Journal Home > Volume 16 , Issue 5

High-efficiency and low-cost near-infrared (NIR) emitting quantum dots (QDs) are highly desirable for next-generation intrinsically flexible NIR light sources. Halide passivation is commonly employed to passivate surface traps to obtain high-quality NIR-emitting PbS QDs, but this procedure requires high temperature and inert atmospheres. Here we develop a facile room-temperature halide passivation method for highly efficient NIR-emitting PbS QDs by employing crown ethers as a unique auxiliary additive. Experimental and theoretical investigations reveal that the formation of K+-crown ethers complex effectively facilitates the dissociation of KCl in toluene and releases more Cl ions for extraordinary halide passivation at room temperature and in the air, thus improving the photoluminescence quantum yield from 24% to 35% in solution and further to 44% in blend films. The well-passivated PbS QD films are integrated with red organic light-emitting diodes (OLEDs) and the resulting QD-OLEDs exhibit high-performance NIR emission centered at 887 nm, a high external quantum efficiency of 5.2% at a radiance of 10 W·sr−1·m−2, and superior operational stability with long lifetime T90 of 188 h at the current density of 25 mA·cm−2. We also construct a large-area NIR QD-OLED (5 cm × 5 cm) with desirable uniform emission. This work opens a new avenue to achieve robust large-area NIR planar light sources for broad applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Crown ether-assisted room-temperature halide passivation for high-efficiency PbS quantum dots enabling large-area and long-lifetime near-infrared QD-OLEDs

Show Author's information Zhen Jia1Haoyun Shao1Jingyi Xu1Yu Dai1Juan Qiao1,2( )
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
Laboratory for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China

Abstract

High-efficiency and low-cost near-infrared (NIR) emitting quantum dots (QDs) are highly desirable for next-generation intrinsically flexible NIR light sources. Halide passivation is commonly employed to passivate surface traps to obtain high-quality NIR-emitting PbS QDs, but this procedure requires high temperature and inert atmospheres. Here we develop a facile room-temperature halide passivation method for highly efficient NIR-emitting PbS QDs by employing crown ethers as a unique auxiliary additive. Experimental and theoretical investigations reveal that the formation of K+-crown ethers complex effectively facilitates the dissociation of KCl in toluene and releases more Cl ions for extraordinary halide passivation at room temperature and in the air, thus improving the photoluminescence quantum yield from 24% to 35% in solution and further to 44% in blend films. The well-passivated PbS QD films are integrated with red organic light-emitting diodes (OLEDs) and the resulting QD-OLEDs exhibit high-performance NIR emission centered at 887 nm, a high external quantum efficiency of 5.2% at a radiance of 10 W·sr−1·m−2, and superior operational stability with long lifetime T90 of 188 h at the current density of 25 mA·cm−2. We also construct a large-area NIR QD-OLED (5 cm × 5 cm) with desirable uniform emission. This work opens a new avenue to achieve robust large-area NIR planar light sources for broad applications.

Keywords: light-emitting diode, near-infrared emission, PbS quantum dot, chloride surface passivation, crown ether

References(59)

[1]

Sargent, E. H. Infrared quantum dots. Adv. Mater. 2005, 17, 515–522.

[2]

Jia, Z. W.; Yuan, C. X.; Liu, Y. F.; Wang, X. J.; Sun, P.; Wang, L.; Jiang, H. C.; Jiang, J. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources. Light-Sci. Appl. 2020, 9, 86.

[3]

Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T. et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photonics 2017, 11, 366–371.

[4]

Murphy, C. J. Optical sensing with quantum dots. Anal. Chem. 2002, 74, 520A–526A.

[5]

Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 2004, 22, 93–97.

[6]

Yun, S. H.; Kwok, S. J. J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 2017, 1, 0008.

[7]

Someya, T.; Bao, Z. N.; Malliaras, G. G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385.

[8]

Gao, L.; Quan, L. N.; De Arquer, F. P. G.; Zhao, Y. B.; Munir, R.; Proppe, A.; Quintero-Bermudez, R.; Zou, C. Q.; Yang, Z. Y.; Saidaminov, M. I. et al. Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nat. Photonics 2020, 14, 227–233.

[9]

Pradhan, S.; Di Stasio, F.; Bi, Y.; Gupta, S.; Christodoulou, S.; Stavrinadis, A.; Konstantatos, G. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 2019, 14, 72–79.

[10]

Pradhan, S.; Dalmases, M.; Konstantatos, G. Solid-state thin-film broadband short-wave infrared light emitters. Adv. Mater. 2020, 32, 2003830.

