Journal Home > Volume 16 , Issue 7

Covalent organic frameworks (COFs) represent an emerging class of crystalline porous polymers with high porosity, good stability, and adjustable structure, and their excellent characteristics lay a solid foundation for electrocatalysis. This review systematically introduces the design principles of the catalytic sites in two-dimensional (2D) COF-based electrocatalysts and analyzes the relationship between 2D COF structure and their electrocatalytic performances. In particular, the recent progress in the field of 2D COFs as electrocatalysts is comprehensively summarized. Finally, we discuss the current shortcomings and challenges on tailoring 2D COF for high-performance electrocatalysts in details, and look forward to promoting more researches on 2D COF-based electrocatalysts.


menu
Abstract
Full text
Outline
About this article

Two-dimensional covalent organic frameworks for electrocatalysis: Achievements, challenges, and opportunities

Show Author's information Ruoyu Zhao1,§Teng Wang2,§Junjun Li1Yongxia Shi1Man Hou1Yong Yang2( )Zhicheng Zhang1( )Shengbin Lei1( )
Department of Chemistry, School of Science & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an 710072, China

§ Ruoyu Zhao and Teng Wang contributed equally to this work.

Abstract

Covalent organic frameworks (COFs) represent an emerging class of crystalline porous polymers with high porosity, good stability, and adjustable structure, and their excellent characteristics lay a solid foundation for electrocatalysis. This review systematically introduces the design principles of the catalytic sites in two-dimensional (2D) COF-based electrocatalysts and analyzes the relationship between 2D COF structure and their electrocatalytic performances. In particular, the recent progress in the field of 2D COFs as electrocatalysts is comprehensively summarized. Finally, we discuss the current shortcomings and challenges on tailoring 2D COF for high-performance electrocatalysts in details, and look forward to promoting more researches on 2D COF-based electrocatalysts.

Keywords: two-dimensional, electrocatalysts, covalent organic frameworks, active centers

References(238)

[1]

Zhang, J. K.; Tian, W. S.; Chipperfield, M. P.; Xie, F.; Huang, J. L. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Climate Change 2016, 6, 1094–1099.

[2]

Coumou, D.; Di Capua, G.; Vavrus, S.; Wang, L.; Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 2018, 9, 2959.

[3]

Shindell, D.; Smith, C. J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 2019, 573, 408–411.

[4]

Du, J.; Li, F.; Sun, L. C. Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 2663–2695.

[5]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

[6]

Tang, T. M.; Li, S. S.; Sun, J. R.; Wang, Z. L.; Guan, J. Q. Advances and challenges in two-dimensional materials for oxygen evolution. Nano Res. 2022, 15, 8714–8750.

[7]

Zaman, S.; Huang, L.; Douka, A. I.; Yang, H.; You, B.; Xia, B. Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives. Angew. Chem., Int. Ed. 2021, 60, 17832–17852.

[8]

Asset, T.; Atanassov, P. Iron-nitrogen-carbon catalysts for proton exchange membrane fuel cells. Joule 2020, 4, 33–44.

[9]

Liu, Q. Q.; Liu, R. T.; He, C. H.; Xia, C. F.; Guo, W.; Xu, Z. L.; Xia, B. Y. Advanced polymer-based electrolytes in zinc–air batteries. eScience 2022, 2, 453–466.

[10]

Li, J. J.; Zhang, Z. C.; Hu, W. P. Insight into the effect of metal cations in the electrolyte on performance for electrocatalytic CO2 reduction reaction. Energy Environ. Mater. 2022, 5, 1008–1009.

[11]

Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1, e9120009.

[12]

Hou, M.; Shi, Y. X.; Li, J.; Gao, Z. Q.; Zhang, Z. C. Cu-based organic–inorganic composite materials for electrochemical CO2 reduction. Chem. Asian J. 2022, 17, e202200624.

[13]

He, T.; Yang, C. H.; Chen, Y. Z.; Huang, N.; Duan, S. M.; Zhang, Z. C.; Hu, W. P.; Jiang, D. L. Bottom-up interfacial design of covalent organic frameworks for highly efficient and selective electrocatalysis of CO2. Adv. Mater. 2022, 34, 2205186.

[14]

Wang, C. Y.; Zhang, Z. C.; Zhu, Y. T.; Yang, C. H.; Wu, J. S.; Hu, W. P. 2D covalent organic frameworks: From synthetic strategies to advanced optical-electrical-magnetic functionalities. Adv. Mater. 2022, 34, 2102290.

[15]

El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; Cote, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316, 268–272.

[16]

Yang, C. H.; Yang, Z. D.; Dong, H.; Sun, N.; Lu, Y.; Zhang, F. M.; Zhang, G. L. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER. ACS Energy Lett. 2019, 4, 2251–2258.

[17]

Aiyappa, H. B.; Thote, J.; Shinde, D. B.; Banerjee, R.; Kurungot, S. Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem. Mater. 2016, 28, 4375–4379.

[18]

Mazloomi, S. K.; Sulaiman, N. Influencing factors of water electrolysis electrical efficiency. Renew. Sustain. Energy Rev. 2012, 16, 4257–4263.

[19]

Lin, C. Y.; Zhang, D. T.; Zhao, Z. H.; Xia, Z. H. Covalent organic framework electrocatalysts for clean energy conversion. Adv. Mater. 2018, 30, 1703646.

[20]

Yusran, Y.; Fang, Q. F.; Valtchev, V. Electroactive covalent organic frameworks: Design, synthesis, and applications. Adv. Mater. 2020, 32, 2002038.

[21]

Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

[22]

Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188–1193.

[23]

Li, Y. F.; Zhou, Z.; Shen, P. W.; Chen, Z. F. Spin gapless semiconductor–metal–half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 2009, 3, 1952–1958.

[24]

Wang, Y. S.; Chen, J. X.; Wang, G. X.; Li, Y.; Wen, Z. H. Perfluorinated covalent triazine framework derived hybrids for the highly selective electroconversion of carbon dioxide into methane. Angew. Chem., Int. Ed. 2018, 57, 13120–13124.

[25]

Hao, L.; Zhang, S. S.; Liu, R. J.; Ning, J.; Zhang, G. J.; Zhi, L. J. Bottom-up construction of triazine-based frameworks as metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 2015, 27, 3190–3195.

[26]

Li, D. H.; Li, C. Y.; Zhang, L. J.; Li, H.; Zhu, L. K.; Yang, D. J.; Fang, Q. R.; Qiu, S. L.; Yao, X. D. Metal-free thiophene-sulfur covalent organic frameworks: Precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 2020, 142, 8104–8108.

[27]

Qian, H. L.; Li, Y.; Yan, X. P. A building block exchange strategy for the rational fabrication of de novo unreachable amino-functionalized imine-linked covalent organic frameworks. J. Mater. Chem. A 2018, 6, 17307–17311.

[28]

Fan, C. Y.; Wu, H.; Guan, J. Y.; You, X. D.; Yang, C.; Wang, X. Y.; Cao, L.; Shi, B. B.; Peng, Q.; Kong, Y. et al. Scalable fabrication of crystalline COF membranes from amorphous polymeric membranes. Angew. Chem., Int. Ed. 2021, 60, 18051–18058.

[29]

Zhai, Y. F.; Liu, G. Y.; Jin, F. C.; Zhang, Y. Y.; Gong, X. F.; Miao, Z.; Li, J. H.; Zhang, M. Y.; Cui, Y. M.; Zhang, L. Y. et al. Construction of covalent-organic frameworks (COFs) from amorphous covalent organic polymers via linkage replacement. Angew. Chem., Int. Ed. 2019, 58, 17679–17683.

