Journal Home > Volume 16 , Issue 6

Li-O2 batteries with extremely high specific energy density have been regarded as a kind of promising successor to current Li-ion batteries. However, the high charge overpotential for the decomposition of Li2O2 discharge product reduces the energy efficiency and triggers a series of side reactions that cause the Li-O2 batteries to have a limited lifetime. Herein, Co-doped C3N4 (Co-C3N4) photocatalysts were designed by an in situ thermal evaporation method to take advantage of the photo-assisted charging technology to conquer the shortcomings of Li-O2 batteries encountered in the charge process. Different from the commonly used photocatalysts, the Co-C3N4 photocatalysts perform well no matter with and without illumination, owing to the Co doping induced conductivity and electrocatalytic ability enhancement. This makes the Co-C3N4 reduce the charge and discharge overpotentials and improve the cycling performance of Li-O2 batteries (from 20 to 106 cycles) without illumination. While introducing illumination, the performance can be further improved: Charge voltage reduces to 3.3 V, and the energy efficiency increases to 84.84%, indicating that the Co-C3N4 could behave as a suitable photocathode for Li-O2 batteries. Besides, the low charge voltage and the continuous illumination together weaken the corrosion of the Li anode, making the long-term high-efficiency operation of Li-O2 batteries no longer just extravagant hope.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Designing a photo-assisted Co-C3N4 cathode for high performance Li-O2 batteries

Show Author's information Renfei Cao1,2Yangfeng Cui1,2Gang Huang2Wanqiang Liu1( )Jianwei Liu1,2( )Xinbo Zhang2( )
School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Abstract

Li-O2 batteries with extremely high specific energy density have been regarded as a kind of promising successor to current Li-ion batteries. However, the high charge overpotential for the decomposition of Li2O2 discharge product reduces the energy efficiency and triggers a series of side reactions that cause the Li-O2 batteries to have a limited lifetime. Herein, Co-doped C3N4 (Co-C3N4) photocatalysts were designed by an in situ thermal evaporation method to take advantage of the photo-assisted charging technology to conquer the shortcomings of Li-O2 batteries encountered in the charge process. Different from the commonly used photocatalysts, the Co-C3N4 photocatalysts perform well no matter with and without illumination, owing to the Co doping induced conductivity and electrocatalytic ability enhancement. This makes the Co-C3N4 reduce the charge and discharge overpotentials and improve the cycling performance of Li-O2 batteries (from 20 to 106 cycles) without illumination. While introducing illumination, the performance can be further improved: Charge voltage reduces to 3.3 V, and the energy efficiency increases to 84.84%, indicating that the Co-C3N4 could behave as a suitable photocathode for Li-O2 batteries. Besides, the low charge voltage and the continuous illumination together weaken the corrosion of the Li anode, making the long-term high-efficiency operation of Li-O2 batteries no longer just extravagant hope.

Keywords: photocatalysis, Li-O2 batteries, low overpotential, lithium peroxide, Co-doped C3N4 (Co-C3N4)

References(34)

[1]

Liu, T.; Vivek, J. P.; Zhao, E. W.; Lei, J.; Garcia-Araez, N.; Grey, C. P. Current challenges and routes forward for nonaqueous lithium-air batteries. Chem. Rev. 2020, 120, 6558–6625.

[2]

Gao, X. W.; Chen, Y. H.; Johnson, L. R.; Jovanov, Z. P.; Bruce, P. G. A rechargeable lithium-oxygen battery with dual mediators stabilizing the carbon cathode. Nat. Energy 2017, 2, 17118.

[3]

Johnson, L.; Li, C. M.; Liu, Z.; Chen, Y. H.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 2014, 6, 1091–1099.

[4]

Shen, Z. Z.; Zhou, C.; Wen, R.; Wan, L. J. Charge rate-dependent decomposition mechanism of toroidal Li2O2 in Li-O2 batteries. Chin. J. Chem. 2021, 39, 2668–2672.

