Journal Home > Volume 16 , Issue 5

Nanomaterial-mediated phototherapy in tumor treatment has been developed rapidly in the past few years due to its noninvasive character. However, the low energy conversion efficiency and high recombination rate of the photo-triggered electron–hole pairs of single nano-agent limit the phototherapy efficiency. Herein, we constructed a novel two-dimensional nanoheterojunction MoS2-Ti3C2 (MT), which allowed a high photothermal conversion efficiency (59.1%) as well as an effective separation of photo-triggered electron–hole pairs for reactive oxygen species (ROS) generation under single 808 nm laser irradiation. Upon the modification of the mitochondrial targeted molecule (3-proxycarboxylic) triphenyl phosphine bromide (TPP) and 4T1 cell membrane, m@MoS2-Ti3C2/TPP (m@MTT) could effectively target to the tumor cell and further locate to the mitochondria to amplify tumor-specific oxidative stress, which not merely effectively inhibits the local tumor growth but also induces tumor immunogenic cell death (ICD) for activating antitumor immune response. Additionally, cytosine guanine dinucleotide (CPG), as a Toll-like receptor 9 (TLR9) agonist, was further introduced to the system to boost adaptive immune responses, resulting in improved level of cytotoxic T cells as well as a decrease in the number of regulatory T cells. In vivo antitumor mechanism studies demonstrated that not only the primary and distant tumors in 4T1 bearing-tumor mice model were significantly inhibited, but also the lung metastasis of tumor was effectively suppressed. Therefore, this work revealed the ROS generation mechanism of MT nanoheterojunction and provided a novel strategy to fabricate a biomedically applicable MT nanoheterojunction for tumor treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A novel two-dimensional nanoheterojunction via facilitating electron–hole pairs separation for synergistic tumor phototherapy and immunotherapy

Show Author's information Xiaoge Zhang§Xiaomei Chen§Peng ZhangMeiting LiMiao FengYaqian ZhangLili ChengJunjie TangLangtao XuYadong LiuZhuoyin LiuZhong Cao( )Jie Liu( )
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China

§ Xiaoge Zhang and Xiaomei Chen contributed equally to this work.

Abstract

Nanomaterial-mediated phototherapy in tumor treatment has been developed rapidly in the past few years due to its noninvasive character. However, the low energy conversion efficiency and high recombination rate of the photo-triggered electron–hole pairs of single nano-agent limit the phototherapy efficiency. Herein, we constructed a novel two-dimensional nanoheterojunction MoS2-Ti3C2 (MT), which allowed a high photothermal conversion efficiency (59.1%) as well as an effective separation of photo-triggered electron–hole pairs for reactive oxygen species (ROS) generation under single 808 nm laser irradiation. Upon the modification of the mitochondrial targeted molecule (3-proxycarboxylic) triphenyl phosphine bromide (TPP) and 4T1 cell membrane, m@MoS2-Ti3C2/TPP (m@MTT) could effectively target to the tumor cell and further locate to the mitochondria to amplify tumor-specific oxidative stress, which not merely effectively inhibits the local tumor growth but also induces tumor immunogenic cell death (ICD) for activating antitumor immune response. Additionally, cytosine guanine dinucleotide (CPG), as a Toll-like receptor 9 (TLR9) agonist, was further introduced to the system to boost adaptive immune responses, resulting in improved level of cytotoxic T cells as well as a decrease in the number of regulatory T cells. In vivo antitumor mechanism studies demonstrated that not only the primary and distant tumors in 4T1 bearing-tumor mice model were significantly inhibited, but also the lung metastasis of tumor was effectively suppressed. Therefore, this work revealed the ROS generation mechanism of MT nanoheterojunction and provided a novel strategy to fabricate a biomedically applicable MT nanoheterojunction for tumor treatment.

Keywords: immunotherapy, photodynamic therapy, photothermal therapy, mitochondrial targeting, two-dimensional nanoheterojunction

References(52)

[1]

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33.

[2]

Xia, C. F.; Dong, X. S.; Li, H.; Cao, M. M.; Sun, D. Q.; He, S. Y.; Yang, F.; Yan, X. X.; Zhang, S. L.; Li, N. et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590.

[3]

Liu, Y. Y.; Meng, X. F.; Bu, W. B. Upconversion-based photodynamic cancer therapy. Coord. Chem. Rev. 2019, 379, 82–98.