[30]

Miao, Z.; Liu, G. Y.; Cui, Y. M.; Liu, Z. Y.; Li, J. H.; Han, F. W.; Liu, Y.; Sun, X. X.; Gong, X. F.; Zhai, Y. F. et al. A Novel strategy for the construction of covalent organic frameworks from nonporous covalent organic polymers. Angew. Chem., Int. Ed. 2019, 58, 4906–4910.

[31]

Feng, L.; Wang, K. Y.; Joseph, E.; Zhou, H. C. Catalytic porphyrin framework compounds. Trends Chem. 2020, 2, 555–568.

[32]

Liang, Z. Z.; Wang, H. Y.; Zheng, H. Q.; Zhang, W.; Cao, R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem. Soc. Rev. 2021, 50, 2540–2581.

[33]

Lv, F.; Han, N.; Qiu, Y.; Liu, X. J.; Luo, J.; Li, Y. G. Transition metal macrocycles for heterogeneous electrochemical CO2 reduction. Coord. Chem. Rev. 2020, 422, 213435.

[34]

Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093–2125.

[35]

Popov, D. A.; Luna, J. M.; Orchanian, N. M.; Haiges, R.; Downes, C. A.; Marinescu, S. C. A 2,2’-bipyridine-containing covalent organic framework bearing rhenium(I) tricarbonyl moieties for CO2 reduction. Dalton Trans. 2018, 47, 17450–17460.

[36]

Zhao, X. J.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M. Y.; Tian, G. Y.; Schmidt, J.; Thomas, A. Silica-templated covalent organic framework-derived Fe-N-doped mesoporous carbon as oxygen reduction electrocatalyst. Chem. Mater. 2019, 31, 3274–3280.

[37]

Zhao, X. J.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M. Y.; Schlesiger, C.; Praetz, S.; Schmidt, J.; Thomas, A. Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 2019, 141, 6623–6630.

[38]

Johnson, E. M.; Haiges, R.; Marinescu, S. C. Covalent-organic frameworks composed of rhenium bipyridine and metal porphyrins: Designing heterobimetallic frameworks with two distinct metal sites. ACS Appl. Mater. Interfaces 2018, 10, 37919–37927.

[39]

Wu, D. K.; Xu, Q.; Qian, J.; Li, X. P.; Sun, Y. H. Bimetallic covalent organic frameworks for constructing multifunctional electrocatalyst. Chem. —Eur. J. 2019, 25, 3105–3111.

[40]

Baldwin, L. A.; Crowe, J. W.; Pyles, D. A.; McGrier, P. L. Metalation of a mesoporous three-dimensional covalent organic framework. J. Am. Chem. Soc. 2016, 138, 15134–15137.

[41]

Segura, J. L.; Royuela, S.; Mar Ramos, M. Post-synthetic modification of covalent organic frameworks. Chem. Soc. Rev. 2019, 48, 3903–3945.

[42]

Cusin, L.; Peng, H. J.; Ciesielski, A.; Samori, P. Chemical conversion and locking of the imine linkage: Enhancing the functionality of covalent organic frameworks. Angew. Chem., Int. Ed. 2021, 60, 14236–14250.

[43]

Ding, H. M.; Mal, A.; Wang, C. Tailored covalent organic frameworks by post-synthetic modification. Mater. Chem. Front. 2020, 4, 113–127.

[44]

Feng, X. F.; Gao, Z.; Xiao, L. H.; Lai, Z. Q.; Luo, F. A Ni/Fe complex incorporated into a covalent organic framework as a single-site heterogeneous catalyst for efficient oxygen evolution reaction. Inorg. Chem. Front. 2020, 7, 3925–3931.

[45]

Gao, Z.; Yu, Z. W.; Huang, Y. X.; He, X. Q.; Su, X. M.; Xiao, L. H.; Yu, Y.; Huang, X. H.; Luo, F. Flexible and robust bimetallic covalent organic frameworks for the reversible switching of electrocatalytic oxygen evolution activity. J. Mater. Chem. A 2020, 8, 5907–5912.

[46]

Gao, Z.; Gong, L. L.; He, X. Q.; Su, X. M.; Xiao, L. H.; Luo, F. General strategy to fabricate metal-incorporated pyrolysis-free covalent organic framework for efficient oxygen evolution reaction. Inorg. Chem. 2020, 59, 4995–5003.

[47]

Chen, X.; Huang, N.; Gao, J.; Xu, H.; Xu, F.; Jiang, D. L. Towards covalent organic frameworks with predesignable and aligned open docking sites. Chem. Commun. 2014, 50, 6161–6163.

[48]

Kundu, T.; Wang, J.; Cheng, Y. D.; Du, Y. H.; Qian, Y. H.; Liu, G. L.; Zhao, D. Hydrazone-based covalent organic frameworks for Lewis acid catalysis. Dalton Trans. 2018, 47, 13824–13829.

[49]

Yang, Y. J.; Faheem, M.; Wang, L. L.; Meng, Q. H.; Sha, H. Y.; Yang, N.; Yuan, Y.; Zhu, G. S. Surface pore engineering of covalent organic frameworks for ammonia capture through synergistic multivariate and open metal site approaches. ACS Cent. Sci. 2018, 4, 748–754.

[50]

Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822.

[51]

Mu, M. M.; Wang, Y. W.; Qin, Y. T.; Yan, X. L.; Li, Y.; Chen, L. G. Two-dimensional imine-linked covalent organic frameworks as a platform for selective oxidation of olefins. ACS Appl. Mater. Interfaces 2017, 9, 22856–22863.

[52]

Han, X.; Zhang, J.; Huang, J. J.; Wu, X. W.; Yuan, D. Q.; Liu, Y.; Cui, Y. Chiral induction in covalent organic frameworks. Nat. Commun. 2018, 9, 1294.

[53]

Zhang, W. J.; Jiang, P. P.; Wang, Y.; Zhang, J.; Gao, Y. X.; Zhang, P. B. Bottom-up approach to engineer a molybdenum-doped covalent-organic framework catalyst for selective oxidation reaction. RSC Adv. 2014, 4, 51544–51547.

[54]

Li, L. H.; Feng, X. L.; Cui, X. H.; Ma, Y. X.; Ding, S. Y.; Wang, W. Salen-based covalent organic framework. J. Am. Chem. Soc. 2017, 139, 6042–6045.

[55]

Han, X.; Xia, Q. C.; Huang, J. J.; Liu, Y.; Tan, C. X.; Cui, Y. Chiral covalent organic frameworks with high chemical stability for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 2017, 139, 8693–8697.

[56]

Li, H.; Feng, X.; Shao, P. P.; Chen, J.; Li, C. Z.; Jayakumar, S.; Yang, Q. H. Synthesis of covalent organic frameworks via in-situ salen skeleton formation for catalytic applications. J. Mater. Chem. A 2019, 7, 5482–5492.

[57]

Mullangi, D.; Chakraborty, D.; Pradeep, A.; Koshti, V.; Vinod, C. P.; Panja, S.; Nair, S.; Vaidhyanathan, R. Highly stable COF-supported Co/Co(OH)2 nanoparticles heterogeneous catalyst for reduction of nitrile/nitro compounds under mild conditions. Small 2018, 14, 1801233.

[58]

He, T.; Liu, L.; Wu, G. T.; Chen, P. Covalent triazine framework-supported palladium nanoparticles for catalytic hydrogenation of n-heterocycles. J. Mater. Chem. A 2015, 3, 16235–16241.

[59]

Pachfule, P.; Kandambeth, S.; Díaz Díaz, D.; Banerjee, R. Highly stable covalent organic framework–Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chem. Commun. 2014, 50, 3169–3172.

