Journal Home > Volume 16 , Issue 5

The edge S sites of thermodynamically stable 2H MoS2 are active for hydrogen evolution reaction (HER) but the active sites are scarce. Despite the dominance of the basal S sites, they are generally inert to HER because of the low p-band center. Herein, we reported a synergistic combination of phase engineering and NH4+ intercalation to promote the HER performance of MoS2. The rational combination of 1T and 2H phases raises the p-band center of the basal S sites while the intercalated NH4+ ions further optimize and stabilize the electronic band of these sites. The S sites with regulated band structures afford moderate hydrogen adsorption, thus contributing to excellent HER performance over a wide pH range. In an acid medium, this catalyst exhibits a low overpotential of 169 mV at 10 mA·cm−2 and Tafel slope of 39 mV·dec−1 with robust stability, superior to most of recently reported MoS2-based non-noble catalysts. The combined use of in/ex-situ characterizations ravels that the appearance of more unpaired electrons at the Mo 4d-orbital reduces the d-band center which upshifts the p-band center of the adjacent S for essentially improved HER performance. This work provides guidelines for the future development of layered transition-metal-dichalcogenide catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution

Show Author's information Chao Meng1,2Yuanfeng Gao3Yue Zhou3( )Kang Sun4Yanmin Wang3Ye Han5( )Qianqian Zhao2Xuemin Chen6Han Hu1( )Mingbo Wu1
State Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, China
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China

Abstract

The edge S sites of thermodynamically stable 2H MoS2 are active for hydrogen evolution reaction (HER) but the active sites are scarce. Despite the dominance of the basal S sites, they are generally inert to HER because of the low p-band center. Herein, we reported a synergistic combination of phase engineering and NH4+ intercalation to promote the HER performance of MoS2. The rational combination of 1T and 2H phases raises the p-band center of the basal S sites while the intercalated NH4+ ions further optimize and stabilize the electronic band of these sites. The S sites with regulated band structures afford moderate hydrogen adsorption, thus contributing to excellent HER performance over a wide pH range. In an acid medium, this catalyst exhibits a low overpotential of 169 mV at 10 mA·cm−2 and Tafel slope of 39 mV·dec−1 with robust stability, superior to most of recently reported MoS2-based non-noble catalysts. The combined use of in/ex-situ characterizations ravels that the appearance of more unpaired electrons at the Mo 4d-orbital reduces the d-band center which upshifts the p-band center of the adjacent S for essentially improved HER performance. This work provides guidelines for the future development of layered transition-metal-dichalcogenide catalysts.

Keywords: molybdenum disulfide, hydrogen evolution, p-orbital electron structure, basal S sites, synergistic mechanism

References(56)

[1]

Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

[2]

Cai, C.; Liu, K.; Zhu, Y. M.; Li, P. C.; Wang, Q. Y.; Liu, B.; Chen, S. Y.; Li, H. J. W.; Zhu, L.; Li, H. M. et al. Optimizing hydrogen binding on Ru sites with RuCo alloy nanosheets for efficient alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, 202113664.

[3]

Li, Z. H.; Li, X. F.; Zhou, H.; Xu, Y.; Xu, S. M.; Ren, Y.; Yan, Y. F.; Yang, J. R.; Ji, K. Y.; Li, L. et al. Electrocatalytic synthesis of adipic acid coupled with H2 production enhanced by a ligand modification strategy. Nat. Commun. 2022, 13, 5009.

[4]

Liu, H.; Zhang, Z.; Li, M. X.; Wang, Z. L.; Zhang, X. H.; Li, T. S.; Li, Y. P.; Tian, S. B.; Kuang, Y.; Sun, X. M. Iridium doped pyrochlore ruthenates for efficient and durable electrocatalytic oxygen evolution in acidic media. Small 2022, 18, 2202513.

[5]

Zuo, S. W.; Wu, Z. P.; Zhang, H. B.; Lou, X. W. Operando monitoring and deciphering the structural evolution in oxygen evolution electrocatalysis. Adv. Energy Mater. 2022, 12, 2103383.

[6]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[7]

Li, P. S.; Duan, X. X.; Kuang, Y.; Sun, X. M. Iridium in tungsten trioxide matrix as an efficient Bi-functional electrocatalyst for overall water splitting in acidic media. Small 2021, 17, 2102078.

[8]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[9]

Qin, J. Y.; Xi, C.; Zhang, R.; Liu, T.; Zou, P. C.; Wu, D. Y.; Guo, Q. J.; Mao, J.; Xin, H. L.; Yang, J. Activating edge-Mo of 2H-MoS2 via coordination with pyridinic N-C for pH-universal hydrogen evolution electrocatalysis. ACS Catal. 2021, 11, 4486–4497.

