Journal Home > Volume 16 , Issue 5

Gaseous promotors have readily been adopted during the direct synthesis of graphene over insulators to enhance the growth quality and/or boost the growth rate. The understanding of the real functions of carbon-containing promotors has still remained elusive. In this study, we identify the critical roles of a representative CO2 promotor played in the direct growth of graphene. The comparative experimental trials validate CO2 as an effective modulator to decrease graphene nucleation density, improve growth kinetics, and mitigate adlayer formation. The first-principles calculations illustrate that the generation of gas-phase OH species in CO2-assisted system helps decrease the energy barriers of CH4 decomposition and carbon attachment to the growth front, which might be the key factor to allow high-quality direct growth. Such a CO2-promoted strategy enables the conformal coating of graphene film over curved insulators, where the sheet resistance of grown graphene on quartz reaches as low as 1.26 kΩ·sq−1 at an optical transmittance of ~ 95.8%. The fabricated endoscope lens based on our conformal graphene harvests an apoptosis of 82.8% for noninvasive thermal therapy. The work presented here is expected to motivate further investigations in the controllable growth of high-quality graphene on insulating substrates.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

CO2-promoted transfer-free growth of conformal graphene

Show Author's information Ruojuan Liu1,2,§Zhe Peng3,§Xiaoli Sun2,§Zhaolong Chen4,§Zhi Li2Haina Ci2,5Bingzhi Liu2,5Yi Cheng1,2Bei Jiang1,2Junxiong Hu4Wanjian Yin2,5( )Jingyu Sun2,5( )Zhongfan Liu1,2( )
Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Beijing Graphene Institute, Beijing 100095, China
Beijing Cancer Hospital, Beijing 100142, China
Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
College of Energy, Soochow Institute for Energy and Materials Innovations, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, China

§ Ruojuan Liu, Zhe Peng, Xiaoli Sun, and Zhaolong Chen contributed equally to this work.

Abstract

Gaseous promotors have readily been adopted during the direct synthesis of graphene over insulators to enhance the growth quality and/or boost the growth rate. The understanding of the real functions of carbon-containing promotors has still remained elusive. In this study, we identify the critical roles of a representative CO2 promotor played in the direct growth of graphene. The comparative experimental trials validate CO2 as an effective modulator to decrease graphene nucleation density, improve growth kinetics, and mitigate adlayer formation. The first-principles calculations illustrate that the generation of gas-phase OH species in CO2-assisted system helps decrease the energy barriers of CH4 decomposition and carbon attachment to the growth front, which might be the key factor to allow high-quality direct growth. Such a CO2-promoted strategy enables the conformal coating of graphene film over curved insulators, where the sheet resistance of grown graphene on quartz reaches as low as 1.26 kΩ·sq−1 at an optical transmittance of ~ 95.8%. The fabricated endoscope lens based on our conformal graphene harvests an apoptosis of 82.8% for noninvasive thermal therapy. The work presented here is expected to motivate further investigations in the controllable growth of high-quality graphene on insulating substrates.

Keywords: graphene, chemical vapor deposition, carbon dioxide, transfer-free growth, promotor, conformal

References(49)

[1]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[2]

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

[3]

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

[4]

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

[5]

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

[6]

Romagnoli, M.; Sorianello, V.; Midrio, M.; Koppens, F. H. L.; Huyghebaert, C.; Neumaier, D.; Galli, P.; Templ, W.; D'Errico, A.; Ferrari, A. C. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 2018, 3, 392–414.

[7]

Liang, X. L.; Sperling, B. A.; Calizo, I.; Cheng, G. J.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H. L.; Li, Q. L. et al. Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144–9153.

[8]

Lupina, G.; Kitzmann, J.; Costina, I.; Lukosius, M.; Wenger, C.; Wolff, A.; Vaziri, S.; Östling, M.; Pasternak, I.; Krajewska, A. et al. Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 2015, 9, 4776–4785.

[9]

Bruna, M.; Ott, A. K.; Ijäs, M.; Yoon, D.; Sassi, U.; Ferrari, A. C. Doping dependence of the Raman spectrum of defected graphene. ACS Nano 2014, 8, 7432–7441.

[10]

Chen, Y.; Gong, X. L.; Gai, J. G. Progress and challenges in transfer of large-area graphene films. Adv. Sci. 2016, 3, 1500343.

[11]

Pang, J. B.; Mendes, R. G.; Wrobel, P. S.; Wlodarski, M. D.; Ta, H. Q.; Zhao, L.; Giebeler, L.; Trzebicka, B.; Gemming, T.; Fu, L. et al. Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano 2017, 11, 1946–1956.

[12]

Chen, J. Y.; Wen, Y. G.; Guo, Y. L.; Wu, B.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wang, D.; Yu, G.; Liu, Y. Q. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548–17551.

