AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

One-pot synthesis of toluene from methane and methanol catalyzed by GaN nanowire

Mingxin Liu1,2,§Zewen Wu3,§Xianghua Kong3,4( )Xu Zhang1Lida Tan2Hong Guo3,4Chao-Jun Li2( )
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
Department of Chemistry, and FRQNT Centre for Green Chemistry and Catalysts, McGill University, 801 Sherbrooke West, Montreal, QC, H3A 0B8, Canada
College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518061, China
Department of Physics, McGill University, Rutherford Building, 3600 University, Montreal, QC, H3A 2T8, Canada

§ Mingxin Liu and Zewen Wu contributed equally to this work.

Show Author Information

Graphical Abstract

A GaN-nanowire-catalyzed one-step facile photo-synthesis of the C7 compound toluene, which contains both sp2- and sp3-carbons, via renewable methane and methanol feedstock is reported. The synthesis can be carried out in both photo- and thermal- conditions. In-depth mechanism study has revealed the outstanding catalytic activity of the new-generation semiconductor catalyst towards the engineering of C–H and C–C bonds.

Abstract

The generation of aromatic benzene, toluene, and xylene (BTX) compounds from non-petroleum feedstocks is of particular interest for chemists in the eyes of sustainability. Herein, a novel synthesis of toluene catalyzed by GaN semiconductor nanowire arrays is reported. Using methane and methanol as starting materials, the GaN nanowire arrays can synergistically facilitate the facile generation of toluene under either photo-irradiation or thermal-conditions. The detailed computational studies unveiled different mechanisms involved for the photo- and thermal-toluene synthesis.

Electronic Supplementary Material

Download File(s)
12274_2022_5294_MOESM1_ESM.pdf (593 KB)

References

[1]
Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, 1998.
[2]
Gary, J. H.; Handwerk, G. E. Petroleum Refining: Technology and Economics; 3rd ed. Marcel Dekker: New York, 1994.
[3]
Taylo, M. Energy technology perspectives. In International Seminar on Energy and the Forest Products Industry, Rome, Itlay, 2006.
[4]

Gillet, S.; Aguedo, M.; Petitjean, J.; Morais, A. R. C.; da Costa Lopes, A. M.; Łukasik, R. M.; Anastas, P. T. Lignin transformations for high value applications: Towards targeted modifications using green chemistry. Green Chem. 2017, 19, 4200–4233.

[5]

Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 2010, 110, 3552–3599.

[6]

Jing, Y. X.; Dong, L.; Guo, Y.; Liu, X. H.; Wang, Y. Q. Chemicals from lignin: A review of catalytic conversion involving hydrogen. ChemSusChem 2020, 13, 4181–4198.

[7]

Niziolek, A. M.; Onel, O.; Guzman, Y. A.; Floudas, C. A. Biomass-based production of benzene, toluene, and xylenes via methanol: Process synthesis and deterministic global optimization. Enegry Fuels 2016, 30, 4970–4998.

[8]
Mruthyunjaya, M. Catalysis for bio-BTX (benzene, toluene, and xylene) synthesis. In Advanced Catalysis for Drop-in Chemicals. Sudarsanam, P.; Li, H. , Eds.; Elsevier: Amsterdam, 2022.
[9]

Sergeev, A. G.; Hartwig, J. F. Selective, nickel-catalyzed hydrogenolysis of aryl ethers. Science 2011, 332, 439–443.

[10]

Sergeev, A. G.; Webb, J. D.; Hartwig, J. F. A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation. J. Am. Chem. Soc. 2012, 134, 20226–20229.

[11]

Gao, F.; Webb, J. D.; Hartwig, J. F. Chemo-and regioselective hydrogenolysis of diaryl ether C–O bonds by a robust heterogeneous Ni/C catalyst: Applications to the cleavage of complex lignin-related fragments. Angew. Chem., Int. Ed. 2016, 55, 1474–1478.

