AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A new isotropic negative thermal expansion material of CaSnF6 with facile and low-cost synthesis

Qilong Gao1 ( )Sen Zhang1Yixin Jiao1Yongqiang Qiao1 ( )Andrea Sanson2Qiang Sun1Xinwei Shi1( )Erjun Liang1Jun Chen3
Key Laboratory of Materials Physics of Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Department of Physics and Astronomy, University of Padova, Padova I-35131, Italy
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
Show Author Information

Graphical Abstract

A new isotropic negative thermal expansion with a double ReO3-type structure of CaSnF6 was prepared by lowtemperature synthesis methods, the negative thermal expansion (NTE) driving forces come from the transverse thermal vibration of F atoms.

Abstract

Double ReO3-type fluorides have a great interest in the field of negative thermal expansion (NTE) and luminescent materials. However, their application is limited by the scarcity of quantity, expensive raw materials, and harsh preparation conditions. In this work we have found a new NTE material, CaSnF6, by applying the concept of the average atomic volume. More importantly, different from the previous solid-phase sintering and direct fluorination methods, the nano CaSnF6 has been synthesized for the first time by solvothermal method. The results of X-ray diffraction (XRD) and Raman spectroscopy show that a phase transition occurs from rhombohedral ( R3¯) to cubic ( Fm3¯m) structure at about 200 K, and a strong isotropic NTE (αv = −15.78 × 10−6 K−1) appears in the cubic phase. Lattice dynamics calculations from first-principles illustrate that the NTE is due to the transverse vibration of fluorine atoms excited by low-frequency phonons. This work not only broadens the NTE family of fluorides, but also provides a new facile and low-cost fabricati on method for the preparation of NTE fluorides.

Electronic Supplementary Material

Download File(s)
12274_2022_5288_MOESM1_ESM.pdf (758.8 KB)

References

[1]

Mary, T. A.; Evans, J. S. O.; Vogt, T.; Sleight, A. W. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 1996, 272, 90–92.

[2]

Pan, Z.; Fang, Y. W.; Nishikubo, T.; Hu, L.; Kawaguchi, S.; Azuma, M. Tolerance factor control of tetragonality and negative thermal expansion in PbTiO3-based ferroelectrics. Chem. Mater. 2022, 34, 2798–2803.

[3]

Shi, N. K.; Sanson, A.; Gao, Q. L.; Sun, Q.; Ren, Y.; Huang, Q. Z.; De Souza, D. O.; Xing, X. R.; Chen, J. Strong negative thermal expansion in a low-cost and facile oxide of Cu2P2O7. J. Am. Chem. Soc. 2020, 142, 3088–3093.

[4]

Wei, W.; Gao, Q. L.; Guo, J.; Chao, M. J.; He, L. H.; Chen, J.; Liang, E. J. Realizing isotropic negative thermal expansion covering room temperature by breaking the superstructure of ZrV2O7. Appl. Phys. Lett. 2020, 116, 181902.

[5]

Hester, B. R.; Hancock, J. C.; Lapidus, S. H.; Wilkinson, A. P. Composition, response to pressure, and negative thermal expansion in MIIBIVF6 (M = Ca, Mg; B = Zr, Nb). Chem. Mater. 2017, 29, 823–831.

[6]

Qiao, Y. Q.; Song, Y. Z.; Sanson, A.; Fan, L. L.; Sun, Q.; Hu, S. X.; He, L. H.; Zhang, H. J.; Xing, X. R.; Chen, J. Negative thermal expansion in YbMn2Ge2 induced by the dual effect of magnetism and valence transition. npj Quantum Mater. 2021, 6, 49.

[7]

Song, Y. Z.; Chen, J.; Liu, X. Z.; Wang, C. W.; Zhang, J.; Liu, H.; Zhu, H.; Hu, L.; Lin, K.; Zhang, S. T. et al. Zero thermal expansion in magnetic and metallic Tb(Co, Fe)2 intermetallic compounds. J. Am. Chem. Soc. 2018, 140, 602–605.

[8]

Gao, Q. L.; Sun, Q.; Venier, A.; Sanson, A.; Huang, Q. Z.; Jia, Y.; Liang, E. J.; Chen, J. The role of average atomic volume in predicting negative thermal expansion: The case of REFe(CN)6. Sci. China Mater. 2022, 65, 553–557.