[10]

Meng, X. Y.; Ma, C.; Jiang, L. Z.; Si, R.; Meng, X. G.; Tu, Y. C.; Yu, L.; Bao, X. H.; Deng, D. H. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 10502–10507.

[11]

Huang, X. L.; Leng, M.; Xiao, W.; Li, M.; Ding, J.; Tan, T. L.; Lee, W. S. V.; Xue, J. M. Activating basal planes and S-terminated edges of MoS2 toward more efficient hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1604943.

[12]

Geng, S.; Tian, F. Y.; Li, M. G.; Liu, Y. Q.; Sheng, J.; Yang, W. W.; Yu, Y. S.; Hou, Y. L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2021, 15, 1809–1816.

[13]

Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2020, 14, 1985–2002.

[14]

Meng, C.; Lin, M. C.; Du, X. W.; Zhou, Y. Molybdenum disulfide modified by laser irradiation for catalyzing hydrogen evolution. ACS Sustain. Chem. Eng. 2019, 7, 6999–7003.

[15]

Tsai, C.; Li, H.; Park, S.; Park, J.; Han, H. S.; Nørskov, J. K.; Zheng, X. L.; Abild-Pedersen, F. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun. 2017, 8, 15113.

[16]

Wu, X.; Zhang, H. B.; Zuo, S. W.; Dong, J. C.; Li, Y.; Zhang, J.; Han, Y. Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 2021, 13, 136.

[17]

Wang, Y. C.; Ren, B. Y.; Ou, J. Z.; Xu, K.; Yang, C. H.; Li, Y. X.; Zhang, H. J. Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Sci. Bull. 2021, 66, 1228–1252.

[18]

Wang, J. S.; Zhang, Z. F.; Song, H. R.; Zhang, B.; Liu, J.; Shai, X. X.; Miao, L. Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2008578.

[19]

Liu, X.; Ni, K.; Niu, C. J.; Guo, R. T.; Xi, W.; Wang, Z. Y.; Meng, J. S.; Li, J. T.; Zhu, Y. W.; Wu, P. J. et al. Upraising the O 2p orbital by integrating Ni with MoO2 for accelerating hydrogen evolution kinetics. ACS Catal. 2019, 9, 2275–2285.

[20]

Sun, Q.; Dai, Z. Y.; Zhang, Z. B.; Chen, Z. L.; Lin, H. Q.; Gao, Y.; Chen, D. J. Double perovskite PrBaCo2O5.5: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Power Sources 2019, 427, 194–200.

[21]

Xie, Z. J.; Huang, X.; Zhang, Z.; Xu, H. Identification of electronic descriptors for catalytic activity of transition-metal and non-metal doped MoS2. Phys. Chem. Chem. Phys. 2021, 23, 15101–15106.

[22]

Liu, M. J.; Hybertsen, M. S.; Wu, Q. A physical model for understanding the activation of MoS2 basal-plane sulfur atoms for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 14835–14841.

[23]

Liu, P. T.; Zhu, J. Y.; Zhang, J. Y.; Tao, K.; Gao, D. Q.; Xi, P. X. Active basal plane catalytic activity and conductivity in Zn doped MoS2 nanosheets for efficient hydrogen evolution. Electrochim. Acta 2018, 260, 24–30.

[24]

Xu, L. N.; Zhang, Y. H.; Feng, L. L.; Li, X.; Cui, Y. Y.; An, Q. Active basal plane catalytic activity via interfacial engineering for a finely tunable conducting polymer/MoS2 hydrogen evolution reaction multilayer structure. ACS Appl. Mater. Interfaces 2021, 13, 734–744.

[25]

Maiti, P. S.; Ganai, A. K.; Bar-Ziv, R.; Enyashin, A. N.; Houben, L.; Bar Sadan, M. Cu2−xS-MoS2 nano-octahedra at the atomic scale: Using a template to activate the basal plane of MoS2 for hydrogen production. Chem. Mater. 2018, 30, 4489–4492.

[26]

He, H. N.; Li, X. L.; Huang, D.; Luan, J. Y.; Liu, S. L.; Pang, W. K.; Sun, D.; Tang, Y. G.; Zhou, W. Z.; He, L. R. et al. Electron-injection-engineering induced phase transition toward stabilized 1T-MoS2 with extraordinary sodium storage performance. ACS Nano 2021, 15, 8896–8906.