[12]

Huber, G. W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098.

[13]

Bruijnincx, P. C. A.; Weckhuysen, B. M. Lignin up for break-down. Nat. Chem. 2014, 6, 1035–1036.

[14]

Rahimi, A.; Ulbrich, A.; Coon, J. J.; Stahl. S. S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 2014, 515, 249–252.

[15]

Miao, D. Y.; Ding, Y.; Yu, T.; Li, J.; Pan, X. L.; Bao, X. H. Selective synthesis of benzene, toluene, and xylenes from syngas. ACS Catal. 2020, 10, 7389–7397.

[16]

Zheng, H.; Ma, D.; Bao, X. H.; Hu, J. Z.; Kwak, J. H.; Wang, Y.; Peden, C. H. F. Direct observation of the active center for methane dehydroaromatization using an ultrahigh field 95Mo NMR spectroscopy. J. Am. Chem. Soc. 2008, 130, 3722–3723.

[17]

Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616–619.

[18]

Li, L.; Li, G. D.; Yan, C.; Mu, X. Y.; Pan, X. L.; Zou, X. X.; Wang, K. X.; Chen, J. S. efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem., Int. Ed. 2011, 50, 8299–8303.

[19]

Li, L.; Cai, Y. Y.; Li, G. D.; Mu, X. Y.; Wang, K. X.; Chen, J. S. Synergistic effect on the photoactivation of the methane C–H bond over Ga3+-modified ETS-10. Angew. Chem., Int. Ed. 2012, 51, 4702–4706.

[20]

Li, L.; Fan, S. Z.; Mu, X. Y.; Mi, Z. T.; Li, C. J. Photoinduced conversion of methane into benzene over GaN nanowires. J. Am. Chem. Soc. 2014, 136, 7793–7796.

[21]

Li, L.; Mu, X. Y.; Liu, W. B.; Kong, X. H.; Fan, S. Z.; Mi, Z. T.; Li, C. J. Thermal non-oxidative aromatization of light alkanes catalyzed by gallium nitride. Angew. Chem., Int. Ed. 2014, 53, 14106–14109.

[22]

Li, L.; Liu, W. B.; Zeng, H. Y.; Mu, X. Y.; Cosa, G.; Mi, Z. T.; Li, C. J. Photo-induced metal-catalyst-free aromatic finkelstein reaction. J. Am. Chem. Soc. 2015, 137, 8328–8331.

[23]

Angelidaki, I.; Karakashev, D.; Batstone, D. J.; Plugge, C. M.; Stams, A. J. M. Biomethanation and its potential. Methods Enzymol. 2011, 494, 327–351.

[24]

Gardner, K. A.; Mayer, J. M. Understanding C–H bond oxidations: H· and H transfer in the oxidation of toluene by permanganate. Science 1995, 269, 1849–1851.

[25]
Ziegler-Sylakakis, K.; Fabri, J.; Graeser, U.; Simo, T. A. Toluene. In Ullmann's Encyclopedia of Industrial Chemistry. Ley, C. , Ed.; Wiley-VCH: Weinheim, 2002.
[26]

Nicolescu, T. O.; Lupu, F.; Pantea, O.; Gheorghe, C. G. Toxicity study of benzene, toluene and xylene (BTX) at exposure on some experimental groups. Rev. Chim. - Bucharest 2015, 66, 1181–1183.

[27]

Herriott, A. W. Purple benzene: Solubilization of anions in organic solvents. J. Chem. Educ. 1977, 54, 229.

[28]
Uhl, W.; Kyriatsoulis, A. Namen- und Schlagwortreaktionen in der Organischen Chemie; Springer: Wiesbaden, 1984; pp 84–86.
[29]

Liu, M. X.; Wang, Y. C.; Kong, X. H.; Rashid, R. T.; Chu, S.; Li, C. C.; Hearne, Z.; Guo, H.; Mi, Z. T.; Li, C. J. Direct catalytic methanol-to-ethanol photo-conversion via methyl carbene. Chem 2019, 5, 858–867.

