Journal Home > Volume 16 , Issue 4

High-voltage medium-nickel low-cobalt lithium layered oxide cathode materials are becoming a popular development route for high-energy lithium-ion batteries due to their relatively high capacity, low cost, and improved safety. Unfortunately, capacity fading derived from surface lithium residue, electrode-electrolyte interfacial side reactions, and bulk structure degradation severely limits large-scale commercial utilization. In this work, an ultrathin and uniform NASICON-type Li3V2(PO4)3 (LVP) nanoscale functional coating is formed in situ by utilizing residual lithium to enhance the lithium storage performance of LiNi0.6Co0.05Mn0.35O2 (NCM) cathode. The GITT and ex-situ EIS and XPS demonstrate exceptional Li+ diffusion and conductivity and attenuated interfacial side reactions, improving the electrode-electrolyte interface stability. The variable temperature in-situ XRD demonstrates delayed phase transition temperature to improve thermal stability. The battery in-situ XRD displays the single-phase H1-H2 reaction and weakened harmful H3 phase transition, minimizing the bulk mechanical degradation. These improvements are attributed to the removal of surface residual lithium and the formation of NASICON-type Li3V2(PO4)3 functional coatings with stable structure and high ionic and electronic conductivity. Consequently, the obtained NCM@LVP delivers a higher capacity retention rate (97.1% vs. 79.6%) after 150 cycles and a superior rate capacity (87 mAh·g–1 vs. 58 mAh·g–1) at a 5 C current density than the pristine NCM under a high cut-off voltage of 4.5 V. This work suggests a clever way to utilize residual lithium to form functional coatings in situ to improve the lithium storage performance of high-voltage medium-nickel low-cobalt cathode materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Stabilization of high-voltage layered oxide cathode by utilizing residual lithium to form NASICON-type nanoscale functional coating

Show Author's information Yabin Shen1,2Yingqiang Wu5Dongyu Zhang1,2Yao Liang1,2Dongming Yin1,2Limin Wang1,2Licheng Wang3( )Jingchao Cao4( )Yong Cheng1( )
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China (USTC), Hefei 230026, China
College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
Changsha Research Institute of Mining and Metallurgy Co., Ltd, Changsha 410012, China
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

Abstract

High-voltage medium-nickel low-cobalt lithium layered oxide cathode materials are becoming a popular development route for high-energy lithium-ion batteries due to their relatively high capacity, low cost, and improved safety. Unfortunately, capacity fading derived from surface lithium residue, electrode-electrolyte interfacial side reactions, and bulk structure degradation severely limits large-scale commercial utilization. In this work, an ultrathin and uniform NASICON-type Li3V2(PO4)3 (LVP) nanoscale functional coating is formed in situ by utilizing residual lithium to enhance the lithium storage performance of LiNi0.6Co0.05Mn0.35O2 (NCM) cathode. The GITT and ex-situ EIS and XPS demonstrate exceptional Li+ diffusion and conductivity and attenuated interfacial side reactions, improving the electrode-electrolyte interface stability. The variable temperature in-situ XRD demonstrates delayed phase transition temperature to improve thermal stability. The battery in-situ XRD displays the single-phase H1-H2 reaction and weakened harmful H3 phase transition, minimizing the bulk mechanical degradation. These improvements are attributed to the removal of surface residual lithium and the formation of NASICON-type Li3V2(PO4)3 functional coatings with stable structure and high ionic and electronic conductivity. Consequently, the obtained NCM@LVP delivers a higher capacity retention rate (97.1% vs. 79.6%) after 150 cycles and a superior rate capacity (87 mAh·g–1 vs. 58 mAh·g–1) at a 5 C current density than the pristine NCM under a high cut-off voltage of 4.5 V. This work suggests a clever way to utilize residual lithium to form functional coatings in situ to improve the lithium storage performance of high-voltage medium-nickel low-cobalt cathode materials.

Keywords: lithium-ion battery, surface modification, high-voltage medium-nickel low-cobalt cathode, residual lithium, NASICON-type Li3V2(PO4)3

References(60)

[1]

Li, W. D.; Erickson, E. M.; Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 2020, 5, 26–34.

[2]

Liu, J. X.; Wang, J. Q.; Ni, Y. X.; Zhang, K.; Cheng, F. Y.; Chen, J. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater. Today 2021, 43, 132–165.

[3]

Liu, W.; Oh, P.; Liu, X. E.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 4440–4457.

[4]

Wu, K.; Li, Q.; Dang, R. B.; Deng, X.; Chen, M. M.; Lee, Y. L.; Xiao, X. L.; Hu, Z. B. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0. 1Co0. 1O2 at high cut-off voltages through core-shell structuring. Nano Res. 2019, 12, 2460–2467.

