )
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa 999078, Macau, China
Institute of Organic Optoelectronics, Jiangsu Industrial Technology Research Institute (JITRI), 1198 Fenhu Dadao, Wujiang, Suzhou 215200, China

§ Shuang-Qiao Sun, Jing-Jing Shen, and Yu-Fei Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Red organic light-emitting diodes (OLEDs) can reactivate dormant hair follicle stem cells and regenerate new hair follicles: (i) increased autophagy during the anagen phase of the hair growth cycle; (ii) increased blood oxygen content promoted by the accelerated microvascular blood flow.

Abstract

Hair loss can cause psychological distress. Here, red organic light-emitting diode (OLED) light source is first introduced as the photobiomodulation therapy (PBMT) for hair growth and demonstrated as a promising and non-invasive therapeutic modality for alopecia. OLED exhibits unique advantages of homogeneous irradiation, flexible in form factor, and less heat generation. These features enable OLED to be an ideal candidate for wearable PBMT light sources. A systematic study of using red OLEDs to facilitate hair growth was conducted. The results show that OLEDs excellently promote hair regrowth. OLED irradiation can increase the length of the hair by a factor of 1.5 as compared to the control, and the hair regrowth area is enlarged by over 3 times after 20 days of treatments. Moreover, the mechanism of OLED that stimulates hair follicle regeneration is investigated in-vivo by conducting a systematic controlled experiments on mice with or without OLED PBMT. Based on the comprehensive histological and immunofluorescence staining studies, two key factors are identified for red OLEDs to facilitate hair follicle regeneration: (i) increased autophagy during the anagen phase of the hair growth cycle; (ii) increased blood oxygen content promoted by the accelerated microvascular blood flow.

Electronic Supplementary Material

Download File(s)
12274_2022_5315_MOESM1_ESM.pdf (744.7 KB)

References

[1]

Pratt, C. H.; King, L. E. Jr.; Messenger, A. G.; Christiano, A. M.; Sundberg, J. P. Alopecia areata. Nat. Rev. Dis. Prim. 2017, 3, 17011.

[2]

Pirastu, N.; Joshi, P. K.; de Vries, P. S.; Cornelis, M. C.; McKeigue, P. M.; Keum, N.; Franceschini, N.; Colombo, M.; Giovannucci, E. L.; Spiliopoulou, A. et al. GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk. Nat. Commun. 2017, 8, 1584.

[3]

Bhat, J.; Birch, J.; Whitehurst, C.; Lanigan, S. W. A single-blinded randomised controlled study to determine the efficacy of Omnilux Revive facial treatment in skin rejuvenation. Lasers Med. Sci. 2005, 20, 6–10.

[4]

Russell, B. A.; Kellett, N.; Reilly, L. R. A study to determine the efficacy of combination LED light therapy (633 nm and 830 nm) in facial skin rejuvenation. J. Cosmet. Laser Ther. 2005, 7, 196–200.

[5]

Degitz, K. Phototherapy, photodynamic therapy and lasers in the treatment of acne. J. Dtsch. Dermatol. Ges. 2009, 7, 1048–1054.

[6]

Hædersdal, M.; Togsverd-Bo, K.; Wulf, H. C. Evidence-based review of lasers, light sources and photodynamic therapy in the treatment of acne vulgaris. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 267–278.

[7]

Carrasco, E.; Calvo, M. I.; Blázquez-Castro, A.; Vecchio, D.; Zamarrón, A.; de Almeida, I. J. D.; Stockert, J. C.; Hamblin, M. R.; Juarranz, Á.; Espada, J. Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing. J. Invest. Dermatol. 2015, 135, 2611–2622.

[8]

Santos, Z.; Avci, P.; Hamblin, M. R. Drug discovery for alopecia: Gone today, hair tomorrow. Expert Opin. Drug Discov. 2015, 10, 269–292.

[9]

Lanzafame, R. J.; Blanche, R. R.; Bodian, A. B.; Chiacchierini, R. P.; Fernandez-Obregon, A.; Kazmirek, E. R. The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg. Med. 2013, 45, 487–495.

[10]

Fushimi, T.; Inui, S.; Ogasawara, M.; Nakajima, T.; Hosokawa, K.; Itami, S. Narrow-band red LED light promotes mouse hair growth through paracrine growth factors from dermal papilla. J. Dermatol. Sci. 2011, 64, 246–248.

