Journal Home > Volume 16 , Issue 5

In this study, an alkynyl-modified aromatic dicarboxylic acid bifunctional ligand was selected to construct lanthanide compound {[Eu4(ebdc)6(4,4-bpy)0.5(H2O)4.5]·(C2H5OH)1.25(H2O)}n (Eu-MOF, H2ebdc = 5-ethynyl-isophthalic acid, 4,4-bpy = 4,4-bipyridine, and MOF = metal-organic framework), of which the uncoordinated alkynyl group would be used to anchor silver nanoclusters (Ag NCs). The Eu-MOF exhibits double emission peaks, located at 492 and 611 nm, respectively, in which the high-energy blue emission is associated with alkynyl-modified ligand while the low-energy red emission belongs to characteristic emission of Eu3+, indicating that ligands can effectively sensitize Eu3+ luminescence. The intensity ratio of the dual emission fluorescence peaks of Eu-MOF displays a good linear relationship with temperature, which realizes the detection function in the low temperature region of 75–275 K, and the thermal sensitivity reaches 1.5398%·K−1. After anchoring the Ag NCs, the high-energy blue emission is significantly quenched, indicating that the Ag NCs are indeed confined into the framework and interact with the alkynyl group, and thus change the overall electronic distribution. This is the first case of anchoring Ag NCs by a luminescent Eu-MOF and studying nanocluster loading by using spectroscopic properties. In addition, the Ag NCs@Eu-MOF also shows a good catalytic activity for cycloaddition reaction from CO2 and epoxides. This study not only provides ideas for exploring the changes in optical properties of luminescent MOFs and Ag NCs caused by confinement effect, but also expands their potential applications in various fields.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Alkynyl-anchored silver nanoclusters in lanthanide metal-organic framework for luminescent thermometer and CO2 cycloaddition

Show Author's information Jing-Wen Hu1Wan-Zhen Qiao2Jun-Jun Sun1Jun Xu1Xi-Yan Dong1,2( )Chong Zhang2,3( )Shuang-Quan Zang2
College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China

Abstract

In this study, an alkynyl-modified aromatic dicarboxylic acid bifunctional ligand was selected to construct lanthanide compound {[Eu4(ebdc)6(4,4-bpy)0.5(H2O)4.5]·(C2H5OH)1.25(H2O)}n (Eu-MOF, H2ebdc = 5-ethynyl-isophthalic acid, 4,4-bpy = 4,4-bipyridine, and MOF = metal-organic framework), of which the uncoordinated alkynyl group would be used to anchor silver nanoclusters (Ag NCs). The Eu-MOF exhibits double emission peaks, located at 492 and 611 nm, respectively, in which the high-energy blue emission is associated with alkynyl-modified ligand while the low-energy red emission belongs to characteristic emission of Eu3+, indicating that ligands can effectively sensitize Eu3+ luminescence. The intensity ratio of the dual emission fluorescence peaks of Eu-MOF displays a good linear relationship with temperature, which realizes the detection function in the low temperature region of 75–275 K, and the thermal sensitivity reaches 1.5398%·K−1. After anchoring the Ag NCs, the high-energy blue emission is significantly quenched, indicating that the Ag NCs are indeed confined into the framework and interact with the alkynyl group, and thus change the overall electronic distribution. This is the first case of anchoring Ag NCs by a luminescent Eu-MOF and studying nanocluster loading by using spectroscopic properties. In addition, the Ag NCs@Eu-MOF also shows a good catalytic activity for cycloaddition reaction from CO2 and epoxides. This study not only provides ideas for exploring the changes in optical properties of luminescent MOFs and Ag NCs caused by confinement effect, but also expands their potential applications in various fields.

Keywords: confinement effect, silver nanoclusters, lanthanide metal-organic framework (MOF), ratiometric fluorescence thermometer, CO2 cycloaddition

References(51)

[1]

Qian, H. F.; Zhu, M. Z.; Wu, Z. K.; Jin, R. C. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470–1479.

[2]

Jin, R. C. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549–1565.