[27]

Tong, X.; Li, Y.; Ruan, Q. D.; Pang, N.; Zhou, Y.; Wu, D. J.; Xiong, D. Y.; Xu, S. H.; Wang, L. W.; Chu, P. K. Plasma engineering of basal sulfur sites on MoS2@Ni3S2 nanorods for the alkaline hydrogen evolution reaction. Adv. Sci. 2022, 9, 2104774.

[28]

Li, G. W.; Huang, J.; Yang, Q.; Zhang, L. G.; Mu, Q. G.; Sun, Y.; Parkin, S.; Chang, K.; Felser, C. MoS2 on topological insulator Bi2Te3 thin films: Activation of the basal plane for hydrogen reduction. J. Energy Chem. 2021, 62, 516–522.

[29]

Luo, Z. Y.; Li, J. J.; Li, Y. L.; Wu, D. J.; Zhang, L.; Ren, X. Z.; He, C. X.; Zhang, Q. L.; Gu, M.; Sun, X. L. Band engineering induced conducting 2H-phase MoS2 by Pd-S-Re sites modification for hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2103823.

[30]

Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T. P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.

[31]

Jiménez Sandoval, S.; Yang, D.; Frindt, R. F.; Irwin, J. C. Raman study and lattice dynamics of single molecular layers of MoS2. Phys. Rev. B 1991, 44, 3955–3962.

[32]

Lu, J.; Wang, H.; Sun, Y. X.; Wang, X. Y.; Song, X. M.; Wang, R. F. Charge state manipulation induced through cation intercalation into MnO2 sheet arrays for efficient water splitting. Chem. Eng. J. 2021, 417, 127894.

[33]

Al-Temimy, A.; Prenger, K.; Golnak, R.; Lounasvuori, M.; Naguib, M.; Petit, T. Impact of cation intercalation on the electronic structure of Ti3C2Tx MXenes in sulfuric acid. ACS Appl. Mater. Interfaces 2020, 12, 15087–15094.

[34]

Chen, X.; Liu, Y. Q.; Gao, W. C.; Yang, G.; Qureshi, A. H.; Chen, M.; Yao, X. J.; Zhou, M.; Zhang, X. Y.; Liu, Y. J. High electrocatalytic activity of defected MX2/graphene heterostructures (M = Mo, W; X = S, Se) for hydrogen evolution reaction. J. Phys. Chem. C 2021, 125, 15292–15300.

[35]

Wang, L. C.; Gao, W. C.; Chen, X.; Liu, Y. Q.; Qureshi, A. H.; Liu, Y. J.; Chen, M.; Zhang, X. Y.; Guo, Y. L.; Wang, J. L. Charge-modulated VS2 monolayer for effective hydrogen evolution reaction. J. Phys. Chem. C 2021, 125, 12004–12011.

[36]

Ali, H.; Golnak, R.; Seidel, R.; Winter, B.; Xiao, J. In-situ X-ray spectroscopy of the electric double layer around TiO2 nanoparticles dispersed in aqueous solution: Implications for H2 generation. ACS Appl. Nano Mater. 2020, 3, 264–273.

[37]

Singh, Y. D.; Mahanta, P.; Bora, U. Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew. Energy 2017, 103, 490–500.

[38]

Tan, S.; Shi, J. J.; Yu, B. C.; Zhao, W. Y.; Li, Y. S.; Li, Y. M.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Meng, Q. B. Inorganic ammonium halide additive strategy for highly efficient and stable CsPbI3 perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2010813.

[39]

Wang, D. Z.; Zhang, X. Y.; Bao, S. Y.; Zhang, Z. T.; Fei, H.; Wu, Z. Z. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 2017, 5, 2681–2688.

[40]

Gong, S.; Zhao, G. Y.; Lyu, P. B.; Sun, K. N. Insights into the intrinsic capacity of interlayer-expanded MoS2 as a Li-ion intercalation host. J. Mater. Chem. A 2019, 7, 1187–1195.

[41]

Wu, C. Q.; Fang, Q.; Liu, Q.; Liu, D. B.; Wang, C. D.; Xiang, T.; Khalil, A.; Chen, S. M.; Song, L. Engineering interfacial charge-transfer by phase transition realizing enhanced photocatalytic hydrogen evolution activity. Inorg. Chem. Front. 2017, 4, 663–667.

[42]

Zhu, J. Q.; Wang, Z. C.; Yu, H.; Li, N.; Zhang, J.; Meng, J. L.; Liao, M. Z.; Zhao, J.; Lu, X. B.; Du, L. J. et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 2017, 139, 10216–10219.

[43]

Li, Y.; Zuo, S. W.; Li, Q. H.; Wu, X.; Zhang, J.; Zhang, H. B.; Zhang, J. Vertically aligned MoS2 with in-plane selectively cleaved Mo–S bond for hydrogen production. Nano Lett. 2021, 21, 1848–1855.