[4]

Min, F. L.; Zhang, H.; Li, W. J. Current status of tumor radiogenic therapy. World J. Gastroenterol. 2005, 11, 3014–3019.

[5]

Wang, J.; Wu, X.; Shen, P.; Wang, J.; Shen, Y. D.; Shen, Y.; Webster, T. J.; Deng, J. J. Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment. Int. J. Nanomed. 2020, 15, 1903–1914.

[6]

Li, Z.; Xiao, C.; Yong, T. Y.; Li, Z. F.; Gan, L.; Yang, X. L. Influence of nanomedicine mechanical properties on tumor targeting delivery. Chem. Soc. Rev. 2020, 49, 2273–2290.

[7]

Norouzi, M.; Amerian, M.; Amerian, M.; Atyabi, F. Clinical applications of nanomedicine in cancer therapy. Drug Discovery Today 2020, 25, 107–125.

[8]

Wolfram, J.; Ferrari, M. Clinical cancer nanomedicine. Nano Today 2019, 25, 85–98.

[9]

Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.

[10]

Rocha, U.; Jacinto, C.; Kumar, K. U.; López, F. J.; Bravo, D.; Solé, J. G.; Jaque, D. Real-time deep-tissue thermal sensing with sub-degree resolution by thermally improved Nd3+: LaF3 multifunctional nanoparticles. J. Lumin. 2016, 175, 149–157.

[11]

Yang, B. W.; Chen, Y.; Shi, J. L. Tumor-specific chemotherapy by nanomedicine-enabled differential stress sensitization. Angew. Chem., Int. Ed. 2020, 59, 9693–9701.

[12]

Zheng, D. Y.; Yu, P. W.; Wei, Z. W.; Zhong, C.; Wu, M.; Liu, X. L. RBC membrane camouflaged semiconducting polymer nanoparticles for near-infrared photoacoustic imaging and photothermal therapy. Nano-Micro Lett. 2020, 12, 94.

[13]

Zhao, L. Z.; Li, J. Y.; Su, Y. Q.; Yang, L. Q.; Chen, L.; Qiang, L.; Wang, Y. J.; Xiang, H. J.; Tham, H. P.; Peng, J. J. et al. MTH1 inhibitor amplifies the lethality of reactive oxygen species to tumor in photodynamic therapy. Sci. Adv. 2020, 6, eaaz0575.

[14]

Blanchard, P.; Biau, J.; Huguet, F.; Racadot, S.; Berthold, C.; Wong-Hee-Kam, S.; Biston, M. C.; Maingon, P. Radiotherapy for nasopharyngeal cancer. Cancer/Radiothér. 2022, 26, 168–173.

[15]

Chargari, C.; Peignaux, K.; Escande, A.; Renard, S.; Lafond, C.; Petit, A.; Hannoun-Lévi, J. M.; Durdux, C.; Haie-Méder, C. Radiotherapy for endometrial cancer. Cancer/Radiothér. 2022, 26, 309–314.

[16]

Zhang, D. Y.; Liu, H. K.; Younis, M. R.; Lei, S.; Chen, Y. Z.; Huang, P.; Lin, J. In-situ TiO2−x decoration of titanium carbide MXene for photo/sono-responsive antitumor theranostics. J. Nanobiotechnol. 2022, 20, 53.

[17]

Shao, J. D.; Zhang, J.; Jiang, C.; Lin, J.; Huang, P. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem. Eng. J. 2020, 400, 126009.

[18]

Vendrely, V.; Del Campo, E. R.; Modesto, A.; Jolnerowski, M.; Meillan, N.; Chiavassa, S.; Serre, A. A.; Gérard, J. P.; Créhanges, G.; Huguet, F. et al. Rectal cancer radiotherapy. Cancer/Radiothér. 2022, 26, 272–278.

[19]

Cusack, J. C.; Tanabe, K. K. Cancer gene therapy. Surg. Oncol. Clin. North Am. 1998, 7, 421–469.

[20]

Huang, K.; Li, Z. J.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124.

[21]

Geng, B. J.; Xu, S.; Shen, L. X.; Fang, F. L.; Shi, W. Y.; Pan, D. Y. Multifunctional carbon dot/MXene heterojunctions for alleviation of tumor hypoxia and enhanced sonodynamic therapy. Carbon 2021, 179, 493–504.

[22]

Mathis, T. S.; Maleski, K.; Goad, A.; Sarycheva, A.; Anayee, M.; Foucher, A. C.; Hantanasirisakul, K.; Shuck, C. E.; Stach, E. A.; Gogotsi, Y. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. Acs Nano 2021, 15, 6420–6429.