[13]

Chen, Z. L.; Liu, Z. Q.; Wei, T. B.; Yang, S. Y.; Dou, Z. P.; Wang, Y. Y.; Ci, H.; Chang, H. L.; Qi, Y.; Yan, J. C. et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv. Mater. 2019, 31, 1807345.

[14]

Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C. C.; Zhang, L. C.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792–797.

[15]

Sun, J. Y.; Gao, T.; Song, X. J.; Zhao, Y. F.; Lin, Y. W.; Wang, H. C.; Ma, D. L.; Chen, Y. B.; Xiang, W. F.; Wang, J. et al. Direct growth of high-quality graphene on High-κ dielectric SrTiO3 substrates. J. Am. Chem. Soc. 2014, 136, 6574–6577.

[16]

Chen, J. Y.; Guo, Y. L.; Wen, Y. G.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wu, B.; Luo, B. R.; Yu, G.; Liu, Y. Q. Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv. Mater. 2013, 25, 992–997.

[17]

Köhler, C.; Hajnal, Z.; Deák, P.; Frauenheim, T.; Suhai, S. Theoretical investigation of carbon defects and diffusion in α-quartz. Phys. Rev. B 2001, 64, 085333.

[18]

Yan, Z.; Peng, Z. W.; Sun, Z. Z.; Yao, J.; Zhu, Y.; Liu, Z.; Ajayan, P. M.; Tour, J. M. Growth of bilayer graphene on insulating substrates. ACS Nano 2011, 5, 8187–8192.

[19]

Su, C. Y.; Lu, A. Y.; Wu, C. Y.; Li, Y. T.; Liu, K. K.; Zhang, W. J.; Lin, S. Y.; Juang, Z. Y.; Zhong, Y. L.; Chen, F. R. et al. Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett. 2011, 11, 3612–3616.

[20]

Teng, P. Y.; Lu, C. C.; Akiyama-Hasegawa, K.; Lin, Y. C.; Yeh, C. H.; Suenaga, K.; Chiu, P. W. Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett. 2012, 12, 1379–1384.

[21]

Tan, L. F.; Zeng, M. Q.; Wu, Q.; Chen, L. F.; Wang, J.; Zhang, T.; Eckert, J.; Rümmeli, M. H.; Fu, L. Direct growth of ultrafast transparent single-layer graphene defoggers. Small 2015, 11, 1840–1846.

[22]

Shan, J. Y.; Fang, S. M.; Wang, W. D.; Zhao, W.; Zhang, R.; Liu, B. Z.; Lin, L.; Jiang, B.; Ci, H.; Liu, R. J. et al. Copper acetate-facilitated transfer-free growth of high-quality graphene for hydrovoltaic generators. Natl. Sci. Rev. 2022, 9, nwab169.

[23]

Weber, N. E.; Binder, A.; Kettner, M.; Hirth, S.; Weitz, R. T.; Tomović, Ž. Metal-free synthesis of nanocrystalline graphene on insulating substrates by carbon dioxide-assisted chemical vapor deposition. Carbon 2017, 112, 201–207.

[24]

Wang, H. P.; Xue, X. D.; Jiang, Q. Q.; Wang, Y. L.; Geng, D. C.; Cai, L.; Wang, L. P.; Xu, Z. P.; Yu, G. Primary nucleation-dominated chemical vapor deposition growth for uniform graphene monolayers on dielectric substrate. J. Am. Chem. Soc. 2019, 141, 11004–11008.

[25]

Wei, S. J.; Ma, L. P.; Chen, M. L.; Liu, Z. B.; Ma, W.; Sun, D. M.; Cheng, H. M.; Ren, W. C. Water-assisted rapid growth of monolayer graphene films on SiO2/Si substrates. Carbon 2019, 148, 241–248.

[26]

Xie, H. H.; Cui, K. J.; Cui, L. Z.; Liu, B. Z.; Yu, Y.; Tan, C. W.; Zhang, Y. Y.; Zhang, Y. F.; Liu, Z. F. H2O-etchant-promoted synthesis of high-quality graphene on glass and its application in see-through thermochromic displays. Small 2020, 16, 1905485.

[27]

Liu, B. Z.; Wang, H. H.; Gu, W.; Zhou, L.; Chen, Z. L.; Nie, Y. F.; Tan, C. W.; Ci, H. A.; Wei, N.; Cui, L. Z. et al. Oxygen-assisted direct growth of large-domain and high-quality graphene on glass targeting advanced optical filter applications. Nano Res. 2021, 14, 260–267.

[28]

Liu, R. J.; Liu, B. Z.; Sun, J. Y.; Liu, Z. F. Gaseous-promotor-assisted direct growth of graphene on insulating substrates: Progress and prospects. Acta Phys. Chim. Sin. 2023, 39, 2111011.

[29]

Sato, T.; Sugime, H.; Noda, S. CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis. Carbon 2018, 136, 143–149.