[3]

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

[4]

Yu, H. Z.; Rao, B.; Jiang, W.; Yang, S.; Zhu, M. Z. The photoluminescent metal nanoclusters with atomic precision. Coord. Chem. Rev. 2019, 378, 595–617.

[5]

Song, Y. B.; Li, Y. W.; Zhou, M.; Liu, X.; Li, H.; Wang, H.; Shen, Y. H.; Zhu, M. Z.; Jin, R. C. Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature. Sci. Adv. 2021, 7, eabd2091.

[6]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[7]

Wang, S. X.; Tang, L.; Cai, B. G.; Yin, Z. M.; Li, Y. F.; Xiong, L.; Kang, X.; Xuan, J.; Pei, Y.; Zhu, M. Z. Ligand modification of Au25 nanoclusters for near-infrared photocatalytic oxidative functionalization. J. Am. Chem. Soc. 2022, 144, 3787–3792.

[8]

Wu, H.; He, X.; Yang, B.; Li, C. C.; Zhao, L. Assembly-induced strong circularly polarized luminescence of spirocyclic chiral silver(I) clusters. Angew. Chem., Int. Ed. 2021, 60, 1535–1539.

[9]

Lu, Y. Z.; Chen, W. Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594–3623.

[10]

Kwak, K.; Lee, D. Electrochemistry of atomically precise metal nanoclusters. Acc. Chem. Res. 2019, 52, 12–22.

[11]

Meng, J.; E, S.; Wei, X.; Chen, X. W.; Wang, J. H. Confinement of AuAg NCs in a pomegranate-type silica architecture for improved copper ion sensing and imaging. ACS Appl. Mater. Interfaces 2019, 11, 21150–21158.

[12]

Sun, J.; Jin, Y. D. Fluorescent Au nanoclusters: Recent progress and sensing applications. J. Mater. Chem. C 2014, 2, 8000–8011.

[13]

Dong, X. Y.; Si, Y. B.; Yang, J. S.; Zhang, C.; Han, Z.; Luo, P.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nat. Commun. 2020, 11, 3678.

[14]

Jin, Y.; Zhang, C.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem. Soc. Rev. 2021, 50, 2297–2319.

[15]

Wu, Y. G.; Huang, J. H.; Zhang, C.; Guo, X. K.; Wu, W. N.; Dong, X. Y.; Zang, S. Q. Site-specific sulfur-for-metal replacement in a silver nanocluster. Chem. Commun. 2022, 58, 7321–7324.

[16]

Bhattarai, B.; Zaker, Y.; Atnagulov, A.; Yoon, B.; Landman, U.; Bigioni, T. P. Chemistry and structure of silver molecular nanoparticles. Acc. Chem. Res. 2018, 51, 3104–3113.

[17]

Coutiño-Gonzalez, E.; Baekelant, W.; Steele, J. A.; Kim, C. W.; Roeffaers, M. B. J.; Hofkens, J. Silver clusters in zeolites: From self-assembly to ground-breaking luminescent properties. Acc. Chem. Res. 2017, 50, 2353–2361.

[18]

Luo, X. M.; Gong, C. H.; Dong, X. Y.; Zhang, L.; Zang, S. Q. Evolution of all-carboxylate-protected superatomic Ag clusters confined in Ti-organic cages. Nano Res. 2021, 14, 2309–2313.

[19]

Chen, Y.; Shi, J. L. Chemistry of mesoporous organosilica in nanotechnology: Molecularly organic–inorganic hybridization into frameworks. Adv. Mater. 2016, 28, 3235–3272.

[20]

Sun, X. X.; Huang, C. J.; Wang, L. D.; Liang, L.; Cheng, Y. J.; Fei, W. D.; Li, Y. B. Recent progress in graphene/polymer nanocomposites. Adv. Mater. 2021, 33, 2001105.

[21]

Chen, Y. X.; Phipps, M. L.; Werner, J. H.; Chakraborty, S.; Martinez, J. S. DNA templated metal nanoclusters: From emergent properties to unique applications. Acc. Chem. Res. 2018, 51, 2756–2763.