[9]
Gao, Q. L.; Jiao, Y. X.; Sanson, A.; Liang, E. J.; Sun, Q. Large negative thermal expansion in GdFe(CN)6 driven by unusual low-frequency modes. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.05.078.
[10]

Gao, Q. L.; Jiao, Y. X.; Zheng, Y.; Sanson, A.; Milazzo, U.; Olivi, L.; Sun, Q.; Chen, J.; Liang, E. J. Understanding the role of guest ions in the control of thermal expansion of FeFe(CN)6. Results Phys. 2022, 36, 105410.

[11]

Wang, C.; Chu, L. H.; Yao, Q. R.; Sun, Y.; Wu, M. M.; Ding, L.; Yan, J.; Na, Y. Y.; Tang, W. H.; Li, G. N. et al. Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3(Zn, M)xN (M = Ag, Ge). Phys. Rev. B 2012, 85, 220103.

[12]

Asgari, M.; Kochetygov, I.; Abedini, H.; Queen, W. L. Large anisotropic negative thermal expansion in Cu-TDPAT metal-organic framework: A combined in situ X-ray diffraction and DRIFTS study. Nano Res. 2021, 14, 404–410.

[13]

Coates, C. S.; Goodwin, A. L. How to quantify isotropic negative thermal expansion: Magnitude, range, or both? Mater. Horiz. 2019, 6, 211–218.

[14]

Du, Y. G.; Gao, Q. L.; Sanson, A.; Xie, H. L.; Hu, Y. M.; Zeng, G. J.; Guo, J.; Ren, X.; Liang, E. J. Optimized negative thermal expansion property in low-cost Mg2P2O7-based bulk material. Results Phys. 2022, 35, 105415.

[15]

Yamamoto, H.; Imai, T.; Sakai, Y.; Azuma, M. Colossal negative thermal expansion in electron-doped PbVO3 perovskites. Angew. Chem., Int. Ed. 2018, 57, 8170–8173.

[16]

Huang, R. J.; Liu, Y. Y.; Fan, W.; Tan, J.; Xiao, F. R.; Qian, L. H.; Li, L. F. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. J. Am. Chem. Soc. 2013, 135, 11469–11472.

[17]

Rebello, A.; Neumeier, J. J.; Gao, Z. S.; Qi, Y. P.; Ma, Y. W. Giant negative thermal expansion in La-doped CaFe2As2. Phys. Rev. B 2012, 86, 104303.

[18]

Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P. Pronounced negative thermal expansion from a simple structure: Cubic ScF3. J. Am. Chem. Soc. 2010, 132, 15496–15498.

[19]

Hester, B. R.; Wilkinson, A. P. Negative thermal expansion, response to pressure and phase transitions in CaTiF6. Inorg. Chem. 2018, 57, 11275–11281.

[20]

Hancock, J. C.; Chapman, K. W.; Halder, G. J.; Morelock, C. R.; Kaplan, B. S.; Gallington, L. C.; Bongiorno, A.; Han, C.; Zhou, S.; Wilkinson, A. P. Large negative thermal expansion and anomalous behavior on compression in cubic ReO3-type AIIBIVF6: CaZrF6 and CaHfF6. Chem. Mater. 2015, 27, 3912–3918.

[21]

Hu, L.; Chen, J.; Xu, J. L.; Wang, N.; Han, F.; Ren, Y.; Pan, Z.; Rong, Y. C.; Huang, R. J.; Deng, J. X. et al. Atomic linkage flexibility tuned isotropic negative, zero, and positive thermal expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn). J. Am. Chem. Soc. 2016, 138, 14530–14533.

[22]

Xu, J. L.; Hu, L.; Song, Y. Z.; Han, F.; Qiao, Y. Q.; Deng, J. X.; Chen, J.; Xing, X. R. Zero thermal expansion in cubic MgZrF6. J. Am. Ceram. Soc. 2017, 100, 5385–5388.

[23]

Hu, L.; Chen, J.; Sanson, A.; Wu, H.; Rodriguez, C. G.; Olivi, L.; Ren, Y.; Fan, L. L.; Deng, J. X. et al. New insights into the negative thermal expansion: Direct experimental evidence for the “guitar-string” effect in cubic ScF3. J. Am. Chem. Soc. 2016, 138, 8320–8323.