[11]

Huang, W. T.; Yoon, S. Y.; Wu, B. H.; Lu, K. M.; Lin, C. M.; Yang, H.; Liu, R. S. Ultra-broadband near-infrared emission CuInS2/ZnS quantum dots with high power efficiency and stability for the theranostic applications of mini light-emitting diodes. Chem. Commun. 2020, 56, 8285–8288.

[12]

Yin, Q. Y.; Zhang, W. C.; Zhou, Y.; Wang, R. Z.; Zhao, Z. Y.; Liu, C. High efficiency luminescence from PbS quantum dots embedded glasses for near-infrared light emitting diodes. J. Lumin. 2022, 250, 119065.

[13]

Huang, X. J.; Fang, Z. J.; Kang, S. L.; Peng, W. C.; Dong, G. P.; Zhou, B.; Ma, Z. J.; Zhou, S. F.; Qiu, J. R. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission. J. Mater. Chem. C 2017, 5, 7927–7934.

[14]

Litvin, A. P.; Babaev, A. A.; Dubavik, A.; Cherevkov, S. A.; Parfenov, P. S.; Ushakova, E. V.; Baranov, M. A.; Andreeva, O. V.; Purcell-Milton, F.; Gun’ko, Y. et al. Strong enhancement of PbS quantum dot NIR emission using plasmonic semiconductor nanocrystals in nanoporous silicate matrix. Adv. Opt. Mater. 2018, 6, 1701055.

[15]

Zhang, Y.; Miao, S. H.; Liang, Y. J.; Liang, C.; Chen, D. X.; Shan, X. H.; Sun, K. N.; Wang, X. J. Blue LED-pumped intense short-wave infrared luminescence based on Cr3+-Yb3+-co-doped phosphors. Light Sci. Appl. 2022, 11, 136.

[16]

Wilson, J. S.; Chawdhury, N.; Al-Mandhary, M. R. A.; Younus, M.; Khan, M. S.; Raithby, P. R.; Köhler, A.; Friend, R. H. The energy gap law for triplet states in Pt-containing conjugated polymers and monomers. J. Am. Chem. Soc. 2001, 123, 9412–9417.

[17]

Xue, J.; Xin, L. J.; Hou, J. Y.; Duan, L.; Wang, R. J.; Wei, Y.; Qiao, J. Homoleptic facial Ir(III) complexes via facile synthesis for high-efficiency and low-roll-off near-infrared organic light-emitting diodes over 750 nm. Chem. Mater. 2017, 29, 4775–4782.

[18]

Ly, K. T.; Chen-Cheng, R. W.; Lin, H. W.; Shiau, Y. J.; Liu, S. H.; Chou, P. T.; Tsao, C. S.; Huang, Y. C.; Chi, Y. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photonics 2017, 11, 63–68.

[19]

Wei, Y. C.; Wang, S. F.; Hu, Y.; Liao, L. S.; Chen, D. G.; Chang, K. H.; Wang, C. W.; Liu, S. H.; Chan, W. H.; Liao, J. L. et al. Overcoming the energy gap law in near-infrared OLEDs by exciton-vibration decoupling. Nat. Photonics 2020, 14, 570–577.

[20]

Wang, S. F.; Yuan, Y.; Wei, Y. C.; Chan, W. H.; Fu, L. W.; Su, B. K.; Chen, I. Y.; Chou, K. J.; Chen, P. T.; Hsu, H. F. et al. Highly efficient near-infrared electroluminescence up to 800 nm using platinum(II) phosphors. Adv. Funct. Mater. 2020, 30, 2002173.

[21]

Cao, Y.; Wang, N. N.; Tian, H.; Guo, J. S.; Wei, Y. Q.; Chen, H.; Miao, Y. F.; Zou, W.; Pan, K.; He, Y. R. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253.

[22]

Xu, W. D.; Hu, Q.; Bai, S.; Bao, C. X.; Miao, Y. F.; Yuan, Z. C.; Borzda, T.; Barker, A. J.; Tyukalova, E.; Hu, Z. J. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 2019, 13, 418–424.

[23]

Teng, P. P.; Reichert, S.; Xu, W. D.; Yang, S. C.; Fu, F.; Zou, Y. T.; Yin, C. Y.; Bao, C. X.; Karlsson, M.; Liu, X. J. et al. Degradation and self-repairing in perovskite light-emitting diodes. Matter 2021, 4, 3710–3724.