[60]

Lu, S. L.; Hu, Y. M.; Wan, S.; McCaffrey, R.; Jin, Y. H.; Gu, H. W.; Zhang, W. Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications. J. Am. Chem. Soc. 2017, 139, 17082–17088.

[61]

Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rönnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal–organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929.

[62]

Liu, H. Y.; Chu, J.; Yin, Z. L.; Cai, X.; Zhuang, L.; Deng, H. X. Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem 2018, 4, 1696–1709.

[63]

Li, L. Y.; Zhao, H. X.; Wang, J. Y.; Wang, R. H. Facile fabrication of ultrafine palladium nanoparticles with size- and location-control in click-based porous organic polymers. ACS Nano 2014, 8, 5352–5364.

[64]

Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X. Y.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: Effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 2018, 8, 7445–7454.

[65]

Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

[66]

Huang, J. E.; Li, F. W.; Ozden, A.; Sedighian Rasouli, A.; García de Arquer, F. P.; Liu, S. J.; Zhang, S. Z.; Luo, M. C.; Wang, X.; Lum, Y. et al. CO2 electrolysis to multicarbon products in strong acid. Science 2021, 372, 1074–1078.

[67]

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166.

[68]

Campbell, N. L.; Clowes, R.; Ritchie, L. K.; Cooper, A. I. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater. 2009, 21, 204–206.

[69]

Zhu, Y. L.; Wan, S.; Jin, Y. H.; Zhang, W. Desymmetrized vertex design for the synthesis of covalent organic frameworks with periodically heterogeneous pore structures. J. Am. Chem. Soc. 2015, 137, 13772–13775.

[70]

Wei, H.; Chai, S. Z.; Hu, N. T.; Yang, Z.; Wei, L. M.; Wang, L. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. 2015, 51, 12178–12181.

[71]

Lee, G. Y.; Lee, J.; Vo, H. T.; Kim, S.; Lee, H.; Park, T. Amine-functionalized covalent organic framework for efficient SO2 capture with high reversibility. Sci. Rep. 2017, 7, 557.

[72]

Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 5328–5331.

[73]

Das, G.; Balaji Shinde, D.; Kandambeth, S.; Biswal, B. P.; Banerjee, R. Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem. Commun. 2014, 50, 12615–12618.

[74]

Shinde, D. B.; Aiyappa, H. B.; Bhadra, M.; Biswal, B. P.; Wadge, P.; Kandambeth, S.; Garai, B.; Kundu, T.; Kurungot, S.; Banerjee, R. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. J. Mater. Chem. A 2016, 4, 2682–2690.

[75]

Yang, S. T.; Kim, J.; Cho, H. Y.; Kim, S.; Ahn, W. S. Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Adv. 2012, 2, 10179–10181.

[76]

Jiang, Y.; Huang, W.; Wang, J. Y.; Wu, Q.; Wang, H. J.; Pan, L. F.; Liu, X. K. Green, scalable and morphology controlled synthesis of nanofibrous covalent organic frameworks and their nanohybrids through a vapor-assisted solid-state approach. J. Mater. Chem. A 2014, 2, 8201–8204.

[77]

Medina, D. D.; Rotter, J. M.; Hu, Y. H.; Dogru, M.; Werner, V.; Auras, F.; Markiewicz, J. T.; Knochel, P.; Bein, T. Room temperature synthesis of covalent-organic framework films through vapor-assisted conversion. J. Am. Chem. Soc. 2015, 137, 1016–1019.

[78]

Smith, B. J.; Dichtel, W. R. Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J. Am. Chem. Soc. 2014, 136, 8783–8789.

[79]

Smith, B. J.; Hwang, N.; Chavez, A. D.; Novotney, J. L.; Dichtel, W. R. Growth rates and water stability of 2D boronate ester covalent organic frameworks. Chem. Commun. 2015, 51, 7532–7535.

[80]

Koo, B. T.; Heden, R. F.; Clancy, P. Nucleation and growth of 2D covalent organic frameworks: Polymerization and crystallization of COF monomers. Phys. Chem. Chem. Phys. 2017, 19, 9745–9754.

[81]

Li, H. Y.; Chavez, A. D.; Li, H. F.; Li, H.; Dichtel, W. R.; Bredas, J. L. Nucleation and growth of covalent organic frameworks from solution: The example of COF-5. J. Am. Chem. Soc. 2017, 139, 16310–16318.

[82]

Nguyen, V.; Grünwald, M. Microscopic origins of poor crystallinity in the synthesis of covalent organic framework COF-5. J. Am. Chem. Soc. 2018, 140, 3306–3311.

[83]

Li, H. Y.; Evans, A. M.; Castano, I.; Strauss, M. J.; Dichtel, W. R.; Bredas, J. L. Nucleation-elongation dynamics of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 1367–1374.

[84]

Ciaccia, M.; Di Stefano, S. Mechanisms of imine exchange reactions in organic solvents. Org. Biomol. Chem. 2015, 13, 646–654.

[85]

Gao, Q.; Bai, L. Y.; Zeng, Y. F.; Wang, P.; Zhang, X. J.; Zou, R. Q.; Zhao, Y. L. Reconstruction of covalent organic frameworks by dynamic equilibrium. Chem.—Eur. J. 2015, 21, 16818–16822.

[86]

Smith, B. J.; Overholts, A. C.; Hwang, N.; Dichtel, W. R. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. Chem. Commun. 2016, 52, 3690–3693.

[87]

Wang, H.; He, B.; Liu, F.; Stevens, C.; Brady, M. A.; Cai, S.; Wang, C.; Russell, T. P.; Tan, T. W.; Liu, Y. Orientation transitions during the growth of imine covalent organic framework thin films. J. Mater. Chem. C 2017, 5, 5090–5095.

[88]

Feriante, C.; Evans, A. M.; Jhulki, S.; Castano, I.; Strauss, M. J.; Barlow, S.; Dichtel, W. R.; Marder, S. R. New mechanistic insights into the formation of imine-linked two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 18637–18644.

[89]

Jiang, D. L. Covalent organic frameworks: An amazing chemistry platform for designing polymers. Chem 2020, 6, 2461–2483.

[90]

Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem., Int. Ed. 2008, 47, 3450–3453.

[91]

Jackson, K. T.; Reich, T. E.; El-Kaderi, H. M. Targeted synthesis of a porous borazine-linked covalent organic framework. Chem. Commun. 2012, 48, 8823–8825.

[92]

Wang, K. W.; Yang, L. M.; Wang, X.; Guo, L. P.; Cheng, G.; Zhang, C.; Jin, S. B.; Tan, B. E.; Cooper, A. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew. Chem., Int. Ed. 2017, 56, 14149–14153.

[93]

Liu, M. Y.; Huang, Q.; Wang, S. L.; Li, Z. Y.; Li, B. Y.; Jin, S. B.; Tan, B. E. Crystalline covalent triazine frameworks by in-situ oxidation of alcohols to aldehyde monomers. Angew. Chem., Int. Ed. 2018, 57, 11968–11972.

[94]

Jiang, S. Y.; Gan, S. X.; Zhang, X.; Li, H.; Qi, Q. Y.; Cui, F. Z.; Lu, J.; Zhao, X. Aminal-linked covalent organic frameworks through condensation of secondary amine with aldehyde. J. Am. Chem. Soc. 2019, 141, 14981–14986.

[95]

Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 2011, 133, 11478–11481.

[96]

DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruña, H. D.; Dichtel, W. R. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 2013, 135, 16821–16824.