[5]

Peng, X. H.; Wang, C.; Liu, Y. H.; Fang, W. W.; Zhou, Y. S.; Fu, L. J.; Ye, J. L.; Liu, L. L.; Wu, Y. P. Critical advances in re-engineering the cathode-electrolyte interface in alkali metal-oxygen batteries. Energy Mater 2021, 1, 100011.

[6]

Yao, W. T.; Yuan, Y. F.; Tan, G. Q.; Liu, C.; Cheng, M.; Yurkiv, V.; Bi, X. X.; Long, F.; Friedrich, C. R.; Mashayek, F. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc. 2019, 141, 12832–12838.

[7]

Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.

[8]

Wang, J. W.; Ma, L. P.; Xu, J. Y.; Xu, Y.; Su, K.; Peng, Z. Q. Oxygen electrochemistry in Li-O2 batteries probed by in situ surface-enhanced Raman spectroscopy. SusMat 2021, 1, 345–358.

[9]

Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

[10]

Wang, Y.; Lai, N. C.; Lu, Y. R.; Zhou, Y. C.; Dong, C. L.; Lu, Y. C. A solvent-controlled oxidation mechanism of Li2O2 in lithium-oxygen batteries. Joule 2018, 2, 2364–2380.

[11]

Song, L. N.; Zhang, W.; Wang, Y.; Ge, X.; Zou, L. C.; Wang, H. F.; Wang, X. X.; Liu, Q. C.; Li, F.; Xu, J. J. Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat. Commun. 2020, 11, 2191.

[12]

Wang, P.; Ren, Y. Y.; Wang, R. T.; Zhang, P.; Ding, M. J.; Li, C. X.; Zhao, D. Y.; Qian, Z.; Zhang, Z. W.; Zhang, L. Y. et al. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 2020, 11, 2811.

[13]

Gu, T. H.; Agyeman, D. A.; Shin, S. J.; Jin, X. Y.; Lee, J. M.; Kim, H.; Kang, Y. M.; Hwang, S. J. α-MnO2 nanowire-anchored highly oxidized cluster as a catalyst for Li-O2 batteries:Superior electrocatalytic activity and high functionality. Angew. Chem., Int. Ed. 2018, 57, 15984–15989.

[14]

Gao, X. W.; Jovanov, Z. P.; Chen, Y. H.; Johnson, L. R.; Bruce, P. G. Phenol-catalyzed discharge in the aprotic lithium-oxygen battery. Angew. Chem., Int. Ed. 2017, 56, 6539–6543.

[15]

Liu, T.; Liu, Z. G.; Kim, G.; Frith, J. T.; Garcia-Araez, N.; Grey, C. P. Understanding LiOH chemistry in a ruthenium-catalyzed Li-O2 battery. Angew. Chem., Int. Ed. 2017, 56, 16057–16062.

[16]

Lu, J.; Lee, Y. J.; Luo, X. Y.; Lau, K. C.; Asadi, M.; Wang, H. H.; Brombosz, S.; Wen, J. G.; Zhai, D. Y.; Chen, Z. H. et al. A lithium-oxygen battery based on lithium superoxide. Nature 2016, 529, 377–382.

[17]

Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

[18]

Liang, J. S.; Xia, Y.; Liu, X.; Huang, F. Y.; Liu, J. J.; Li, S. Z.; Wang, T. Y.; Jiao, S. H.; Cao, R. G.; Han, J. T. et al. Molybdenum-doped ordered L10-PdZn nanosheets for enhanced oxygen reduction electrocatalysis. SusMat 2022, 2, 347–356.

[19]

Xia, Q.; Zhai, Y. J.; Zhao, L. L.; Wang, J.; Li, D, Y.; Zhang, L. L.; Zhang, J. T. Carbon-supported single-atom catalysts for advanced rechargeable metal-air batteries. Energy Mater 2022, 2, 200015.