[22]

Guan, Z. J.; He, R. L.; Yuan, S. F.; Li, J. J.; Hu, F.; Liu, C. Y.; Wang, Q. M. Ligand engineering toward the trade-off between stability and activity in cluster catalysis. Angew. Chem., Int. Ed. 2022, 61, e202116965.

[23]

Huang, R. W.; Wei, Y. S.; Dong, X. Y.; Wu, X. H.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697.

[24]

Fenwick, O.; Coutiño-Gonzalez, E.; Grandjean, D.; Baekelant, W.; Richard, F.; Bonacchi, S.; De Vos, D.; Lievens, P.; Roeffaers, M.; Hofkens, J. et al. Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nat. Mater. 2016, 15, 1017–1022.

[25]

Li, Y.; Yu, J. H. Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nat. Rev. Mater. 2021, 6, 1156–1174.

[26]

Huang, S. Z.; Liu, S. S.; Zhang, H. J.; Han, Z.; Zhao, G.; Dong, X. Y.; Zang, S. Q. Dual-functional proton-conducting and pH-sensing polymer membrane benefiting from a Eu-MOF. ACS Appl. Mater. Interfaces 2020, 12, 28720–28726.

[27]

Liu, S. S.; Liu, Q. Q.; Huang, S. Z.; Zhang, C.; Dong, X. Y.; Zang, S. Q. Sulfonic and phosphonic porous solids as proton conductors. Coord. Chem. Rev. 2022, 451, 214241.

[28]

Liu, X. Y.; Xing, K.; Li, Y.; Tsung, C. K.; Li, J. Three models to encapsulate multicomponent dyes into nanocrystal pores: A new strategy for generating high-quality white light. J. Am. Chem. Soc. 2019, 141, 14807–14813.

[29]

Mayoral, A.; Carey, T.; Anderson, P. A.; Lubk, A.; Diaz, I. Atomic resolution analysis of silver ion-exchanged zeolite A. Angew. Chem., Int. Ed. 2011, 50, 11230–11233.

[30]

Lu, M.; Zhang, M.; Liu, J.; Yu, T. Y.; Chang, J. N.; Shang, L. J.; Li, S. L.; Lan, Y. Q. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 1861–1871.

[31]

Jalili, R.; Dastborhan, M.; Chenaghlou, S.; Khataee, A. Incorporating of gold nanoclusters into metal-organic frameworks for highly sensitive detection of 3-nitrotyrosine as an oxidative stress biomarker. J. Photochem. Photobiol. A Chem. 2020, 391, 112370.

[32]

Li, X. L.; Zhang, B. Y.; Tang, L. L.; Goh, T. W.; Qi, S. Y.; Volkov, A.; Pei, Y. C.; Qi, Z. Y.; Tsung, C. K.; Stanley, L. et al. Cooperative multifunctional catalysts for nitrone synthesis: Platinum nanoclusters in amine-functionalized metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 16371–16375.

[33]

Liu, L. L.; Song, Y. B.; Chong, H. B.; Yang, S.; Xiang, J.; Jin, S.; Kang, X.; Zhang, J.; Yu, H. Z.; Zhu, M. Z. Size-confined growth of atom-precise nanoclusters in metal-organic frameworks and their catalytic applications. Nanoscale 2016, 8, 1407–1412.

[34]

Vilhelmsen, L. B.; Walton, K. S.; Sholl, D. S. Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74. J. Am. Chem. Soc. 2012, 134, 12807–12816.

[35]

Zhang, C.; Li, Z. S.; Dong, X. Y.; Niu, Y. Y.; Zang, S. Q. Multiple responsive CPL switches in an enantiomeric pair of perovskite confined in lanthanide MOFs. Adv. Mater. 2022, 34, 2109496.

[36]

Zhang, C.; Yan, Z. P.; Dong, X. Y.; Han, Z.; Li, S.; Fu, T.; Zhu, Y. Y.; Zheng, Y. X.; Niu, Y. Y.; Zang, S. Q. Enantiomeric MOF crystals using helical channels as palettes with bright white circularly polarized luminescence. Adv. Mater. 2020, 32, 2002914.