[97]

Dalapati, S.; Jin, S. B.; Gao, J.; Xu, Y. H.; Nagai, A.; Jiang, D. L. An azine-linked covalent organic framework. J. Am. Chem. Soc. 2013, 135, 17310–17313.

[98]

Nagai, A.; Chen, X.; Feng, X.; Ding, X. S.; Guo, Z. Q.; Jiang, D. L. A squaraine-linked mesoporous covalent organic framework. Angew. Chem., Int. Ed. 2013, 52, 3770–3774.

[99]

Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chemical sensing in two dimensional porous covalent organic nanosheets. Chem. Sci. 2015, 6, 3931–3939.

[100]

Li, X.; Wang, H.; Chen, Z. X.; Xu, H. S.; Yu, W.; Liu, C. B.; Wang, X. W.; Zhang, K.; Xie, K. Y.; Loh, K. P. Covalent-organic-framework-based Li-CO2 batteries. Adv. Mater. 2019, 31, 1905879.

[101]

Li, Z. P.; Feng, X.; Zou, Y. C.; Zhang, Y. W.; Xia, H.; Liu, X. M.; Mu, Y. A 2D azine-linked covalent organic framework for gas storage applications. Chem. Commun. 2014, 50, 13825–13828.

[102]

Li, Z. P.; Zhang, Y. W.; Xia, H.; Mu, Y.; Liu, X. M. A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions. Chem. Commun. 2016, 52, 6613–6616.

[103]

Qian, C.; Zhou, W. Q.; Qiao, J. S.; Wang, D. D.; Li, X.; Teo, W. L.; Shi, X. Y.; Wu, H. W.; Di, J.; Wang, H. et al. Linkage engineering by harnessing supramolecular interactions to fabricate 2D hydrazone-linked covalent organic framework platforms toward advanced catalysis. J. Am. Chem. Soc. 2020, 142, 18138–18149.

[104]

Li, Z. P.; Geng, K. Y.; He, T.; Tan, K. T.; Huang, N.; Jiang, Q. H.; Nagao, Y.; Jiang, D. L. Editing light emission with stable crystalline covalent organic frameworks via wall surface perturbation. Angew. Chem., Int. Ed. 2021, 60, 19419–19427.

[105]

Li, Z. P.; Huang, N.; Lee, K. H.; Feng, Y.; Tao, S. S.; Jiang, Q. H.; Nagao, Y.; Irle, S.; Jiang, D. L. Light-emitting covalent organic frameworks: Fluorescence improving via pinpoint surgery and selective switch-on sensing of anions. J. Am. Chem. Soc. 2018, 140, 12374–12377.

[106]

Liang, R. R.; A, R. H.; Xu, S. Q.; Qi, Q. Y.; Zhao, X. Fabricating organic nanotubes through selective disassembly of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 70–74.

[107]

Halder, A.; Ghosh, M.; Khayum M, A.; Bera, S.; Addicoat, M.; Sasmal, H. S.; Karak, S.; Kurungot, S.; Banerjee, R. Interlayer hydrogen-bonded covalent organic frameworks as high-performance supercapacitors. J. Am. Chem. Soc. 2018, 140, 10941–10945.

[108]

Khayum M, A.; Vijayakumar, V.; Karak, S.; Kandambeth, S.; Bhadra, M.; Suresh, K.; Acharambath, N.; Kurungot, S.; Banerjee, R. Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces 2018, 10, 28139–28146.

[109]

Rao, M. R.; Fang, Y.; De Feyter, S.; Perepichka, D. F. Conjugated covalent organic frameworks via Michael addition-elimination. J. Am. Chem. Soc. 2017, 139, 2421–2427.

[110]

Zhao, C. F.; Diercks, C. S.; Zhu, C. H.; Hanikel, N.; Pei, X. K.; Yaghi, O. M. Urea-linked covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 16438–16441.

[111]

Waller, P. J.; AlFaraj, Y. S.; Diercks, C. S.; Jarenwattananon, N. N.; Yaghi, O. M. Conversion of imine to oxazole and thiazole linkages in covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 9099–9103.

[112]

Das, P.; Mandal, S. K. In-depth experimental and computational investigations for remarkable gas/vapor sorption, selectivity, and affinity by a porous nitrogen-rich covalent organic framework. Chem. Mater. 2019, 31, 1584–1596.

[113]

Guo, J.; Xu, Y. H.; Jin, S. B.; Chen, L.; Kaji, T.; Honsho, Y.; Addicoat, M. A.; Kim, J.; Saeki, A.; Ihee, H. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 2013, 4, 2736.

[114]

Liu, J.; Yang, T.; Wang, Z. P.; Wang, P. L.; Feng, J.; Ding, S. Y.; Wang, W. Pyrimidazole-based covalent organic frameworks: Integrating functionality and ultrastability via isocyanide chemistry. J. Am. Chem. Soc. 2020, 142, 20956–20961.

[115]

Fang, Q. R.; Zhuang, Z. B.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J. H.; Qiu, S. L.; Yan, Y. S. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 2014, 5, 4503.

[116]

Jin, E. Q.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q. H. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 2017, 357, 673–676.

[117]

Lyu, H.; Diercks, C. S.; Zhu, C. H.; Yaghi, O. M. Porous crystalline olefin-linked covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 6848–6852.

[118]

Waller, P. J.; Lyle, S. J.; Osborn Popp, T. M.; Diercks, C. S.; Reimer, J. A.; Yaghi, O. M. Chemical conversion of linkages in covalent organic frameworks. J. Am. Chem. Soc. 2016, 138, 15519–15522.

[119]

Das, G.; Skorjanc, T.; Sharma, S. K.; Gándara, F.; Lusi, M.; Shankar Rao, D. S.; Vimala, S.; Krishna Prasad, S.; Raya, J.; Han, D. S. et al. Viologen-based conjugated covalent organic networks via Zincke reaction. J. Am. Chem. Soc. 2017, 139, 9558–9565.

[120]

Zhang, B.; Wei, M. F.; Mao, H. Y.; Pei, X. K.; Alshmimri, S. A.; Reimer, J. A.; Yaghi, O. M. Crystalline dioxin-linked covalent organic frameworks from irreversible reactions. J. Am. Chem. Soc. 2018, 140, 12715–12719.

[121]

Zhao, C. F.; Lyu, H.; Ji, Z.; Zhu, C. H.; Yaghi, O. M. Ester-linked crystalline covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 14450–14454.

[122]

Liu, S. S.; Wang, M. F.; Qian, T.; Ji, H. Q.; Liu, J.; Yan, C. L. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun. 2019, 10, 3898.

[123]

Ma, L. S.; Hu, W. B.; Mei, B. B.; Liu, H.; Yuan, B.; Zang, J.; Chen, T.; Zou, L. L.; Zou, Z. Q.; Yang, B. et al. Covalent triazine framework confined copper catalysts for selective electrochemical CO2 reduction: Operando diagnosis of active sites. ACS Catal. 2020, 10, 4534–4542.

[124]

Lu, C. B.; Yang, J.; Wei, S. C.; Bi, S.; Xia, Y.; Chen, M. X.; Hou, Y.; Qiu, M.; Yuan, C.; Su, Y. Z. et al. Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion. Adv. Funct. Mater. 2019, 29, 1806884.

[125]

Zuo, Q.; Zhao, P. P.; Luo, W.; Cheng, G. Z. Hierarchically porous Fe–N–C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction. Nanoscale 2016, 8, 14271–14277.

[126]

Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208.

[127]

Diercks, C. S.; Lin, S.; Kornienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C. H.; Zhao, Y. B.; Chang, C. J.; Yaghi, O. M. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 1116–1122.