[11]

Tsai, S. R.; Hamblin, M. R. Biological effects and medical applications of infrared radiation. J. Photochem. Photobiol. B:Biol. 2017, 170, 197–207.

[12]

Silveira, F. M.; de Paglioni, M. P.; Marques, M. M.; Santos-Silva, A. R.; Migliorati, C. A.; Arany, P.; Martins, M. D. Examining tumor modulating effects of photobiomodulation therapy on head and neck squamous cell carcinomas. Photochem. Photobiol. Sci. 2019, 18, 1621–1637.

[13]

Salehpour, F.; Mahmoudi, J.; Kamari, F.; Sadigh-Eteghad, S.; Rasta, S. H.; Hamblin, M. R. Brain photobiomodulation therapy: A narrative review. Mol. Neurobiol. 2018, 55, 6601–6636.

[14]

Salehpour, F.; Hamblin, M. R. Photobiomodulation for Parkinson’s disease in animal models: A systematic review. Biomolecules 2020, 10, 610.

[15]

Cotler, H. B.; Chow, R. T.; Hamblin, M. R.; Carroll, J. The use of low level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthop. Rheumatol. 2015, 2, 00068.

[16]

Chung, H.; Dai, T. H.; Sharma, S. K.; Huang, Y. Y.; Carroll, J. D.; Hamblin, M. R. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 2012, 40, 516–533.

[17]

Barolet, D. Light-emitting diodes (LEDs) in dermatology. Semin. Cutan. Med. Surg. 2008, 27, 227–238.

[18]

Kim, W. S.; Calderhead, R. G. Is light-emitting diode phototherapy (LED-LLLT) really effective? Laser Ther. 2011, 20, 205–215.

[19]

Calderhead, R. G.; Kim, W. S.; Ohshiro, T.; Trelles, M. A.; Vasily, D. B. Adjunctive 830 nm light-emitting diode therapy can improve the results following aesthetic procedures. Laser Ther. 2015, 24, 277–289.

[20]

Suchonwanit, P.; Chalermroj, N.; Khunkhet, S. Low-level laser therapy for the treatment of androgenetic alopecia in Thai men and women: A 24-week, randomized, double-blind, sham device-controlled trial. Lasers Med. Sci. 2019, 34, 1107–1114.

[21]

George, S.; Hamblin, M. R.; Abrahamse, H. Effect of red light and near infrared laser on the generation of reactive oxygen species in primary dermal fibroblasts. J. Photochem. Photobiol. B:Biol. 2018, 188, 60–68.

[22]

Weiss, R. A.; McDaniel, D. H.; Geronemus, R. G.; Weiss, M. A. Clinical trial of a novel non-thermal LED array for reversal of photoaging: Clinical, histologic, and surface profilometric results. Lasers Surg. Med. 2005, 36, 85–91.

[23]

Hamblin, M. R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361.

[24]

Sasabe, H.; Kido, J. Development of high performance OLEDs for general lighting. J. Mater. Chem. C 2013, 1, 1699–1707.

[25]

Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 2012, 6, 105–110.

[26]

Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459, 234–238.

[27]

Wu, S. F.; Li, S. H.; Wang, Y. K.; Huang, C. C.; Sun, Q.; Liang, J. J.; Liao, L. S.; Fung, M. K. White organic LED with a luminous efficacy exceeding 100 lm·W–1 without light out-coupling enhancement techniques. Adv. Funct. Mater. 2017, 27, 1701314.

[28]

Huang, C. C.; Zhang, Y. J.; Zhou, J. G.; Sun, S. Q.; Luo, W.; He, W.; Wang, J. N.; Shi, X. B.; Fung, M. K. Hybrid tandem white OLED with long lifetime and 150 lm·W–1 in luminous efficacy based on TADF blue emitter stabilized with phosphorescent red emitter. Adv. Opt. Mater. 2020, 8, 2000727.

[29]

Lian, C.; Piksa, M.; Yoshida, K.; Persheyev, S.; Pawlik, K. J.; Matczyszyn, K.; Samuel, I. D. W. Flexible organic light-emitting diodes for antimicrobial photodynamic therapy. npj Flex. Electron. 2019, 3, 8.