[44]

Sun, B.; Shi, T. L.; Liu, Z. Y.; Wu, Y. N.; Zhou, J. X.; Liao, G. L. Large-area flexible photodetector based on atomically thin MoS2/graphene film. Mater. Des. 2018, 154, 1–7.

[45]

Shang, B.; Cui, X. Q.; Jiao, L.; Qi, K.; Wang, Y. W.; Fan, J. C.; Yue, Y. Y.; Wang, H. Y.; Bao, Q. L.; Fan, X. F. et al. Lattice-mismatch-induced ultrastable 1T-Phase MoS2-Pd/Au for plasmon-enhanced hydrogen evolution. Nano Lett. 2019, 19, 2758–2764.

[46]

Lin, X. Y.; Wang, J.; Chu, Z. Y.; Liu, D. Q.; Guo, T. T.; Yang, L. N.; Huang, Z. Y.; Mu, S. T.; Li, S. The optimization of hydrothermal process of MoS2 nanosheets and their good microwave absorption performances. Chin. Chem. Lett. 2020, 31, 1124–1128.

[47]

Cheng, Z. H.; Xiao, Y. K.; Wu, W. P.; Zhang, X. Q.; Fu, Q.; Zhao, Y.; Qu, L. T. All-pH-tolerant in-plane heterostructures for efficient hydrogen evolution reaction. ACS Nano 2021, 15, 11417–11427.

[48]

Zhang, G.; Liu, H. J.; Qu, J. H.; Li, J. H. Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy Environ. Sci. 2016, 9, 1190–1209.

[49]

Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; Xie, L. B.; Zhuang, Z. C.; Sun, C.; Wang, J.; Tang, M.; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T'-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res. 2022, 15, 5946–5952.

[50]

Wang, W.; Wu, Y. X.; Lin, Y. X.; Yao, J. X.; Wu, X. S.; Wu, C. Q.; Zuo, X. Q.; Yang, Q.; Ge, B. H.; Yang, L. et al. Confining zero-valent platinum single atoms in α-MoC1−x for pH-universal hydrogen evolution reaction. Adv. Funct. Mater. 2022, 32, 2108464.

[51]

Attanayake, N. H.; Thenuwara, A. C.; Patra, A.; Aulin, Y. V.; Tran, T. M.; Chakraborty, H.; Borguet, E.; Klein, M. L.; Perdew, J. P.; Strongin, D. R. Effect of intercalated metals on the electrocatalytic activity of 1T-MoS2 for the hydrogen evolution reaction. ACS Energy Lett. 2018, 3, 7–13.

[52]

Chen, Y.; Zhang, G.; Ji, Q. H.; Liu, H. J.; Qu, J. H. Triggering of low-valence molybdenum in multiphasic MoS2 for effective reactive oxygen species output in catalytic fenton-like reactions. ACS Appl. Mater. Interfaces 2019, 11, 26781–26788.

[53]

Li, H. Y.; Jia, X. F.; Zhang, Q.; Wang, X. Metallic transition-metal dichalcogenide nanocatalysts for energy conversion. Chem 2018, 4, 1510–1537.

[54]

Liu, L.; Yang, W. J.; Chen, H. D.; Chen, X. T.; Zhang, K. Q.; Zeng, Q.; Lei, S. L.; Huang, J. J.; Li, S. J.; Peng, S. L. High zinc-ion intercalation reaction activity of MoS2 cathode based on regulation of thermodynamic metastability and interlayer water. Electrochim. Acta 2022, 410, 140016.

[55]

Sharma, S. K.; Porter, J. N.; Misra, A. K.; Acosta-Maeda, T. E.; Angel, S. M.; McKay, C. P. Standoff Raman spectroscopy for future Europa Lander missions. J. Raman Spectrosc. 2020, 51, 1782–1793.

[56]

Chen, J. Z.; Liu, G. G.; Zhu, Y. Z.; Su, M.; Yin, P. F.; Wu, X. J.; Lu, Q. P.; Tan, C. L.; Zhao, M. T.; Liu, Z. Q. et al. Ag@MoS2 core–shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2. J. Am. Chem. Soc. 2020, 142, 7161–7167.

File
12274_2022_5287_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 September 2022
Revised: 27 October 2022
Accepted: 31 October 2022
Published: 14 December 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51901115 and 51802075), the Shandong Provincial Natural Science Foundation, China (Nos. ZR2019PEM001, ZR2019BB009, and ZR2020ZD08), and the Young Talents Program in University of Hebei Province, China (No. BJ2019002).

Return