[5]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[6]

Jiang, M.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adv. Energy Mater. 2021, 11, 2103005.

[7]

Zhao, H.; Lam, W. Y. A.; Sheng, L.; Wang, L.; Bai, P.; Yang, Y.; Ren, D. S.; Xu, H.; He, X. M. Cobalt-free cathode materials: Families and their prospects. Adv. Energy Mater. 2022, 12, 2103894.

[8]

Shen, Y. B.; Yao, X. J.; Zhang, J. H.; Wang, S. H.; Zhang, D. Y.; Yin, D. M.; Wang, L. M.; Zhang, Y. H.; Hu, J. H.; Cheng, Y. et al. Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy 2022, 94, 106900.

[9]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[10]

Liu, T. C.; Yu, L.; Liu, J. J.; Lu, J.; Bi, X. X.; Dai, A.; Li, M.; Li, M. F.; Hu, Z. X.; Ma, L. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 2021, 6, 277–286.

[11]

Kim, Y.; Park, H.; Warner, J. H.; Manthiram, A. Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries. ACS Energy Lett. 2021, 6, 941–948.

[12]

Yang, W.; Xiang, W.; Chen, Y. X.; Wu, Z. G.; Hua, W. B.; Qiu, L.; He, F. R.; Zhang, J.; Zhong, B. H.; Guo, X. D. Interfacial regulation of Ni-rich cathode materials with an ion-conductive and pillaring layer by infusing gradient boron for improved cycle stability. ACS Appl. Mater. Interfaces 2020, 12, 10240–10251.

[13]

Ryu, W. G.; Shin, H. S.; Park, M. S.; Kim, H.; Jung, K. N.; Lee, J. W. Mitigating storage-induced degradation of Ni-rich LiNi0.8Co0. 1Mn0. 1O2 cathode material by surface tuning with phosphate. Ceram. Int. 2019, 45, 13942–13950.

[14]

Li, W. D.; Song, B. H.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059.

[15]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[16]

Shen, Y. B.; Yao, X. J.; Wang, S. H.; Zhang, D. Y.; Yin, D. M.; Wang, L. M.; Cheng, Y. Gospel for improving the lithium storage performance of high-voltage high-nickel low-cobalt layered oxide cathode materials. ACS Appl. Mater. Interfaces 2021, 13, 58871–58884.

[17]

Zhang, W.; Sun, Y. G.; Deng, H. Q.; Ma, J. M.; Zeng, Y.; Zhu, Z. Q.; Lv, Z. S.; Xia, H. R.; Ge, X.; Cao, S. K. et al. Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials. Adv. Mater. 2020, 32, 2000496.

[18]

Wen, Y. K.; Zhuang, Z. C.; Zhu, H.; Hao, J. C.; Chu, K. B.; Lai, F. L.; Zong, W.; Wang, C.; Ma, P. M.; Dong, W. F. et al. Isolation of metalloid boron atoms in intermetallic carbide boosts the catalytic selectivity for electrocatalytic N2 fixation. Adv. Energy Mater. 2021, 11, 2102138.

[19]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[20]

Huang, X.; Zhu, W. C.; Yao, J. Y.; Bu, L. M.; Li, X. Y.; Tian, K.; Lu, H.; Quan, C. X.; Xu, S. G.; Xu, K. H. et al. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating. J. Mater. Chem. A 2020, 8, 17429–17441.

[21]

Jiang, K. Z.; Guo, S. H.; Pang, W. K.; Zhang, X. P.; Fang, T. C.; Wang, S. F.; Wang, F. W.; Zhang, X. Y.; He, P.; Zhou, H. S. Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries. Nano Res. 2021, 14, 4100–4106.

[22]

Du, K.; Gao, A.; Gao, L. F.; Sun, S. W.; Lu, X.; Yu, C. Y.; Li, S. Y.; Zhao, H. L.; Bai, Y. Enhancing the structure stability of Ni-rich LiNi0.6Co0. 2Mn0. 2O2 cathode via encapsulating in negative thermal expansion nanocrystalline shell. Nano Energy 2021, 83, 105775.

[23]

Lai, Y. J.; Li, Z. J.; Zhao, W. X.; Cheng, X. N.; Xu, S.; Yu, X.; Liu, Y. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Res. 2020, 13, 3347–3357.

[24]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[25]

Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.

[26]

Yang, H. P.; Wu, H. H.; Ge, M. Y.; Li, L. J.; Yuan, Y. F.; Yao, Q.; Chen, J.; Xia, L. F.; Zheng, J. M.; Chen, Z. Y. et al. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808825.