[128]

Sun, S. W.; Wang, G. F.; Zhou, Y.; Wang, F. B.; Xia, X. H. High-performance Ru@C4N electrocatalyst for hydrogen evolution reaction in both acidic and alkaline solutions. ACS Appl. Mater. Interfaces 2019, 11, 19176–19182.

[129]

Huang, N.; Lee, K. H.; Yue, Y.; Xu, X. Y.; Irle, S.; Jiang, Q. H.; Jiang, D. L. A stable and conductive metallophthalocyanine framework for electrocatalytic carbon dioxide reduction in water. Angew. Chem., Int. Ed. 2020, 59, 16587–16593.

[130]

Zhang, M. D.; Si, D. H.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide. Small 2020, 16, 2005254.

[131]

Chandran Ranjeesh, K.; Illathvalappil, R.; Chandrakant Wakchaure, V.; Goudappagouda; Kurungot, S.; Babu, S. S. Metalloporphyrin two-dimensional polymers via metal-catalyst-free C–C bond formation for efficient catalytic hydrogen evolution. ACS Appl. Energy Mater. 2018, 1, 6442–6450.

[132]

Zhai, L. P.; Yang, S.; Yang, X. B.; Ye, W. Y.; Wang, J.; Chen, W. H.; Guo, Y.; Mi, L. W.; Wu, Z. J.; Soutis, C. et al. Conjugated covalent organic frameworks as platinum nanoparticle supports for catalyzing the oxygen reduction reaction. Chem. Mater. 2020, 32, 9747–9752.

[133]

Royuela, S.; Martínez-Periñán, E.; Arrieta, M. P.; Martínez, J. I.; Ramos, M. M.; Zamora, F.; Lorenzo, E.; Segura, J. L. Oxygen reduction using a metal-free naphthalene diimide-based covalent organic framework electrocatalyst. Chem. Commun. 2020, 56, 1267–1270.

[134]

Lu, M.; Zhang, M.; Liu, C. G.; Liu, J.; Shang, L. J.; Wang, M.; Chang, J. N.; Li, S. L.; Lan, Y. Q. Stable dioxin-linked metallophthalocyanine covalent organic frameworks (COFs) as photo-coupled electrocatalysts for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 4864–4871.

[135]

Tavakoli, E.; Kakekhani, A.; Kaviani, S.; Tan, P.; Ghaleni, M. M.; Zaeem, M. A.; Rappe, A. M.; Nejati, S. In-situ bottom-up synthesis of porphyrin-based covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 19560–19564.

[136]

Zhu, D. Y.; Li, X. Y.; Li, Y. L.; Barnes, M.; Tseng, C. P.; Khalil, S.; Rahman, M. M.; Ajayan, P. M.; Verduzco, R. Transformation of one-dimensional linear polymers into two-dimensional covalent organic frameworks through sequential reversible and irreversible chemistries. Chem. Mater. 2021, 33, 413–419.

[137]

Zhang, G.; Tsujimoto, M.; Packwood, D.; Duong, N. T.; Nishiyama, Y.; Kadota, K.; Kitagawa, S.; Horike, S. Construction of a hierarchical architecture of covalent organic frameworks via a postsynthetic approach. J. Am. Chem. Soc. 2018, 140, 2602–2609.

[138]

Qian, C.; Qi, Q. Y.; Jiang, G. F.; Cui, F. Z.; Tian, Y.; Zhao, X. Toward covalent organic frameworks bearing three different kinds of pores: The strategy for construction and COF-to-COF transformation via heterogeneous linker exchange. J. Am. Chem. Soc. 2017, 139, 6736–6743.

[139]

Shan, Z.; Wu, X. W.; Xu, B. Q.; Hong, Y. L.; Wu, M. M.; Wang, Y. X.; Nishiyama, Y.; Zhu, J. W.; Horike, S.; Kitagawa, S. et al. Dynamic transformation between covalent organic frameworks and discrete organic cages. J. Am. Chem. Soc. 2020, 142, 21279–21284.

[140]

Daugherty, M. C.; Vitaku, E.; Li, R. L.; Evans, A. M.; Chavez, A. D.; Dichtel, W. R. Improved synthesis of β-ketoenamine-linked covalent organic frameworks via monomer exchange reactions. Chem. Commun. 2019, 55, 2680–2683.

[141]

Qian, H. L.; Meng, F. L.; Yang, C. X.; Yan, X. P. Irreversible amide-linked covalent organic framework for selective and ultrafast gold recovery. Angew. Chem., Int. Ed. 2020, 59, 17607–17613.

[142]

Li, Z.; Ding, X. S.; Feng, Y. Y.; Feng, W.; Han, B. H. Structural and dimensional transformations between covalent organic frameworks via linker exchange. Macromolecules 2019, 52, 1257–1265.

[143]

Cao, C. L.; Wang, H. J.; Wang, M. D.; Liu, Y.; Zhang, Z. M.; Liang, S. W.; Yuhan, W.; Pan, F. S.; Jiang, Z. Y. Conferring efficient alcohol dehydration to covalent organic framework membranes via post-synthetic linker exchange. J. Membr. Sci. 2021, 630, 119319.

[144]

Guan, C. Z.; Wang, D.; Wan, L. J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 2012, 48, 2943–2945.

[145]

Stewart, D.; Antypov, D.; Dyer, M. S.; Pitcher, M. J.; Katsoulidis, A. P.; Chater, P. A.; Blanc, F.; Rosseinsky, M. J. Stable and ordered amide frameworks synthesised under reversible conditions which facilitate error checking. Nat. Commun. 2017, 8, 1102.

[146]

Matsumoto, M.; Dasari, R. R.; Ji, W.; Feriante, C. H.; Parker, T. C.; Marder, S. R.; Dichtel, W. R. Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates. J. Am. Chem. Soc. 2017, 139, 4999–5002.

[147]

Guan, X. Y.; Ma, Y. C.; Li, H.; Yusran, Y.; Xue, M.; Fang, Q. R.; Yan, Y. S.; Valtchev, V.; Qiu, S. L. Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 4494–4498.

[148]

Tan, J.; Namuangruk, S.; Kong, W. F.; Kungwan, N.; Guo, J.; Wang, C. C. Manipulation of amorphous-to-crystalline transformation: Towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angew. Chem., Int. Ed. 2016, 55, 13979–13984.

[149]

Karak, S.; Kumar, S.; Pachfule, P.; Banerjee, R. Porosity prediction through hydrogen bonding in covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 5138–5145.

[150]

Matsumoto, M.; Valentino, L.; Stiehl, G. M.; Balch, H. B.; Corcos, A. R.; Wang, F.; Ralph, D. C.; Mariñas, B. J.; Dichtel, W. R. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films. Chem 2018, 4, 308–317.

[151]

Gao, Y. N.; Wang, C.; Hu, H.; Ge, R. L.; Lu, M. H.; Zhang, J. Q.; Li, Z. P.; Shao, P. P.; Jiang, D. L. Synthesis of two-dimensional covalent organic frameworks in ionic liquids. Chem.—Eur. J. 2019, 25, 15488–15492.

[152]

Antonietti, M.; Kuang, D. B.; Smarsly, B.; Zhou, Y. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew. Chem., Int. Ed. 2004, 43, 4988–4992.

[153]

Qiu, J. K.; Wang, H. Y.; Zhao, Y. L.; Guan, P. X.; Li, Z. Y.; Zhang, H. C.; Gao, H. S.; Zhang, S. J.; Wang, J. J. Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C–C coupling reactions. Green Chem. 2020, 22, 2605–2612.