[30]

Liu, M. X.; Qiu, Z. H.; Tan, L. D.; Rashid, R. T.; Chu, S.; Cen, Y. E.; Luo, Z. L.; Khaliullin, R. Z.; Mi, Z. T.; Li, C. J. Photocatalytic methylation of nonactivated sp3 and sp2 C–H bonds using methanol on GaN. ACS Catal. 2020, 10, 6248–6253.

[31]

AlOtaibi, B.; Fan, S.; Vanka, S.; Kibria, M. G.; Mi, Z. A metal-nitride nanowire dual-photoelectrode device for unassisted solar-to-hydrogen conversion under parallel illumination. Nano Lett. 2015, 15, 6821–6828.

[32]

Kibria, M. G.; Zhao, S.; Chowdhury, F. A.; Wang, Q.; Nguyen, H. P. T.; Trudeau, M. L.; Guo, H.; Mi, Z. Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting. Nat. Commun. 2014, 5, 3825.

[33]

Kibria, M. G.; Qiao, R. M.; Yang, W. L.; Boukahil, I.; Kong, X. H.; Chowdhury, F. A.; Trudeau, M. L.; Ji, W.; Guo, H.; Himpsel, F. J. et al. Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting. Adv. Mater. 2016, 28, 8388–8397.

[34]

Gesser, H. D.; Hunter, N. R.; Prakash, C. B. The direct conversion of methane to methanol by controlled oxidation. Chem. Rev. 1985, 85, 235–244.

[35]

Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A. et al. Catalysis research of relevance to carbon management:   Progress, challenges, and opportunities. Chem. Rev. 2001, 101, 953–996.

[36]

Choudhary, V. R.; Kinage, A. K.; Choudhary, T. V. Low-temperature nonoxidative activation of methane over H-galloaluminosilicate (MFI) zeolite. Science 1997, 275, 1286–1288.

[37]

Luzgin, M. V.; Rogov, V. A.; Arzumanov, S. S.; Toktarev, A. V.; Stepanov, A. G.; Parmon, V. N. Understanding methane aromatization on a Zn-modified high-silica zeolite. Angew. Chem., Int. Ed. 2008, 47, 4559–4562.

[38]

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

[39]

Pribram-Jones, A.; Gross, D. A.; Burke, K. DFT:A theory full of holes. Annu. Rev. Phys. Chem. 2015, 66, 283–304.

[40]

van Moirik, T.; Bühl, M.; Gaigeot, M. P. Density functional theory across chemistry, physics and biology. Philos. Trans. A Math. Phys. Eng. Sci. 2014, 372, 20120488.

[41]

O’Connor, N. J.; Jonayat, A. S. M.; Janik, M. J.; Senftle, T. P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat. Catal. 2018, 1, 531–539.

[42]

Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

[43]

Yang, Y. H.; Zhang, X. Y.; Zhong, L. P.; Lan, J. L.; Li, X.; Li, C. C.; Chung, L. W. Unusual KIE and dynamics effects in the Fe-catalyzed hetero-diels-alder reaction of unactivated aldehydes and dienes. Nat. Commun. 2020, 11, 1850.

Nano Research
Pages 6512-6516
Cite this article:
Liu M, Wu Z, Kong X, et al. One-pot synthesis of toluene from methane and methanol catalyzed by GaN nanowire. Nano Research, 2023, 16(5): 6512-6516. https://doi.org/10.1007/s12274-022-5294-2
Topics:

3767

Views

4

Crossref

2

Web of Science

2

Scopus

1

CSCD

Altmetrics

Received: 13 September 2022
Revised: 21 October 2022
Accepted: 04 November 2022
Published: 03 January 2023
© Tsinghua University Press 2022
Return