[23]

Zhang, Y. Y.; Cheng, Y. R.; Yang, F.; Yuan, Z. P.; Wei, W.; Lu, H. T.; Dong, H. F.; Zhang, X. J. Near-infrared triggered Ti3C2/g-C3N4 heterostructure for mitochondria-targeting multimode photodynamic therapy combined photothermal therapy. Nano Today 2020, 34, 100919.

[24]

Liu, G. Y.; Zou, J. H.; Tang, Q. Y.; Yang, X. Y.; Zhang, Y. W.; Zhang, Q.; Huang, W.; Chen, P.; Shao, J. J.; Dong, X. C. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 2017, 9, 40077–40086.

[25]

Tang, W. T.; Dong, Z. L.; Zhang, R.; Yi, X.; Yang, K.; Jin, M. L.; Yuan, C.; Xiao, Z. D.; Liu, Z.; Cheng, L. Multifunctional two-dimensional core-shell MXene@gold nanocomposites for enhanced photo-radio combined therapy in the second biological window. ACS Nano 2019, 13, 284–294.

[26]

Attanayake, N. H.; Abeyweera, S. C.; Thenuwara, A. C.; Anasori, B.; Gogotsi, Y.; Sun, Y. G.; Strongin, D. R. Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst. J. Mater. Chem. A 2018, 6, 16882–16889.

[27]

Liu, Y. X.; Tian, Y.; Han, Q. Y.; Yin, J.; Zhang, J. C.; Yu, Y.; Yang, W. Z.; Deng, Y. Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application. Chem. Eng. J. 2021, 410, 128209.

[28]

Cai, T.; Wang, L. L.; Liu, Y. T.; Zhang, S. Q.; Dong, W. Y.; Chen, H.; Yi, X. Y.; Yuan, J. L.; Xia, X. N.; Liu, C. B. et al. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl. Catal. B:Environ. 2018, 239, 545–554.

[29]

Ekspong, J.; Sandström, R.; Rajukumar, L. P.; Terrones, M.; Wågberg, T.; Gracia-Espino, E. Stable sulfur-intercalated 1T' MoS2 on graphitic nanoribbons as hydrogen evolution electrocatalyst. Adv. Funct. Mater. 2018, 28, 1802744.

[30]

Ekspong, J.; Sharifi, T.; Shchukarev, A.; Klechikov, A.; Wågberg, T.; Gracia-Espino, E. Stabilizing active edge sites in semicrystalline molybdenum sulfide by anchorage on nitrogen-doped carbon nanotubes for hydrogen evolution reaction. Adv. Funct. Mater. 2016, 26, 6766–6776.

[31]

Ting, L. R. L.; Deng, Y. L.; Ma, L.; Zhang, Y. J.; Peterson, A. A.; Yeo, B. S. Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal. 2016, 6, 861–867.

[32]

Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.

[33]

Wu, X. H.; Wang, Z. Y.; Yu, M. Z.; Xiu, L. Y.; Qiu, J. S. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 2017, 29, 1607017.

[34]

Wang, J.; Fang, W. H.; Hu, Y.; Zhang, Y. H.; Dang, J. Q.; Wu, Y.; Zhao, H.; Li, Z. X. Different phases of few-layer MoS2 and their silver/gold nanocomposites for efficient hydrogen evolution reaction. Catal. Sci. Technol. 2020, 10, 154–163.

[35]

Xia, Z. H.; Tao, Y. Q.; Pan, Z. G.; Shen, X. D. Enhanced photocatalytic performance and stability of 1T MoS2 transformed from 2H MoS2 via Li intercalation. Results Phys. 2019, 12, 2218–2224.

[36]

Wang, X.; Li, H.; Li, H.; Lin, S.; Ding, W.; Zhu, X. G.; Sheng, Z. G.; Wang, H.; Zhu, X. B.; Sun, Y. P. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 2020, 30, 0190302.

[37]

Zhang, X. G.; Cheng, L. L.; Lu, Y.; Tang, J. J.; Lv, Q. J.; Chen, X. M.; Chen, Y.; Liu, J. A MXene-based bionic cascaded-enzyme nanoreactor for tumor phototherapy/enzyme dynamic therapy and hypoxia-activated chemotherapy. Nano-Micro Lett. 2022, 14, 22.