[27]

Yoon, M.; Dong, Y. H.; Hwang, J.; Sung, J.; Cha, H.; Ahn, K.; Huang, Y. M.; Kang, S. J.; Li, J.; Cho, J. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 2021, 6, 362–371.

[28]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[29]

Zhang, H. L.; Zhang, J. J. An overview of modification strategies to improve LiNi0·8Co0·1Mn0·1O2 (NCM811) cathode performance for automotive lithium-ion batteries. eTransportation 2021, 7, 100105.

[30]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[31]

Kim, J.; Ma, H.; Cha, H.; Lee, H.; Sung, J.; Seo, M.; Oh, P.; Park, M.; Cho, J. A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy Environ. Sci. 2018, 11, 1449–1459.

[32]

Yao, L.; Liang, F. Q.; Jin, J.; Chowdari, B. V. R.; Yang, J. H.; Wen, Z. Y. Improved electrochemical property of Ni-rich LiNi0.6Co0. 2Mn0. 2O2 cathode via in-situ ZrO2 coating for high energy density lithium ion batteries. Chem. Eng. J. 2020, 389, 124403.

[33]

Xie, J.; Sendek, A. D.; Cubuk, E. D.; Zhang, X. K.; Lu, Z. Y.; Gong, Y. J.; Wu, T.; Shi, F. F.; Liu, W.; Reed, E. J. et al. Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling. ACS Nano 2017, 11, 7019–7027.

[34]

Wu, Y. Q.; Ming, H.; Li, M. L.; Zhang, J. L.; Wahyudi, W.; Xie, L. Q.; He, X. M.; Wang, J.; Wu, Y. P.; Ming, J. New organic complex for lithium layered oxide modification: Ultrathin coating, high-voltage, and safety performances. ACS Energy Lett. 2019, 4, 656–665.

[35]

Jamil, S.; Wang, G.; Yang, L.; Xie, X.; Cao, S.; Liu, H.; Chang, B. B.; Wang, X. Y. Suppressing H2-H3 phase transition in high Ni-low Co layered oxide cathode material by dual modification. J. Mater. Chem. A 2020, 8, 21306–21316.

[36]

Zhai, Y. W.; Yang, W. Y.; Ning, D.; Yang, J. B.; Sun, L. M.; Schuck, G.; Schumacher, G.; Liu, X. F. Improving the cycling and air-storage stability of LiNi0.8Co0. 1Mn0. 1O2 through integrated surface/interface/doping engineering. J. Mater. Chem. A 2020, 8, 5234–5245.

[37]

Kim, J. H.; Kim, H.; Choi, W.; Park, M. S. Bifunctional surface coating of LiNbO3 on high-Ni layered cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 35098–35104.

[38]

Neudeck, S.; Walther, F.; Bergfeldt, T.; Suchomski, C.; Rohnke, M.; Hartmann, P.; Janek, J.; Brezesinski, T. Molecular surface modification of NCM622 cathode material using organophosphates for improved Li-ion battery full-cells. ACS Appl. Mater. Interfaces 2018, 10, 20487–20498.

[39]

Fan, Q. L.; Yang, S. D.; Liu, J.; Liu, H. D.; Lin, K. J.; Liu, R.; Hong, C. Y.; Liu, L. Y.; Chen, Y.; An, K. et al. Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries. J. Power Sources 2019, 421, 91–99.

[40]

Kim, J. M.; Zhang, X. H.; Zhang, J. G.; Manthiram, A.; Meng, Y. S.; Xu, W. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater. Today 2021, 46, 155–182.

[41]

Chen, S. Q.; Wu, C.; Shen, L. F.; Zhu, C. B.; Huang, Y. Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700431.

[42]

Niu, Y. J.; Yu, Z. Z.; Zhou, Y. J.; Tang, J. W.; Li, M. X.; Zhuang, Z. C.; Yang, Y.; Huang, X.; Tian, B. B. Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy. Nano Res. 2022, 15, 7180–7189.

[43]

Hu, Q.; He, Y. F.; Ren, D. S.; Song, Y. Z.; Wu, Y. Z.; Liang, H. M.; Gao, J. H.; Xu, G.; Cai, J. Y.; Li, T. Y. et al. Targeted masking enables stable cycling of LiNi0.6Co0. 2Mn0. 2O2 at 4. 6 V. Nano Energy 2022, 96, 107123.

[44]

Shen, Y. B.; Xue, H. J.; Wang, S. H.; Wang, Z. M.; Zhang, D. Y.; Yin, D. M.; Wang, L. M.; Cheng, Y. A highly promising high-nickel low-cobalt lithium layered oxide cathode material for high-performance lithium-ion batteries. J. Colloid Interface Sci. 2021, 597, 334–344.

