Journal Home > Volume 16 , Issue 5

Silicon anodes have been extensively studied as a potential alternative to graphite ones for Li-ion batteries. However, their commercial application is limited by the issues of the poor structural and interfacial stability. In this regard, one of the key strategies for fully exploiting the capacity potential of Si-based anodes is to design robust conductive binder networks. Although the amount of binder in the electrode is small, it is, however, considered as a critical component of Si-based anodes for Li-ion batteries. In this review, a brief summary is given from the structural and functional aspects of the existing binders for Si anodes. In particular, three-dimensional and multifunctional polymeric binders with excellent electrical conductivity, flexibility, and adhesion prepared by chemical bonding, electrostatic and coordination interactions have become the focus of research, and are expected to accelerate the practical application of silicon anodes. Lastly, some suggestions for the future development of Si anodic binders are put forward.


menu
Abstract
Full text
Outline
About this article

A review of existing and emerging binders for silicon anodic Li-ion batteries

Show Author's information Yanxiu Liu1Rong Shao1( )Ruiyu Jiang1Xinyu Song1Zhong Jin2( )Lin Sun1,2( )
Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chmistry, MOE Key laboratory of High Performance Polymer Materials and Technology, Jiangsu Key laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Abstract

Silicon anodes have been extensively studied as a potential alternative to graphite ones for Li-ion batteries. However, their commercial application is limited by the issues of the poor structural and interfacial stability. In this regard, one of the key strategies for fully exploiting the capacity potential of Si-based anodes is to design robust conductive binder networks. Although the amount of binder in the electrode is small, it is, however, considered as a critical component of Si-based anodes for Li-ion batteries. In this review, a brief summary is given from the structural and functional aspects of the existing binders for Si anodes. In particular, three-dimensional and multifunctional polymeric binders with excellent electrical conductivity, flexibility, and adhesion prepared by chemical bonding, electrostatic and coordination interactions have become the focus of research, and are expected to accelerate the practical application of silicon anodes. Lastly, some suggestions for the future development of Si anodic binders are put forward.

Keywords: interface, lithium ion battery, silicon anode, cycle stability, binder design

References(123)

[1]

Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.

[2]

Heydarian, A.; Mousavi, S. M.; Vakilchap, F.; Baniasadi, M. Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. J. Power Sources 2018, 378, 19–30.

[3]

Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308.

[4]

Wu, S. P.; Han, C. P.; Iocozzia, J.; Lu, M. J.; Ge, R. Y.; Xu, R.; Lin, Z. Q. Germanium-based nanomaterials for rechargeable batteries. Angew. Chem., Int. Ed. 2016, 55, 7898–7922.

[5]

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

[6]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[7]

Sun, L.; Liu, Y. X.; Wu, J.; Shao, R.; Jiang, R. Y.; Tie, Z.; Jin, Z. A review on recent advances for boosting initial coulombic efficiency of silicon anodic lithium ion batteries. Small 2022, 18, 2102894.

[8]

Sun, L.; Liu, Y. X.; Shao, R.; Wu, J.; Jiang, R. Y.; Jin, Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 2022, 46, 482–502.

[9]

Xie, J.; Sun, L.; Liu, Y. X.; Xi, X. G.; Chen, R. Y.; Jin, Z. SiOx/C-Ag nanosheets derived from Zintl phase CaSi2 via a facile redox reaction for high performance lithium storage. Nano Res. 2022, 15, 395–400.

[10]

Sun, L.; Xie, J.; Huang, S. C.; Liu, Y. X.; Zhang, L.; Wu, J.; Jin, Z. Rapid CO2 exfoliation of Zintl phase CaSi2-derived ultrathin free-standing Si/SiOx/C nanosheets for high-performance lithium storage. Sci. China Mater. 2022, 65, 51–58.

[11]

Wang, F.; Song, C. S.; Zhao, B. X.; Sun, L.; Du, H. B. One-pot solution synthesis of carbon-coated silicon nanoparticles as an anode material for lithium-ion batteries. Chem. Commun. 2020, 56, 1109–1112.