[30]

Jeon, Y.; Choi, H. R.; Lim, M.; Choi, S.; Kim, H.; Kwon, J. H.; Park, K. C.; Choi, K. C. A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects. Adv. Mater. Technol. 2018, 3, 1700391.

[31]

Jeon, Y.; Choi, H. R.; Kwon, J. H.; Choi, S.; Nam, K. M.; Park, K. C.; Choi, K. C. Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine. Light Sci. Appl. 2019, 8, 114.

[32]

Kim, T. H.; Kim, N. J.; Youn, J. I. Evaluation of wavelength-dependent hair growth effects on low-level laser therapy: An experimental animal study. Lasers Med. Sci. 2015, 30, 1703–1709.

[33]

Lee, G. H.; Moon, H.; Kim, H.; Lee, G. H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S. H.; Bao, Z. N.; Hahn, S. K. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020, 5, 149–165.

[34]

Van Tran, V.; Chae, M.; Moon, J. Y.; Lee, Y. C. Light emitting diodes technology-based photobiomodulation therapy (PBMT) for dermatology and aesthetics: Recent applications, challenges, and perspectives. Opt. Laser Technol. 2021, 135, 106698.

[35]

Webb, R. C.; Bonifas, A. P.; Behnaz, A.; Zhang, Y. H.; Yu, K. J.; Cheng, H. Y.; Shi, M. X.; Bian, Z. G.; Liu, Z. J.; Kim, Y. S. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013, 12, 938–944.

[36]

Lee, H. E.; Lee, S. H.; Jeong, M.; Shin, J. H.; Ahn, Y.; Kim, D.; Oh, S. H.; Yun, S. H.; Lee, K. J. Trichogenic photostimulation using monolithic flexible vertical AlGaInP light-emitting diodes. ACS Nano 2018, 12, 9587–9595.

[37]
. Huelsken, J.; Vogel, R.; Erdmann, B.; Cotsarelis, G.; Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001, 105, 533−545.
[38]

Huang, Y. Y.; Chen, A. C. H.; Carroll, J. D.; Hamblin, M. R. Biphasic dose response in low level light therapy. Dose Response 2009, 7, 358–383.

[39]

Jeon, Y.; Choi, H. R.; Park, K. C.; Choi, K. C. Flexible organic light-emitting-diode-based photonic skin for attachable phototherapeutics. J. Soc. Inf. Disp. 2020, 28, 324–332.

[40]

Sundman, A. S.; Van Poucke, E.; Svensson Holm, A. C.; Faresjö, Å.; Theodorsson, E.; Jensen, P.; Roth, L. S. V. Long-term stress levels are synchronized in dogs and their owners. Sci. Rep. 2019, 9, 7391.

[41]

Gilhar, A.; Etzioni, A.; Paus, R. Alopecia areata. N. Engl. J. Med. 2012, 366, 1515–1525.

[42]

Chueh, S. C.; Lin, S. J.; Chen, C. C.; Lei, M. X.; Wang, L. M.; Widelitz, R.; Hughes, M. W.; Jiang, T. X.; Chuong, C. M. Therapeutic strategy for hair regeneration: Hair cycle activation, Niche environment modulation, wound-induced follicle neogenesis, and stem cell engineering. Expert Opin. Biol. Ther. 2013, 13, 377–391.

[43]

Gundamaraju, R.; Lu, W. Y.; Paul, M. K.; Jha, N. K.; Gupta, P. K.; Ojha, S.; Chattopadhyay, I.; Rao, P. V.; Ghavami, S. Autophagy and EMT in cancer and metastasis: Who controls whom? Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2022, 1868, 166431.

[44]

Cheng, L. Z.; Li, W.; Chen, Y. X.; Lin, Y. J.; Miao, Y. Autophagy and diabetic encephalopathy: Mechanistic insights and potential therapeutic implications. Aging Dis. 2022, 13, 447–457.

Nano Research
Pages 7164-7170
Cite this article:
Sun S-Q, Shen J-J, Wang Y-F, et al. Red organic light-emitting diodes based photobiomodulation therapy enabling prominent hair growth. Nano Research, 2023, 16(5): 7164-7170. https://doi.org/10.1007/s12274-022-5315-1
Topics:

5084

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 04 August 2022
Revised: 09 November 2022
Accepted: 09 November 2022
Published: 03 January 2023
© Tsinghua University Press 2022
Return