[154]

Guan, P. X.; Qiu, J. K.; Zhao, Y. L.; Wang, H. Y.; Li, Z. Y.; Shi, Y. L.; Wang, J. J. A novel crystalline azine-linked three-dimensional covalent organic framework for CO2 capture and conversion. Chem. Commun. 2019, 55, 12459–12462.

[155]

Zhao, L. M.; Liu, H. M.; Du, Y.; Liang, X.; Wang, W. J.; Zhao, H.; Li, W. Z. An ionic liquid as a green solvent for high potency synthesis of 2D covalent organic frameworks. New J. Chem. 2020, 44, 15410–15414.

[156]

Dong, B.; Wang, W. J.; Pan, W.; Kang, G. J. Ionic liquid as a green solvent for ionothermal synthesis of 2D keto-enamine-linked covalent organic frameworks. Mater. Chem. Phys. 2019, 226, 244–249.

[157]

Gao, S. Q.; Li, Z. Y.; Yang, Y. Y.; Wang, Z. Z.; Wang, Y. L.; Luo, S. J.; Yao, K. S.; Qiu, J. K.; Wang, H. Y.; Cao, L. et al. The ionic liquid–H2O interface: A new platform for the synthesis of highly crystalline and molecular sieving covalent organic framework membranes. ACS Appl. Mater. Interfaces 2021, 13, 36507–36516.

[158]

Calik, M.; Sick, T.; Dogru, M.; Döblinger, M.; Datz, S.; Budde, H.; Hartschuh, A.; Auras, F.; Bein, T. From highly crystalline to outer surface-functionalized covalent organic frameworks-a modulation approach. J. Am. Chem. Soc. 2016, 138, 1234–1239.

[159]

Castano, I.; Evans, A. M.; Li, H. Y.; Vitaku, E.; Strauss, M. J.; Brédas, J. L.; Gianneschi, N. C.; Dichtel, W. R. Chemical control over nucleation and anisotropic growth of two-dimensional covalent organic frameworks. ACS Cent. Sci. 2019, 5, 1892–1899.

[160]

Zhao, W.; Wang, T. P.; Wu, J. L.; Pan, R. P.; Liu, X. Y.; Liu, X. K. Monolithic covalent organic framework aerogels through framework crystallization induced self-assembly: Heading towards framework materials synthesis over all length scales. Chin. J. Polym. Sci. 2019, 37, 1045–1052.

[161]

Wang, S.; Zhang, Z. Y.; Zhang, H. M.; Rajan, A. G.; Xu, N.; Yang, Y. H.; Zeng, Y. W.; Liu, P. W.; Zhang, X. H.; Mao, Q. Y. et al. Reversible polycondensation-termination growth of covalent-organic-framework spheres, fibers, and films. Matter 2019, 1, 1592–1605.

[162]

Chen, X. S.; Xia, L. Y.; Pan, R. P.; Liu, X. K. Covalent organic framework mesocrystals through dynamic modulator manipulated mesoscale self-assembly of imine macrocycle precursors. J. Colloid Interface Sci. 2020, 568, 76–80.

[163]

Ma, T. Q.; Kapustin, E. A.; Yin, S. X.; Liang, L.; Zhou, Z. Y.; Niu, J.; Li, L. H.; Wang, Y. Y.; Su, J.; Li, J. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 2018, 361, 48–52.

[164]

Liang, L.; Qiu, Y.; Wang, W. D.; Han, J.; Luo, Y.; Yu, W.; Yin, G. L.; Wang, Z. P.; Zhang, L.; Ni, J. W. et al. Non-interpenetrated single-crystal covalent organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 17991–17995.

[165]

Maia, R. A.; Oliveira, F. L.; Nazarkovsky, M.; Esteves, P. M. Crystal engineering of covalent organic frameworks based on hydrazine and hydroxy-1,3,5-triformylbenzenes. Cryst. Growth Des. 2018, 18, 5682–5689.

[166]

Zhu, D. Y.; Alemany, L. B.; Guo, W. H.; Verduzco, R. Enhancement of crystallinity of imine-linked covalent organic frameworks via aldehyde modulators. Polym. Chem. 2020, 11, 4464–4468.

[167]

Zhao, W.; Qiao, J.; Ning, T. L.; Liu, X. K. Scalable ambient pressure synthesis of covalent organic frameworks and their colorimetric nanocomposites through dynamic imine exchange reactions. Chin. J. Polym. Sci. 2018, 36, 1–7.

[168]

Liu, K. J.; Qi, H. Y.; Dong, R. H.; Shivhare, R.; Addicoat, M.; Zhang, T.; Sahabudeen, H.; Heine, T.; Mannsfeld, S.; Kaiser, U. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 2019, 11, 994–1000.

[169]

Sahabudeen, H.; Qi, H. Y.; Ballabio, M.; Položij, M.; Olthof, S.; Shivhare, R.; Jing, Y.; Park, S.; Liu, K. J.; Zhang, T. et al. Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis. Angew. Chem., Int. Ed. 2020, 59, 6028–6036.

[170]

Park, S.; Liao, Z. Q.; Ibarlucea, B.; Qi, H. Y.; Lin, H. H.; Becker, D.; Melidonie, J.; Zhang, T.; Sahabudeen, H.; Baraban, L. et al. Two-dimensional boronate ester covalent organic framework thin films with large single crystalline domains for a neuromorphic memory device. Angew. Chem., Int. Ed. 2020, 59, 8218–8224.

[171]

Chen, Y. C.; Shi, Z. L.; Wei, L.; Zhou, B. B.; Tan, J.; Zhou, H. L.; Zhang, Y. B. Guest-dependent dynamics in a 3D covalent organic framework. J. Am. Chem. Soc. 2019, 141, 3298–3303.

[172]

Hao, Q.; Zhao, C. Q.; Sun, B.; Lu, C.; Liu, J.; Liu, M. J.; Wan, L. J.; Wang, D. Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J. Am. Chem. Soc. 2018, 140, 12152–12158.

[173]

Sasmal, H. S.; Halder, A.; Kunjattu H, S.; Dey, K.; Nadol, A.; Ajithkumar, T. G.; Ravindra Bedadur, P.; Banerjee, R. Covalent self-assembly in two dimensions: Connecting covalent organic framework nanospheres into crystalline and porous thin films. J. Am. Chem. Soc. 2019, 141, 20371–20379.

[174]

Liu, M. Y.; Jiang, K.; Ding, X.; Wang, S. L.; Zhang, C. X.; Liu, J.; Zhan, Z.; Cheng, G.; Li, B. Y.; Chen, H. et al. Controlling monomer feeding rate to achieve highly crystalline covalent triazine frameworks. Adv. Mater. 2019, 31, 1807865.

[175]

Li, R. L.; Flanders, N. C.; Evans, A. M.; Ji, W.; Castano, I.; Chen, L. X.; Gianneschi, N. C.; Dichtel, W. R. Controlled growth of imine-linked two-dimensional covalent organic framework nanoparticles. Chem. Sci. 2019, 10, 3796–3801.

[176]

Evans, A. M.; Parent, L. R.; Flanders, N. C.; Bisbey, R. P.; Vitaku, E.; Kirschner, M. S.; Schaller, R. D.; Chen, L. X.; Gianneschi, N. C.; Dichtel, W. R. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 2018, 361, 52–57.

[177]

Vitaku, E.; Dichtel, W. R. Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 2017, 139, 12911–12914.

[178]

Liu, Y. Z.; Wang, Y. J.; Li, H.; Guan, X. Y.; Zhu, L. K.; Xue, M.; Yan, Y. S.; Valtchev, V.; Qiu, S. L.; Fang, Q. R. Ambient aqueous-phase synthesis of covalent organic frameworks for degradation of organic pollutants. Chem. Sci. 2019, 10, 10815–10820.