[24]

Morelock, C. R.; Gallington, L. C.; Wilkinson, A. P. Solid solubility, phase transitions, thermal expansion, and compressibility in Sc1−xAlxF3. J. Solid State Chem. 2015, 222, 96–102.

[25]

Morelock, C. R.; Gallington, L. C.; Wilkinson, A. P. Evolution of negative thermal expansion and phase transitions in Sc1−xTixF3. Chem. Mater. 2014, 26, 1936–1940.

[26]

Hu, L.; Chen, J.; Fan, L. L.; Ren, Y.; Huang, Q. Z.; Sanson, A.; Jiang, Z.; Zhou, M.; Rong, Y. C.; Wang, Y. et al. High-curie-temperature ferromagnetism in (Sc, Fe)F3 fluorides and its dependence on chemical valence. Adv. Mater. 2015, 27, 4592–4596.

[27]

Morelock, C. R.; Greve, B. K.; Gallington, L. C.; Chapman, K. W.; Wilkinson, A. P. Negative thermal expansion and compressibility of Sc1−xYxF3 (x < 0.25). J. Appl. Phys. 2013, 114, 213501.

[28]

Hu, L.; Chen, J.; Fan, L. L.; Ren, Y.; Rong, Y. C.; Pan, Z.; Deng, J. X.; Yu, R. B.; Xing, X. R. Zero thermal expansion and ferromagnetism in cubic Sc1−xMxF3 (M = Ga, Fe) over a wide temperature range. J. Am. Chem. Soc. 2014, 136, 13566–13569.

[29]

Han, F.; Hu, L.; Liu, Z. N.; Li, Q.; Wang, T.; Ren, Y.; Deng, J. X.; Chen, J.; Xing, X. R. Local structure and controllable thermal expansion in the solid solution (Mn1−xNix)ZrF6. Inorg. Chem. Front. 2017, 4, 343–347.

[30]

Chen, J.; Gao, Q. L.; Sanson, A.; Jiang, X. X.; Huang, Q. Z.; Carnera, A.; Rodriguez, C. G.; Olivi, L.; Wang, L.; Hu, L. et al. Tunable thermal expansion in framework materials through redox intercalation. Nat. Commun. 2017, 8, 14441.

[31]

Yang, C.; Zhang, Y. G.; Bai, J. M.; Qu, B. Y.; Tong, P.; Wang, M.; Lin, J. C.; Zhang, R. R.; Tong, H. Y.; Wu, Y. et al. Crossover of thermal expansion from positive to negative by removing the excess fluorines in cubic ReO3-type TiZrF7−x. J. Mater. Chem. C 2018, 6, 5148–5152.

[32]

Wang, T.; Xu, J. L.; Hu, L.; Wang, W.; Huang, R. J.; Han, F.; Pan, Z.; Deng, J. X.; Ren, Y.; Li, L. F. et al. Tunable thermal expansion and magnetism in Zr-doped ScF3. Appl. Phys. Lett. 2016, 109, 181901.

[33]

Hu, L.; Qin, F. Y.; Sanson, A.; Huang, L. F.; Pan, Z.; Li, Q.; Sun, Q.; Wang, L.; Guo, F. M.; Aydemir, U. et al. Localized symmetry breaking for tuning thermal expansion in ScF3 nanoscale frameworks. J. Am. Chem. Soc. 2018, 140, 4477–4480.

[34]

Gao, X. L.; Song, Y.; Liu, G. X.; Dong, X. T.; Wang, J. X.; Yu, W. S. Narrow-band red emitting phosphor BaTiF6:Mn4+: Preparation, characterization and application for warm white LED devices. Dalton Trans. 2016, 45, 17886–17895.

[35]

Huang, X.; Jiang, Y. G.; Zhang, L. F.; Guan, F.; Wang, Z. Y.; Yuan, X. Q.; He, J.; Zhang, L. Low thermal expansion ZBLAN-based glass ceramics containing CaZrF6 crystals. J. Am. Ceram. Soc. 2022, 105, 3959–3966.