[20]

Gao, X. W.; Chen, Y. H.; Johnson, L.; Bruce, P. G. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 2016, 15, 882–888.

[21]

Lin, X. D.; Yuan, R. M.; Cao, Y.; Ding, X. B.; Cai, S. R.; Han, B. W.; Hong, Y. H.; Zhou, Z. Y.; Yang, X. L.; Gong, L.; et al. Controlling reversible expansion of Li2O2 formation and decomposition by modifying electrolyte in Li-O2 batteries. Chem 2018, 4, 2685–2698.

[22]

Li, M. L.; Wang, X. X.; Li, F.; Zheng, L. J.; Xu, J. J.; Yu, J. H. A bifunctional photo-assisted Li-O2 battery based on a hierarchical heterostructured cathode. Adv. Mater. 2020, 32, 1907098.

[23]

Lee, S. H.; Park, J. B.; Lim, H. S.; Sun, Y. K. An advanced separator for Li-O2 batteries: Maximizing the effect of redox mediators. Adv. Energy Mater. 2017, 7, 1602417.

[24]

Sun, H. W.; Quan, F. J.; Mao, C. L.; Zhang, L. Z. New strategies for nitrogen fixation and pollution control. Chin. J. Chem. 2021, 39, 3199–3210.

[25]

Zhang, G.; Liu, B.; Wang, T.; Gong, J. L. Arificial leaves for solar fuels. Chin. J. Chem. 2021, 39, 1450–1458.

[26]

Kim, J. H.; Constantin, T.; Simonetti, M.; Llaveria, J.; Sheikh, N. S.; Leonori, D. A radical approach for the selective C-H borylation of azines. Nature 2021, 595, 677–683.

[27]

Yu, M. Z.; Ren, X. D.; Ma, L.; Wu, Y. Y. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging. Nat. Commun. 2014, 5, 5111.

[28]

Zhu, Z.; Shi, X. M.; Fan, G. L.; Li, F. J.; Chen, J. Photo-energy conversion and storage in an aprotic Li-O2 battery. Angew. Chem., Int. Ed. 2019, 58, 19021–19026.

[29]

Yang, X. Y.; Feng, X. L.; Jin, X.; Shao, M. Z.; Yan, B. L.; Yan, J. M.; Zhang, Y.; Zhang, X. B. An illumination-assisted flexible self-powered energy system based on a Li-O2 battery. Angew. Chem., Int. Ed. 2019, 58, 16411–16415.

[30]

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

[31]

Li, M.; Qi, T. Y.; Yang, R. X.; Xiao, H. N.; Fang, Z. M.; Hodge, S. A.; James, T. D.; Wang, L. D.; Mao, B. Y. Promoting magnesium sulfite oxidation via partly oxidized metal nanoparticles on graphitic carbon nitride (g-C3N4) in the magnesia desulfurization process. J. Mater. Chem. A 2018, 6, 11296–11305.

[32]

Yu, Y.; Yan, W.; Wang, X. F.; Li, P.; Gao, W. Y.; Zou, H. H.; Wu, S. M.; Ding, K. J. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 2018, 30, 1705060.

[33]

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

[34]

Kundu, D.; Black, R.; Adams, B.; Nazar, L. F. A highly active low voltage redox mediator for enhanced rechargeability of lithium-oxygen batteries. ACS Cent. Sci. 2015, 1, 510–515.

File
5300_ESM.pdf (820.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 September 2022
Revised: 02 November 2022
Accepted: 06 November 2022
Published: 13 December 2022
Issue date: June 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors thank the supports from the National Key Research and Development (R&D) Program of China (No. 2017YFE0198100), the National Natural Science Foundation of China (No. 21725103), Key Research Program of the Chinese Academy of Sciences (No. ZDRW-CN-2021-3), Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2020230), and Changchun Science and Technology Development Plan Funding Project (No. 21ZY06).

Return