[179]

Zhao, Y. B.; Guo, L.; Gándara, F.; Ma, Y. H.; Liu, Z.; Zhu, C. H.; Lyu, H.; Trickett, C. A.; Kapustin, E. A.; Terasaki, O. et al. A synthetic route for crystals of woven structures, uniform nanocrystals, and thin films of imine covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 13166–13172.

[180]

Li, Z. J.; Ding, S. Y.; Xue, H. D.; Cao, W.; Wang, W. Synthesis of –C=N– linked covalent organic frameworks via the direct condensation of acetals and amines. Chem. Commun. 2016, 52, 7217–7220.

[181]

Spitler, E. L.; Giovino, M. R.; White, S. L.; Dichtel, W. R. A mechanistic study of Lewis acid-catalyzed covalent organic framework formation. Chem. Sci. 2011, 2, 1588–1593.

[182]

Spitler, E. L.; Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2010, 2, 672–677.

[183]

Dogru, M.; Sonnauer, A.; Zimdars, S.; Döblinger, M.; Knochel, P.; Bein, T. Facile synthesis of a mesoporous benzothiadiazole-COF based on a transesterification process. CrystEngComm 2013, 15, 1500–1502.

[184]

Zhu, H. J.; Lu, M.; Wang, Y. R.; Yao, S. J.; Zhang, M.; Kan, Y. H.; Liu, J.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nat. Commun. 2020, 11, 497.

[185]

Berlanga, I.; Ruiz-González, M. L.; González-Calbet, J. M.; Fierro, J. L. G.; Mas-Ballesté, R.; Zamora, F. Delamination of layered covalent organic frameworks. Small 2011, 7, 1207–1211.

[186]

Berlanga, I.; Mas-Ballesté, R.; Zamora, F. Tuning delamination of layered covalent organic frameworks through structural design. Chem. Commun. 2012, 48, 7976–7978.

[187]

Li, G.; Zhang, K.; Tsuru, T. Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated cof nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 8433–8436.

[188]

Bunck, D. N.; Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 14952–14955.

[189]

Li, X. X.; Goto, T.; Nomura, K.; Zhu, M. S.; Sekino, T.; Osakada, Y. Synthesis of porphyrin nanodisks from COFs through mechanical stirring and their photocatalytic activity. Appl. Surf. Sci. 2020, 513, 145720.

[190]

Yusran, Y.; Li, H.; Guan, X. Y.; Li, D. H.; Tang, L. X.; Xue, M.; Zhuang, Z. B.; Yan, Y. S.; Valtchev, V.; Qiu, S. L. et al. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv. Mater. 2020, 32, 1907289.

[191]

Kang, Z. X.; Peng, Y. W.; Qian, Y. H.; Yuan, D. Q.; Addicoat, M. A.; Heine, T.; Hu, Z. G.; Tee, L.; Guo, Z. G.; Zhao, D. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 2016, 28, 1277–1285.

[192]

Albacete, P.; López-Moreno, A.; Mena-Hernando, S.; Platero-Prats, A. E.; Pérez, E. M.; Zamora, F. Chemical sensing of water contaminants by a colloid of a fluorescent imine-linked covalent organic framework. Chem. Commun. 2019, 55, 1382–1385.

[193]

Dong, J. Q.; Li, X.; Peh, S. B.; Yuan, Y. D.; Wang, Y. X.; Ji, D. X.; Peng, S. J.; Liu, G. L.; Ying, S. M.; Yuan, D. Q. et al. Restriction of molecular rotors in ultrathin two-dimensional covalent organic framework nanosheets for sensing signal amplification. Chem. Mater. 2019, 31, 146–160.

[194]

Chen, X. D.; Li, Y. S.; Wang, L.; Xu, Y.; Nie, A. M.; Li, Q. Q.; Wu, F.; Sun, W. W.; Zhang, X.; Vajtai, R. et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv. Mater. 2019, 31, 1901640.

[195]

Mu, X. W.; Zhan, J. L.; Wang, J.; Cai, W.; Yuan, B. H.; Song, L.; Hu, Y. A novel and efficient strategy to exfoliation of covalent organic frameworks and a significant advantage of covalent organic frameworks nanosheets as polymer nano-enhancer: High interface compatibility. J. Colloid Interface Sci. 2019, 539, 609–618.

[196]

Yao, J.; Liu, C.; Liu, X. Q.; Guo, J.; Zhang, S. B.; Zheng, J. F.; Li, S. H. Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. J. Membr. Sci. 2020, 601, 117864.

[197]

Mitra, S.; Kandambeth, S.; Biswal, B. P.; Khayum M, A.; Choudhury, C. K.; Mehta, M.; Kaur, G.; Banerjee, S.; Prabhune, A.; Verma, S. et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs). J. Am. Chem. Soc. 2016, 138, 2823–2828.

[198]

Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 2013, 135, 17853–17861.

[199]

Wang, L. L.; Zeng, C.; Xu, H.; Yin, P. C.; Chen, D. C.; Deng, J.; Li, M.; Zheng, N.; Gu, C.; Ma, Y. G. A highly soluble, crystalline covalent organic framework compatible with device implementation. Chem. Sci. 2019, 10, 1023–1028.

[200]

Burke, D. W.; Sun, C.; Castano, I.; Flanders, N. C.; Evans, A. M.; Vitaku, E.; McLeod, D. C.; Lambeth, R. H.; Chen, L. X.; Gianneschi, N. C. et al. Acid exfoliation of imine-linked covalent organic frameworks enables solution processing into crystalline thin films. Angew. Chem., Int. Ed. 2020, 59, 5165–5171.

[201]

Zhang, N.; Wang, T. S.; Wu, X.; Jiang, C.; Chen, F.; Bai, W.; Bai, R. K. Self-exfoliation of 2D covalent organic frameworks: Morphology transformation induced by solvent polarity. RSC Adv. 2018, 8, 3803–3808.

[202]

Mal, A.; Mishra, R. K.; Praveen, V. K.; Khayum M, A.; Banerjee, R.; Ajayaghosh, A. Supramolecular reassembly of self-exfoliated ionic covalent organic nanosheets for label-free detection of double-stranded DNA. Angew. Chem., Int. Ed. 2018, 57, 8443–8447.

[203]

Mal, A.; Vijayakumar, S.; Mishra, R. K.; Jacob, J.; Pillai, R. S.; Dileep Kumar, B. S.; Ajayaghosh, A. Supramolecular surface charge regulation in ionic covalent organic nanosheets: Reversible exfoliation and controlled bacterial growth. Angew. Chem., Int. Ed. 2020, 59, 8713–8719.

[204]

Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.

[205]

Haldar, S.; Roy, K.; Nandi, S.; Chakraborty, D.; Puthusseri, D.; Gawli, Y.; Ogale, S.; Vaidhyanathan, R. High and reversible lithium ion storage in self-exfoliated triazole-triformyl phloroglucinol-based covalent organic nanosheets. Adv. Energy Mater. 2018, 8, 1702170.

[206]

Wang, M. D.; Quan, K. D.; Zheng, X. H.; Cao, Y.; Cui, X. Y.; Xue, M.; Pan, F. S. Facilitated transport membranes by incorporating self-exfoliated covalent organic nanosheets for CO2/CH4 separation. Sep. Purif. Technol. 2020, 237, 116457.