[36]

Ying, D. F.; Ding, R.; Huang, Y. F.; Yan, T.; Huang, Y. X.; Tan, C. N.; Sun, X. J.; Gao, P.; Liu, E. H. Conversion/alloying pseudocapacitance-dominated perovskite KZnF3 anode for advanced lithium-based dual-ion batteries. Chem.—Eur. J. 2020, 26, 2798–2802.

[37]

Lloyd II, A. J.; Hester, B. R.; Baxter, S. J.; Ma, S. Y.; Prakapenka, V. B.; Tkachev, S. N.; Park, C. Y.; Wilkinson, A. P. Hybrid double perovskite containing helium: [He2][CaZr]F6. Chem. Mater. 2021, 33, 3132–3138.

[38]

Gao, Q. L.; Wang, J. Q.; Sanson, A.; Sun, Q.; Liang, E. J.; Xing, X. R.; Chen, J. Discovering large isotropic negative thermal expansion in framework compound AgB(CN)4 via the concept of average atomic volume. J. Am. Chem. Soc. 2020, 142, 6935–6939.

[39]

Gaudon, M.; Salek, G.; Kande, M.; Andron, I.; Frayret, C.; Durand, E.; Penin, N.; Duttine, M.; Wattiaux, A.; Jubera, V. CaSn(OH)6 hydroxides, CaSnO3 oxides and CaSnF6 fluorides: Synthesis and structural filiation. Cationic environment impact on Pr3+ doped compounds luminescence. J. Solid State Chem. 2018, 265, 291–298.

[40]

Rimmer, L. H. N.; Dove, M. T.; Goodwin, A. L.; Palmer, D. C. Acoustic phonons and negative thermal expansion in MOF-5. Phys. Chem. Chem. Phys. 2014, 16, 21144–21152.

[41]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[42]

Wang, Z. Y.; Wang, F.; Wang, L.; Jia, Y.; Su, Q. First-principles study of negative thermal expansion in zinc oxide. J. Appl. Phys. 2013, 114, 063508.

[43]

Gupta, M. K.; Singh, B.; Mittal, R.; Rols, S.; Chaplot, S. L. Lattice dynamics and thermal expansion behavior in the metal cyanides MCN (M = Cu, Ag, Au): Neutron inelastic scattering and first-principles calculations. Phys. Rev. B 2016, 93, 134307.

[44]

Karsch, F.; Patkós, A.; Petreczky, P. Screened perturbation theory. Phys. Lett. B 1997, 401, 69–73.

[45]

Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063–4066.

[46]

Ernst, G.; Broholm, C.; Kowach, G. R.; Ramirez, A. P. Phonon density of states and negative thermal expansion in ZrW2O8. Nature 1998, 396, 147–149.

[47]

Bandemehr, J.; Baumann, D.; Seibald, M.; Eklund, K.; Karttunen, A. J.; Kraus, F. Mn(IV)-substituted metal(II) hexafluorido metallates(IV): Synthesis, crystal structures, and luminescence properties. Eur. J. Inorg. Chem. 2021, 2021, 3861–3869.

[48]

Moehs, P. J.; Haendler, H. M. Fluorination of metal stannates. Inorg. Chem. 1968, 7, 2115–2118.

[49]

Hoffman, J. B.; Schleper, A. L.; Kamat, P. V. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3−x through halide exchange. J. Am. Chem. Soc. 2016, 138, 8603–8611.

[50]

Habibi, E.; Zahedifar, M.; Sadeghi, E. Synthesis and thermoluminescence analysis of LiBaF3: M (M = Cu, Ce, Er) nanoparticles. J. Lumin. 2021, 237, 118173.

[51]

Jiang, X. Y.; Pan, Y. X.; Huang, S. M.; Chen, X. A.; Wang, J. G.; Liu, G. K. Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6: Mn4+ for LED applications. J. Mater. Chem. C 2014, 2, 2301–2306.

[52]

Zhu, X. H.; Zhang, Z.; Shen, J. Kinetics and mechanism of adsorption of phosphate on fluorine-containing calcium silicate. J. Wuhan Univ. Technol. 2016, 31, 321–327.