[12]

Zhou, X. Y.; Ren, Y. P.; Yang, J.; Ding, J.; Zhang, J. M.; Hu, T. J.; Tang, J. J. Si nanoflake-assembled blocks towards high initial coulombic efficiency anodes for lithium-ion batteries. Chem. Commun. 2018, 54, 12214–12217.

[13]

Chen, S.; Chen, Z.; Luo, Y. J.; Xia, M.; Cao, C. B. Silicon hollow sphere anode with enhanced cycling stability by a template-free method. Nanotechnology 2017, 28, 165404.

[14]

Cao, W. Y.; Han, K.; Chen, M. X.; Ye, H. Q.; Sang, S. B. Particle size optimization enabled high initial coulombic efficiency and cycling stability of micro-sized porous Si anode via AlSi alloy powder etching. Electrochim. Acta 2019, 320, 134613.

[15]

Zeng, Y. F.; Huang, Y. D.; Liu, N. T.; Wang, X. C.; Zhang, Y.; Guo, Y.; Wu, H. H.; Chen, H. X.; Tang, X. C.; Zhang, Q. B. N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries. J. Energy Chem. 2021, 54, 727–735.

[16]

Chen, M.; Li, B.; Liu, X. J.; Zhou, L.; Yao, L.; Zai, J. T.; Qian, X. F.; Yu, X. B. Boron-doped porous Si anode materials with high initial coulombic efficiency and long cycling stability. J. Mater. Chem. A 2018, 6, 3022–3027.

[17]

Xi, F. S.; Zhang, Z.; Wan, X. H.; Li, S. Y.; Ma, W. H.; Chen, X. H.; Chen, R.; Luo, B.; Wang, L. Z. High-performance porous silicon/nanosilver anodes from industrial low-grade silicon for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 49080–49089.

[18]

Zhu, B.; Liu, G. L.; Lv, G. X.; Mu, Y.; Zhao, Y. L.; Wang, Y. X.; Li, X. Q.; Yao, P. C.; Deng, Y.; Cui, Y. et al. Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes. Sci. Adv. 2019, 5, eaax0651.

[19]

Xiao, Z. X.; Yu, C. H.; Lin, X. Q.; Chen, X.; Zhang, C. X.; Wei, F. Uniform coating of nano-carbon layer on SiOx in aggregated fluidized bed as high-performance anode material. Carbon 2019, 149, 462–470.

[20]

Huang, Y. H.; Luo, J.; Peng, J.; Shi, M. H.; Li, X. X.; Wang, X. Y.; Chang, B. B. Porous silicon-graphene-carbon composite as high performance anode material for lithium ion batteries. J. Energy Storage 2020, 27, 101075.

[21]

Lin, J.; Peng, H.; Kim, J. H.; Wygant, B. R.; Meyerson, M. L.; Rodriguez, R.; Liu, Y.; Kawashima, K.; Gu, D. D.; Peng, D. L. et al. Lithium fluoride coated silicon nanocolumns as anodes for lithium ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 18465–18472.

[22]

Jiang, M. M.; Chen, J. L.; Zhang, Y. B.; Song, N.; Jiang, W.; Yang, J. P. Assembly: A key enabler for the construction of superior silicon-based anodes. Adv. Sci. 2022, 9, 2203162.

[23]

Zafar Abbas Manj, R.; Zhang, F.; Ur Rehman, W.; Luo, W.; Yang, J. P. Toward understanding the interaction within Silicon-based anodes for stable lithium storage. Chem. Eng. J. 2020, 385, 123821.

[24]

Zhu, G. J.; Zhang, F. Z.; Li, X. M.; Luo, W.; Li, L.; Zhang, H.; Wang, L. J.; Wang, Y. X.; Jiang, W.; Liu, H. K. et al. Engineering the distribution of carbon in silicon oxide nanospheres at the atomic level for highly stable anodes. Angew. Chem., Int. Ed. 2019, 58, 6669–6673.

[25]

Zhang, F. Z.; Ma, Y. Y.; Jiang, M. M.; Luo, W.; Yang, J. P. Boron heteroatom-doped silicon-carbon peanut-like composites enables long life lithium-ion batteries. Rare Met. 2022, 41, 1276–1283.