[38]

Pang, B.; Yang, H. R.; Wang, L. Y.; Chen, J. Q.; Jin, L. H.; Shen, B. J. Aptamer modified MoS2 nanosheets application in targeted photothermal therapy for breast cancer. Colloids Surf. A: Physicochem. Eng. Aspects 2021, 608, 125506.

[39]

Yang, Z. P.; Fu, X. L.; Ma, D. C.; Wang, Y. L.; Peng, L. M.; Shi, J. C.; Sun, J. Y.; Gan, X. Q.; Deng, Y.; Yang, W. Z. Growth factor-decorated Ti3C2 MXene/MoS2 2D bio-heterojunctions with quad-channel photonic disinfection for effective regeneration of bacteria-invaded cutaneous tissue. Small 2021, 17, 2103993.

[40]

Shi, W. L.; Hao, C. C.; Fu, Y. M.; Guo, F.; Tang, Y. B.; Yan, X. Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots. Chem. Eng. J. 2022, 433, 133741.

[41]

Xia, D. H.; Wang, W. J.; Yin, R.; Jiang, Z. F.; An, T. C.; Li, G. Y.; Zhao, H. J.; Wong, P. K. Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: The role of reactive oxygen species. Appl. Catal. B:Environ. 2017, 214, 23–33.

[42]

Onodera, Y.; Nam, J. M.; Horikawa, M.; Shirato, H.; Sabe, H. Arf6-driven cell invasion is intrinsically linked to TRAK1-mediated mitochondrial anterograde trafficking to avoid oxidative catastrophe. Nat. Commun. 2018, 9, 2682.

[43]

Zhai, Y. H.; Liu, M.; Yang, T.; Luo, J.; Wei, C. G.; Shen, J. K.; Song, X.; Ke, H. T.; Sun, P.; Guo, M. et al. Self-activated arsenic manganite nanohybrids for visible and synergistic thermo/immuno-arsenotherapy. J. Control. Release 2022, 350, 761–776.

[44]

Chen, Z. K.; Liu, L. L.; Liang, R. J.; Luo, Z. Y.; He, H. M.; Wu, Z. H.; Tian, H.; Zheng, M. B.; Ma, Y. F.; Cai, L. T. Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect. ACS Nano 2018, 12, 8633–8645.

[45]

Zhou, S. Y.; Li, D. D.; Lee, C.; Xie, J. Nanoparticle phototherapy in the era of cancer immunotherapy. Trends Chem. 2020, 2, 1082–1095.

[46]

Jahrsdorfer, B.; Weiner, G. J. CpG oligodeoxynucleotides as immunotherapy in cancer. Update Cancer Ther. 2008, 3, 27–32.

[47]

Yang, N.; Cao, C. Y.; Li, H.; Hong, Y.; Cai, Y.; Song, X. J.; Wang, W. J.; Mou, X. Z.; Dong, X. C. Polymer-based therapeutic nanoagents for photothermal-enhanced combination cancer therapy. Small Struct. 2021, 2, 2100110.

[48]

Jiang, Z. J.; Li, T. Y.; Cheng, H.; Zhang, F.; Yang, X. Y.; Wang, S. H.; Zhou, J. P.; Ding, Y. Nanomedicine potentiates mild photothermal therapy for tumor ablation. Asian J. Pharm. Sci. 2021, 16, 738–761.

[49]

Powell, E.; Piwnica-Worms, D.; Piwnica-Worms, H. Contribution of p53 to metastasis. Cancer Discov. 2014, 4, 405–414.

[50]

Smith, H. A.; Kang, Y. B. The metastasis-promoting roles of tumor-associated immune cells. J. Mol. Med. 2013, 91, 411–429.

[51]

Wortzel, I.; Dror, S.; Kenific, C. M.; Lyden, D. Exosome-mediated metastasis: Communication from a distance. Dev. Cell 2019, 49, 347–360.

[52]

Qiu, X. Y.; Qu, Y.; Guo, B. B.; Zheng, H.; Meng, F. H.; Zhong, Z. Y. Micellar paclitaxel boosts ICD and chemo-immunotherapy of metastatic triple negative breast cancer. J. Control. Release 2022, 341, 498–510.

File
12274_2022_5313_MOESM1_ESM.pdf (9.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 September 2022
Revised: 08 November 2022
Accepted: 10 November 2022
Published: 23 December 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51773231), Shenzhen Science and Technology Project (No. JCYJ20190807160801664), and the Foundation of Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument (No. 2020B1212060077).

Return