[207]

Khayum M, A.; Kandambeth, S.; Mitra, S.; Nair, S. B.; Das, A.; Nagane, S. S.; Mukherjee, R.; Banerjee, R. Chemically delaminated free-standing ultrathin covalent organic nanosheets. Angew. Chem., Int. Ed. 2016, 55, 15604–15608.

[208]

Haldar, S.; Roy, K.; Kushwaha, R.; Ogale, S.; Vaidhyanathan, R. Chemical exfoliation as a controlled route to enhance the anodic performance of COF in LIB. Adv. Energy Mater. 2019, 9, 1902428.

[209]

Wang, S.; Wang, Q. Y.; Shao, P. P.; Han, Y. Z.; Gao, X.; Ma, L.; Yuan, S.; Ma, X. J.; Zhou, J. W.; Feng, X. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 2017, 139, 4258–4261.

[210]

Ying, Y. P.; Tong, M. M.; Ning, S. C.; Ravi, S. K.; Peh, S. B.; Tan, S. C.; Pennycook, S. J.; Zhao, D. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 2020, 142, 4472–4480.

[211]

Liu, W. B.; Li, X. K.; Wang, C. M.; Pan, H. H.; Liu, W. P.; Wang, K.; Zeng, Q. D.; Wang, R. M.; Jiang, J. Z. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440.

[212]

Cheng, Y. D.; Ravi, S. K.; Wang, Y. X.; Tao, J. F.; Gu, Y. D.; Tan, S. C.; Zhao, D. Covalent organic nanosheets with large lateral size and high aspect ratio synthesized by Langmuir–Blodgett method. Chin. Chem. Lett. 2018, 29, 869–872.

[213]

Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572–19590.

[214]

Wang, D. G.; Qiu, T. J.; Guo, W. H.; Liang, Z. B.; Tabassum, H.; Xia, D. G.; Zou, R. Q. Covalent organic framework-based materials for energy applications. Energy Environ. Sci. 2021, 14, 688–728.

[215]

Tan, X. Y.; Yu, C.; Ren, Y. W.; Cui, S.; Li, W. B.; Qiu, J. S. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ. Sci. 2021, 14, 765–780.

[216]

Wu, Q.; Xie, R. K.; Mao, M. J.; Chai, G. L.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2. ACS Energy Lett. 2020, 5, 1005–1012.

[217]

Morlanés, N.; Takanabe, K.; Rodionov, V. Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal. 2016, 6, 3092–3095.

[218]

Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

[219]

Lu, Y.; Zhang, J.; Wei, W. B.; Ma, D. D.; Wu, X. T.; Zhu, Q. L. Efficient carbon dioxide electroreduction over ultrathin covalent organic framework nanolayers with isolated cobalt porphyrin units. ACS Appl. Mater. Interfaces 2020, 12, 37986–37992.

[220]

Maiti, S.; Chowdhury, A. R.; Das, A. K. Electrochemically facile hydrogen evolution using ruthenium encapsulated two dimensional covalent organic framework (2D COF). ChemNanoMat 2020, 6, 99–106.

[221]

Yang, C.; Tao, S. S.; Huang, N.; Zhang, X. B.; Duan, J. G.; Makiura, R.; Maenosono, S. Heteroatom-doped carbon electrocatalysts derived from nanoporous two-dimensional covalent organic frameworks for oxygen reduction and hydrogen evolution. ACS Appl. Nano Mater. 2020, 3, 5481–5488.

[222]

Mondal, S.; Mohanty, B.; Nurhuda, M.; Dalapati, S.; Jana, R.; Addicoat, M.; Datta, A.; Jena, B. K.; Bhaumik, A. A thiadiazole-based covalent organic framework: A metal-free electrocatalyst toward oxygen evolution reaction. ACS Catal. 2020, 10, 5623–5630.

[223]

Nandi, S.; Singh, S. K.; Mullangi, D.; Illathvalappil, R.; George, L.; Vinod, C. P.; Kurungot, S.; Vaidhyanathan, R. Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst. Adv. Energy Mater. 2016, 6, 1601189.

[224]

Niu, H. T.; Xia, C. F.; Huang, L.; Zaman, S.; Maiyalagan, T.; Guo, W.; You, B.; Xia, B. Y. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis. Chin. J. Catal. 2022, 43, 1459–1472.

[225]

Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2019, 2, 688–695.

[226]

Xu, Q.; Tang, Y. P.; Zhang, X. B.; Oshima, Y.; Chen, Q. H.; Jiang, D. L. Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv. Mater. 2018, 30, 1706330.

[227]

Liu, C.; Liu, F.; Li, H.; Chen, J. S.; Fei, J. Y.; Yu, Z. X.; Yuan, Z. W.; Wang, C. J.; Zheng, H. L.; Liu, Z. W. et al. One-Dimensional van der Waals heterostructures as efficient metal-free oxygen electrocatalysts. ACS Nano 2021, 15, 3309–3319.

[228]

Yang, B.; Ding, W. L.; Zhang, H. H.; Zhang, S. J. Recent progress in electrochemical synthesis of ammonia from nitrogen: Strategies to improve the catalytic activity and selectivity. Energy Environ. Sci. 2021, 14, 672–687.

[229]

Wang, C.; Zhao, Y. N.; Zhu, C. Y.; Zhang, M.; Geng, Y.; Li, Y. G.; Su, Z. M. A two-dimensional conductive Mo-based covalent organic framework as an efficient electrocatalyst for nitrogen fixation. J. Mater. Chem. A 2020, 8, 23599–23606.

[230]

Wang, Z. F.; Yang, Y.; Zhao, Z. F.; Zhang, P. H.; Zhang, Y. S.; Liu, J. J.; Ma, S. Q.; Cheng, P.; Chen, Y.; Zhang, Z. J. Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nat. Commun. 2021, 12, 1982.

[231]
Wang, Z. F.; Zhu, Q. Q.; Wang, J. X.; Jin, F. Z.; Zhang, P. H.; Yan, D.; Cheng, P.; Chen, Y.; Zhang, Z. J. Industry-compatible covalent organic frameworks for green chemical engineering. Sci. China Chem., in press, DOI: 10.1007/s11426-022-1391-0.
DOI
[232]

Luo, Y. T.; Zhang, Z. Y.; Chhowalla, M.; Liu, B. L. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 2022, 34, 2108133.

[233]

Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

[234]

Yang, D. R.; Wang, X. 2D π–conjugated metal–organic frameworks for CO2 electroreduction. SmartMat 2022, 3, 54–67.

[235]

Xu, Y. L.; Wang, C.; Huang, Y. H.; Fu, J. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80, 105545.

[236]

Zhao, Q. L.; Wang, Y. A.; Li, M.; Zhu, S. Q.; Li, T. H.; Yang, J. X.; Lin, T.; Delmo, E. P.; Wang, Y. N.; Jang, J. et al. Organic frameworks confined Cu single atoms and nanoclusters for tandem electrocatalytic CO2 reduction to methane. SmartMat 2022, 3, 183–193.

[237]

Li, Z. X.; Guo, J.; Wan, Y.; Qin, Y. T.; Zhao, M. T. Combining metal–organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications. Nano Res. 2022, 15, 3514–3532.

[238]

García-Arroyo, P.; Martínez-Periñán, E.; Cabrera-Trujillo, J. J.; Salagre, E.; Michel, E. G.; Martínez, J. I.; Lorenzo, E.; Segura, J. L. Pyrenetetraone-based covalent organic framework as an effective electrocatalyst for oxygen reduction reaction. Nano Res. 2022, 15, 3907–3912.

Publication history
Copyright
Acknowledgements

Publication history

Received: 18 October 2022
Revised: 06 November 2022
Accepted: 07 November 2022
Published: 06 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 22071172, 21872103, and 52073208).

Return