[30]

Liao, Y. P.; Hussain, A.; Laiho, P.; Zhang, Q.; Tian, Y.; Wei, N.; Ding, E. X.; Khan, S. A.; Nguyen, N. N.; Ahmad, S. et al. Tuning geometry of SWCNTs by CO2 in floating catalyst CVD for high-performance transparent conductive films. Adv. Mater. Interfaces 2018, 5, 1801209.

[31]

Wang, Z. Q.; Zhao, Q. C.; Tong, L. M.; Zhang, J. Investigation of etching behavior of single-walled carbon nanotubes using different etchants. J. Phys. Chem. C 2017, 121, 27655–27663.

[32]

Fanton, M. A.; Robinson, J. A.; Puls, C.; Liu, Y.; Hollander, M. J.; Weiland, B. E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C. et al. Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition. ACS Nano 2011, 5, 8062–8069.

[33]

Xing, S. R.; Wu, W.; Wang, Y. N.; Bao, J. M.; Pei, S. S. Kinetic study of graphene growth: Temperature perspective on growth rate and film thickness by chemical vapor deposition. Chem. Phys. Lett. 2013, 580, 62–66.

[34]

Mérel, P.; Tabbal, M.; Chaker, M.; Moisa, S.; Margot, J. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 1998, 136, 105–110.

[35]

Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

[36]

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

[37]

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

[38]

Ma, T.; Liu, Z. B.; Wen, J. X.; Gao, Y.; Ren, X. B.; Chen, H. J.; Jin, C. H.; Ma, X. L.; Xu, N. S.; Cheng, H. M. et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat. Commun. 2017, 8, 14486.

[39]

Cui, L. Z.; Chen, X. D.; Liu, B. Z.; Chen, K.; Chen, Z. L.; Qi, Y.; Xie, H. H.; Zhou, F.; Rümmeli, M. H.; Zhang, Y. F. et al. Highly conductive nitrogen-doped graphene grown on glass toward electrochromic applications. ACS Appl. Mater. Interfaces 2018, 10, 32622–32630.

[40]

Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rümmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846–5854.

[41]

Kim, H.; Song, I.; Park, C.; Son, M.; Hong, M. S.; Kim, Y.; Kim, J. S.; Shin, H. J.; Baik, J.; Choi, H. C. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 2013, 7, 6575–6582.

[42]

Nasibulin, A. G.; Moisala, A.; Brown, D. P.; Kauppinen, E. I. Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors. Carbon 2003, 41, 2711–2724.

[43]

Cheng, T.; Liu, Z. R.; Liu, Z. F.; Ding, F. The mechanism of graphene vapor-solid growth on insulating substrates. ACS Nano 2021, 15, 7399–7408.

[44]

Choi, J.; Kim, H. J.; Wang, M. C.; Leem, J.; King, W. P.; Nam, S. Three-dimensional integration of graphene via swelling, shrinking, and adaptation. Nano Lett. 2015, 15, 4525–4531.

[45]

Vilkov, O. Y.; Tarasov, A. V.; Bokai, K. A.; Makarova, A. A.; Muntwiler, M.; Schiller, F.; Ortega, J. E.; Yashina, L. V.; Vyalikh, D. V.; Usachov, D. Y. Nitrogen-doped graphene on a curved nickel surface. Carbon 2021, 183, 711–720.

[46]

Vatansever, F.; Hamblin, M. R. Far infrared radiation (FIR): Its biological effects and medical applications. Photon. Lasers Med. 2012, 1, 255–266.

[47]

Yu, T. T.; Hu, Y. M.; Feng, G. P.; Hu, K. A graphene-based flexible device as a specific far-infrared emitter for noninvasive tumor therapy. Adv. Therap. 2020, 3, 1900195.

[48]

Zhu, Y.; Wu, J. H.; Chen, M.; Liu, X. L.; Xiong, Y. J.; Wang, Y. Y.; Feng, T.; Kang, S.; Wang, X. F. Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. Chemosphere 2019, 237, 124403.

[49]

Fang, B.; Bodepudi, S. C.; Tian, F.; Liu, X. Y.; Chang, D.; Du, S. C.; Lv, J. H.; Zhong, J.; Zhu, H. M.; Hu, H. et al. Bidirectional mid-infrared communications between two identical macroscopic graphene fibres. Nat. Commun. 2020, 11, 6368.

File
12274_2022_5299_MOESM1_ESM.pdf (1,000.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 October 2022
Revised: 30 October 2022
Accepted: 03 November 2022
Published: 21 December 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2019YFA0708201 and 2019YFA0708204), the National Natural Science Foundation of China (Nos. T2188101, 61527814, and 22179089), the Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXTD-202001), the Beijing Municipal Science and Technology Planning Project (No. Z191100000819004), the Science Fund for Distinguished Young Scholars of Jiangsu Province (No. BK20211503), and the Suzhou Science and Technology Project-Prospective Application Research Program (No. SYG202038).

Return