[45]

Liu, Y.; Tang, L. B.; Wei, H. X.; Zhang, X. H.; He, Z. J.; Li, Y. J.; Zheng, J. C. Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 2019, 65, 104043.

[46]

Liu, W.; Li, X. F.; Hao, Y. C.; Xiong, D. B.; Shan, H.; Wang, J. J.; Xiao, W.; Yang, H. J.; Yang, H.; Kou, L. et al. Functional passivation interface of LiNi0.8Co0. 1Mn0. 1O2 toward superior lithium storage. Adv. Funct. Mater. 2021, 31, 2008301.

[47]

Xu, Q.; Li, X. F.; Kheimeh Sari, H. M.; Li, W. B.; Liu, W.; Hao, Y. C.; Qin, J.; Cao, B.; Xiao, W.; Xu, Y. et al. Surface engineering of LiNi0.8Mn0. 1Co0. 1O2 towards boosting lithium storage:Bimetallic oxides versus monometallic oxides. Nano Energy 2020, 77, 105034.

[48]

Liu, S. Y.; Zhang, C. C.; Su, Q. L.; Li, L. Y.; Su, J. M.; Huang, T.; Chen, Y. B.; Yu, A. S. Enhancing electrochemical performance of LiNi0.6Co0. 2Mn0. 2O2 by lithium-ion conductor surface modification. Electrochim. Acta 2017, 224, 171–177.

[49]

Li, L. J.; Xu, M.; Yao, Q.; Chen, Z. Y.; Song, L. B.; Zhang, Z. A.; Gao, C. H.; Wang, P.; Yu, Z. Y.; Lai, Y. Q. Alleviating surface degradation of nickel-rich layered oxide cathode material by encapsulating with nanoscale Li-ions/electrons superionic conductors hybrid membrane for advanced Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 30879–30889.

[50]

Li, J. Y.; Li, W. D.; Wang, S. Y.; Jarvis, K.; Yang, J. H.; Manthiram, A. Facilitating the operation of lithium-ion cells with high-nickel layered oxide cathodes with a small dose of aluminum. Chem. Mater. 2018, 30, 3101–3109.

[51]

Jeong, M.; Kim, H.; Lee, W.; Ahn, S. J.; Lee, E.; Yoon, W. S. Stabilizing effects of Al-doping on Ni-rich LiNi0.80Co0. 15Mn0. 05O2 cathode for Li rechargeable batteries. J. Power Sources 2020, 474, 228592.

[52]

Wang, Y. Y.; Wang, Y. Y.; Liu, S.; Li, G. R.; Zhou, Z.; Xu, N.; Wu, M. T.; Gao, X. P. Building the stable oxygen framework in high-Ni layered oxide cathode for high-energy-density Li-ion batteries. Energy Environ. Mater. 2022, 5, 1260–1269.

[53]

Mo, Y.; Guo, L. J.; Cao, B. K.; Wang, Y. G.; Zhang, L.; Jia, X. B.; Chen, Y. Correlating structural changes of the improved cyclability upon Nd-substitution in LiNi0.5Co0. 2Mn0. 3O2 cathode materials. Energy Storage Mater. 2019, 18, 260–268.

[54]

Xie, Q.; Li, W. D.; Manthiram, A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries. Chem. Mater. 2019, 31, 938–946.

[55]

Li, J. Y.; Manthiram, A. A comprehensive analysis of the interphasial and structural evolution over long-term cycling of ultrahigh-nickel cathodes in lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1902731.

[56]
Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.
[57]

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

[58]

Wang, C. L.; Gao, Y. X.; Sun, L. S.; Zhao, Y.; Yin, D. M.; Wang, H. R.; Cao, J. C.; Cheng, Y.; Wang, L. M. Anti-catalytic and zincophilic layers integrated zinc anode towards efficient aqueous batteries for ultra-long cycling stability. Nano Res. 2022, 15, 8076–8082.

[59]

Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

[60]

Luo, L. X.; Fu, C. H.; Wu, A. M.; Zhuang, Z. C.; Zhu, F. J.; Jiang, F. L.; Shen, S. Y.; Cai, X. Y.; Kang, Q.; Zheng, Z. F. et al. Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res. 2022, 15, 1892–1900.

File
12274_2022_5298_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 September 2022
Revised: 27 October 2022
Accepted: 05 November 2022
Published: 29 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This research is funded by the National Key R&D Program of China (No. 2017YFE0198100), the National Natural Science Foundation of China (No. 21975250), the Key R&D Program of Jilin Province (No. 20220201132GX), the Key R&D Program of Hubei Province (No. 2022BAA084), and the Capital Construction Fund Projects within the Budget of Jilin Province (2021C037-2).

Return