[53]

Amalraj, A.; Pavadai, R.; Perumal, P. Recyclable target metal-enhanced fluorometric naked eye aptasensor for the detection of Pb2+ and Ag+ ions based on the structural change of CaSnO3@PDANS-constrained GC-rich ssDNA. ACS Omega 2021, 6, 30580–30597.

[54]

Pollak, R. A.; Ley, L.; McFeely, F. R.; Kowalczyk, S. P.; Shirley, D. A. Characteristic energy loss structure of solids from X-ray photoemission spectra. J. Electron Spectrosc. Relat. Phenom. 1974, 3, 381–398.

[55]

Mayer, H. W.; Reinen, D.; Heger, G. Struktur und bindung in Übergangsmetall-fluoriden MIIMeIVF6: Neutronenbeugungs-strukturuntersuchungen an CaSnF6, FeZrF6, und CrZrF6. J. Solid State Chem. 1983, 50, 213–224.

[56]

Sanson, A. On the switching between negative and positive thermal expansion in framework materials. Mater. Res. Lett. 2019, 7, 412–417.

[57]

Chapman, K. W.; Chupas, P. J.; Kepert, C. J. Compositional dependence of negative thermal expansion in the prussian blue analogues MIIPtIV(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd). J. Am. Chem. Soc. 2006, 128, 7009–7014.

[58]

Barrera, G. D.; Bruno, J. A. O.; Barron, T. H. K.; Allan, N. L. Negative thermal expansion. J. Phys.: Condens. Matter 2005, 17, R217–R252.

[59]

Gao, Q. L.; Shi, N. K.; Sun, Q.; Sanson, A.; Milazzo, R.; Carnera, A.; Zhu, H.; Lapidus, S. H.; Ren, Y.; Huang, Q. Z. et al. Low-frequency phonon driven negative thermal expansion in cubic GaFe(CN)6 prussian blue analogues. Inorg. Chem. 2018, 57, 10918–10924.

[60]
Liu, J. Z.; Jiao, Y. X.; Gao, Q. L.; Sun, Q.; Chen, J. Illuminating the negative thermal expansion mechanism of YFe(CN)6 via electronic structure and unusual phonon modes. J. Rare Earths, in press, https://doi.org/10.1016/j.jre.2022.07.011.
[61]

Gao, Y. X.; Wang, C. Y.; Gao, Q. L.; Guo, J.; Chao, M. J.; Jia, Y.; Liang, E. J. Zero thermal expansion in Ta2Mo2O11 by compensation effects. Inorg. Chem. 2020, 59, 18427–18431.

[62]

Sanson, A.; Giarola, M.; Mariotto, J.; Hu, L.; Chen, J.; Xing, X. R. Lattice dynamics and anharmonicity of CaZrF6 from Raman spectroscopy and ab initio calculations. Mater. Chem. Phys. 2016, 180, 213–218.

[63]

Yang, C.; Qu, B. Y.; Pan, S. S.; Zhang, L.; Zhang, R. R.; Tong, P.; Xiao, R. C.; Lin, J. C.; Guo, X. G.; Zhang, K. et al. Large positive thermal expansion and small band gap in double-ReO3-type compound NaSbF6. Inorg. Chem. 2017, 56, 4990–4995.

[64]

Gao, Q. L.; Sun, Y.; Shi, N. K.; Milazzo, R.; Pollastri, S.; Olivi, L.; Huang, Q. Z.; Liu, H.; Sanson, A.; Sun, Q. et al. Large isotropic negative thermal expansion in water-free Prussian blue analogues of ScCo(CN)6. Scripta Mater. 2020, 187, 119–124.

[65]

Lan, T.; Tang, X. L.; Fultz, B. Phonon anharmonicity of rutile TiO2 studied by Raman spectrometry and molecular dynamics simulations. Phys. Rev. B 2012, 85, 094305.

Nano Research
Pages 5964-5972
Cite this article:
Gao Q, Zhang S, Jiao Y, et al. A new isotropic negative thermal expansion material of CaSnF6 with facile and low-cost synthesis. Nano Research, 2023, 16(4): 5964-5972. https://doi.org/10.1007/s12274-022-5288-0
Topics:

3937

Views

19

Crossref

16

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 23 September 2022
Revised: 31 October 2022
Accepted: 02 November 2022
Published: 29 December 2022
© Tsinghua University Press 2022
Return