[24]

Guo, B. B.; Lai, R. C.; Jiang, S. J.; Zhou, L. M.; Ren, Z. X.; Lian, Y. X.; Li, P. Y.; Cao, X. H.; Xing, S. Y.; Wang, Y. X. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photonics 2022, 16, 637–643.

[25]

Konstantatos, G.; Huang, C. J.; Levina, L.; Lu, Z. H.; Sargent, E. H. Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots. Adv. Funct. Mater. 2005, 15, 1865–1869.

[26]

Supran, G. J.; Song, K. W.; Hwang, G. W.; Correa, R. E.; Scherer, J.; Dauler, E. A.; Shirasaki, Y.; Bawendi, M. G.; Bulović, V. High-performance shortwave-infrared light-emitting devices using core–shell (PbS-CdS) colloidal quantum dots. Adv. Mater. 2015, 27, 1437–1442.

[27]

Vasilopoulou, M.; Kim, H. P.; Kim, B. S.; Papadakis, M.; Gavim, A. E. X.; Macedo, A. G.; Da Silva, W. J.; Schneider, F. K.; Teridi, M. A. M.; Coutsolelos, A. G. et al. Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window. Nat. Photonics 2020, 14, 50–56.

[28]

Bin, S.; Vafaie, M.; Levina, L.; Wei, M. Y.; Dong, Y. T.; Gao, Y. J.; Kung, H. T.; Biondi, M.; Proppe, A. H.; Chen, B. et al. Ligand-assisted reconstruction of colloidal quantum dots decreases trap state density. Nano Lett. 2020, 20, 3694–3702.

[29]

Chen, E. C.; Yeh, H. C.; Chao, Y. C.; Meng, H. F.; Zan, H. W.; Liang, Y. C.; Huang, C. P.; Chen, T. M.; Wang, C. F.; Chueh, C. C. et al. Infrared proximity sensor using organic light-emitting diode with quantum dots converter. Org. Electron. 2012, 13, 2312–2318.

[30]

Hines, M. A.; Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844–1849.

[31]

Wise, F. W. Lead salt quantum dots: The limit of strong quantum confinement. Acc. Chem. Res. 2000, 33, 773–780.

[32]

Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J. C.; Hens, Z. Size-tunable, bright, and stable pbs quantum dots: A surface chemistry study. ACS Nano 2011, 5, 2004–2012.

[33]

Liu, H. C.; Zhong, H. Y.; Zheng, F. K.; Xie, Y.; Li, D. P.; Wu, D.; Zhou, Z. M.; Sun, X. W.; Wang, K. Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes. Chin. Phys. B 2019, 28, 128504.

[34]

Cao, Y. M.; Stavrinadis, A.; Lasanta, T.; So, D.; Konstantatos, G. The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 2016, 1, 16035.

[35]

Zherebetskyy, D.; Scheele, M.; Zhang, Y. J.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344, 1380–1384.

[36]

Woo, J. Y.; Ko, J. H.; Song, J. H.; Kim, K.; Choi, H.; Kim, Y. H.; Lee, D. C.; Jeong, S. Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe (100). J. Am. Chem. Soc. 2014, 136, 8883–8886.

[37]

Zhang, X. S.; Chen, Y. J.; Lian, L. Y.; Zhang, Z. Z.; Liu, Y. X.; Song, L.; Geng, C.; Zhang, J. B.; Xu, S. Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application. Nano Res. 2021, 14, 628–634.

[38]

Cademartiri, L.; Bertolotti, J.; Sapienza, R.; Wiersma, D. S.; Von Freymann, G.; Ozin, G. A. Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. J. Phys. Chem. B 2006, 110, 671–673.

[39]

Zhang, J. B.; Gao, J. B.; Miller, E. M.; Luther, J. M.; Beard, M. C. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 2014, 8, 614–622.

[40]

Tan, L.; Zhou, Y. F.; Ren, F. Q.; Benetti, D.; Yang, F.; Zhao, H. G.; Rosei, F.; Chaker, M.; Ma, D. L. Ultrasmall PbS quantum dots: A facile and greener synthetic route and their high performance in luminescent solar concentrators. J. Mater. Chem. A 2017, 5, 10250–10260.

[41]

Weidman, M. C.; Beck, M. E.; Hoffman, R. S.; Prins, F.; Tisdale, W. A. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 2014, 8, 6363–6371.