[37]
Xu, J. M.; Ma, J.; Peng, Y.; Cao, S.; Zhang, S. T.; Pang, H. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.05.041.
[38]
Zhang, X. L.; Zhang, Y. Z.; Zhou, W. F.; Liu, H. L.; Zhang, D. S.; Hu, H.; Lv, C.; Liu, S. J.; Geng, L. L. Construction of novel cluster-baseed MOF as multifunctional platform for CO2 catalytic transformation and dye selective adsorption. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.03.091.
[39]

Chen, Y. Z.; Xu, Q.; Yu, S. H.; Jiang, H. L. Tiny Pd@Co core–shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis. Small 2015, 11, 71–76.

[40]

Jiang, Y. L.; Yu, Y.; Zhang, X.; Weinert, M.; Song, X. L.; Ai, J.; Han, L.; Fei, H. H. N-heterocyclic carbene-stabilized ultrasmall gold nanoclusters in a metal-organic framework for photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 17388–17393.

[41]

Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

[42]

Zhang, M. M.; Dong, X. Y.; Wang, Y. J.; Zang, S. Q.; Mak, T. C. W. Recent progress in functional atom-precise coinage metal clusters protected by alkynyl ligands. Coord. Chem. Rev. 2022, 453, 214315.

[43]

Sivaguru, P.; Cao, S. S.; Babu, K. R.; Bi, X. H. Silver-catalyzed activation of terminal alkynes for synthesizing nitrogen-containing molecules. Acc. Chem. Res. 2020, 53, 662–675.

[44]

Lei, Z.; Wan, X. K.; Yuan, S. F.; Wang, J. Q.; Wang, Q. M. Alkynyl-protected gold and gold-silver nanoclusters. Dalton Trans. 2017, 46, 3427–3434.

[45]

Wang, X.; Jiang, Z. W.; Yang, C. P.; Zhen, S. J.; Huang, C. Z.; Li, Y. F. Facile synthesis of binary two-dimensional lanthanide metal-organic framework nanosheets for ratiometric fluorescence detection of mercury ions. J. Hazardous Mater. 2022, 423, 126978.

[46]

Guo, H.; He, X.; Wan, C. Q.; Zhao, L. A stepwise bulk-to-cluster-to-particle transformation toward the efficient synthesis of alkynyl-protected silver nanoclusters. Chem. Commun. 2016, 52, 7723–7726.

[47]

Chen, W. J.; Cheng, B. H.; Sun, Q. T.; Jiang, H. Preparation of MOF confined Ag nanoparticles for the highly active, size selective hydrogenation of olefins. ChemCatChem 2018, 10, 3659–3665.

[48]

Wang, J.; Wang, Z. Y.; Li, S. J.; Zang, S. Q.; Mak, T. C. W. Carboranealkynyl-protected gold nanoclusters: Size conversion and UV/Vis–NIR optical properties. Angew. Chem., Int. Ed. 2021, 60, 5959–5964.

[49]

Chen, Z.; Lu, D. T.; Cai, Z. W.; Dong, C.; Shuang, S. M. Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols. Luminescence 2014, 29, 722–727.

[50]

Xu, J.; Xu, H.; Dong, A. Q.; Zhang, H.; Zhou, Y. T.; Dong, H.; Tang, B.; Liu, Y. F.; Zhang, L. X.; Liu, X. J. et al. Strong electronic metal-support interaction between iridium single atoms and a WO3 support promotes highly efficient and robust CO2 cycloaddition. Adv. Mater., 2022, 34, 2206991.

[51]

Ma, D. X.; Li, B. Y.; Liu, K.; Zhang, X. L.; Zou, W. J.; Yang, Y. Q.; Li, G. H.; Shi, Z.; Feng, S. H. Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions. J. Mater. Chem. A 2015, 3, 23136–23142.

File
12274_2022_5308_MOESM1_ESM.pdf (1.7 MB)
12274_2022_5308_MOESM2_ESM.pdf (143.5 KB)
12274_2022_5308_MOESM3_ESM.pdf (3.1 MB)
12274_2022_5308_MOESM4_ESM.cif (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 October 2022
Revised: 05 November 2022
Accepted: 07 November 2022
Published: 27 December 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21975065, U21A20277, 21825106, and 22201065).

Return