[42]

Fan, J. Z.; Andersen, N. T.; Biondi, M.; Todorović, P.; Sun, B.; Ouellette, O.; Abed, J.; Sagar, L. K.; Choi, M. J.; Hoogland, S. et al. Mixed lead halide passivation of quantum dots. Adv. Mater. 2019, 31, 1904304.

[43]

Winslow, S. W.; Liu, Y.; Swan, J. W.; Tisdale, W. A. Quantification of a PbClx shell on the surface of PbS nanocrystals. ACS Mater. Lett. 2019, 1, 209–216.

[44]

Colbert, A. E.; Placencia, D.; Ratcliff, E. L.; Boercker, J. E.; Lee, P.; Aifer, E. H.; Tischler, J. G. Enhanced infrared photodiodes based on PbS/PbClx core/shell nanocrystals. ACS Appl. Mater. Interfaces 2021, 13, 58916–58926.

[45]

Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396.

[46]

Bernales, V. S.; Marenich, A. V.; Contreras, R.; Cramer, C. J.; Truhlar, D. G. Quantum mechanical continuum solvation models for ionic liquids. J. Phys. Chem. B 2012, 116, 9122–9129.

[47]

Voznyy, O.; Levina, L.; Fan, J. Z.; Askerka, M.; Jain, A.; Choi, M. J.; Ouellette, O.; Todorović, P.; Sagar, L. K.; Sargent, E. H. Machine learning accelerates discovery of optimal colloidal quantum dot synthesis. ACS Nano 2019, 13, 11122–11128.

[48]

Gilmore, R. H.; Liu, Y.; Shcherbakov-Wu, W.; Dahod, N. S.; Lee, E. M. Y.; Weidman, M. C.; Li, H. S.; Jean, J.; Bulović, V.; Willard, A. P. et al. Epitaxial dimers and Auger-assisted detrapping in PbS quantum dot solids. Matter 2019, 1, 250–265.

[49]

Zhang, Y. J.; Hellebusch, D. J.; Bronstein, N. D.; Ko, C.; Ogletree, D. F.; Salmeron, M.; Alivisatos, A. P. Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport. Nat. Commun. 2016, 7, 11924.

[50]

Gokel, G. W.; Leevy, W. M.; Weber, M. E. Crown ethers: Sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 2004, 104, 2723–2750.

[51]

Choi, C. M.; Heo, J.; Kim, N. J. Binding selectivity of dibenzo-18-crown-6 for alkali metal cations in aqueous solution: A density functional theory study using a continuum solvation model. Chem. Cent. J. 2012, 6, 84.

[52]

Pederson, L. R. Two-dimensional chemical-state plot for lead using XPS. J. Electron Spectros. Relat. Phenomena 1982, 28, 203–209.

[53]
Haynes, W. M. Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, 2016.
[54]

Cheng, C.; Li, J. J.; Cheng, X. Y. Photoluminescence lifetime and absorption spectrum of PbS nanocrystal quantum dots. J. Lumin. 2017, 188, 252–257.

[55]

Wang, X. B.; Yan, X. S.; Li, W. W.; Sun, K. Doped quantum dots for white-light-emitting diodes without reabsorption of multiphase phosphors. Adv. Mater. 2012, 24, 2742–2747.

[56]

Li, J. S.; Tang, Y.; Li, Z. T.; Li, J. X.; Ding, X. R.; Yu, B. H.; Yu, S. D.; Ou, J. Z.; Kuo, H. C. Toward 200 lumens per watt of quantum-dot white-light-emitting diodes by reducing reabsorption loss. ACS Nano 2021, 15, 550–562.

[57]

Liu, Y.; Kim, D.; Morris, O. P.; Zhitomirsky, D.; Grossman, J. C. Origins of the Stokes shift in PbS quantum dots: Impact of polydispersity, ligands, and defects. ACS Nano 2018, 12, 2838–2845.

[58]

Darwin, E.; Heyes, A.; Hirt, P. A.; Wikramanayake, T. C.; Jimenez, J. J. Low-level laser therapy for the treatment of androgenic alopecia: A review. Lasers Med. Sci. 2018, 33, 425–434.

[59]

Chung, H.; Dai, T. H.; Sharma, S. K.; Huang, Y. Y.; Carroll, J. D.; Hamblin, M. R. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 2012, 40, 516–533.

File
12274_2022_5286_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 September 2022
Revised: 18 October 2022
Accepted: 31 October 2022
Published: 16 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2020YFA0715000) and the National Natural Science Foundation of China (No. 51773109). We are very grateful to Prof. Hao Zhang for his valuable suggestion on our manuscript.

Return