[26]

Zhu, G. J.; Guo, R.; Luo, W.; Liu, H. K.; Jiang, W.; Dou, S. X.; Yang, J. P. Boron doping-induced interconnected assembly approach for mesoporous silicon oxycarbide architecture. Nat. Sci. Rev. 2021, 8, nwaa152.

[27]

Guo, S. T.; Li, H.; Li, Y. Q.; Han, Y.; Chen, K. B.; Xu, G. Z.; Zhu, Y. J.; Hu, X. L. SiO2-enhanced structural stability and strong adhesion with a new binder of konjac glucomannan enables stable cycling of silicon anodes for lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1800434.

[28]

Li, J.; Lewis, R. B.; Dahn, J. R. Sodium carboxymethyl cellulose: A potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid-State Lett. 2007, 10, A17–A20.

[29]

Beattie, S. D.; Larcher, D.; Morcrette, M.; Simon, B.; Tarascon, J. M. Si electrodes for Li-ion batteries—A new way to look at an old problem. J. Electrochem. Soc. 2008, 155, A158–A163.

[30]

Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G. Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic acid. ACS Appl. Mater. Interfaces 2010, 2, 3004–3010.

[31]

Liu, J.; Zhang, Q.; Zhang, T.; Li, J. T.; Huang, L.; Sun, S. G. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 3599–3605.

[32]

Choi, J.; Kim, K.; Jeong, J.; Cho, K. Y.; Ryou, M. H.; Lee, Y. M. Highly adhesive and soluble copolyimide binder: Improving the long-term cycle life of silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 14851–14858.

[33]

Chen, Z.; Wang, C.; Lopez, J.; Lu, Z. D.; Cui, Y.; Bao, Z. N. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 2015, 5, 1401826.

[34]

Li, D. W.; Wang, Y. K.; Hu, J. Z.; Lu, B.; Dang, D. Y.; Zhang, J. Q.; Cheng, Y. T. Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling. J. Power Sources 2018, 387, 9–15.

[35]

Mery, A.; Bernard, P.; Valero, A.; Alper, J. P.; Herlin-Boime, N.; Haon, C.; Duclairoir, F.; Sadki, S. A polyisoindigo derivative as novel n-type conductive binder inside Si@C nanoparticle electrodes for Li-ion battery applications. J. Power Sources 2019, 420, 9–14.

[36]

Xu, H.; Wang, Y.; Chen, R.; Bai, Y. L.; Li, T.; Jin, H.; Wang, J. P.; Xia, H. Y. A green-synthetic spiderweb-like Si@Graphene-oxide anode material with multifunctional citric acid binder for high energy-density Li-ion batteries. Carbon 2020, 157, 330–339.

[37]

Luo, L.; Xu, Y. L.; Zhang, H.; Han, X. N.; Dong, H.; Xu, X.; Chen, C.; Zhang, Y.; Lin, J. H. Comprehensive understanding of high polar polyacrylonitrile as an effective binder for Li-ion battery nano-Si anodes. ACS Appl. Mater. Interfaces 2016, 8, 8154–8161.

[38]

Zhang, X. Y.; Song, W. L.; Chen, H. S.; Fang, D. N. Role of the binder in the mechanical integrity of micro-sized crystalline silicon anodes for Li-ion batteries. J. Power Sources 2020, 465, 228290.

[39]

Wang, Y. K.; Dang, D. Y.; Li, D. W.; Hu, J. Z.; Zhan, X. W.; Cheng, Y. T. Effects of polymeric binders on the cracking behavior of silicon composite electrodes during electrochemical cycling. J. Power Sources 2019, 438, 226938.

[40]

Karkar, Z.; Guyomard, D.; Roué, L.; Lestriez, B. A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes. Electrochim. Acta 2017, 258, 453–466.

[41]

Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75–79.

[42]

Chen, C.; Lee, S. H.; Cho, M.; Kim, J.; Lee, Y. Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2658–2665.

[43]

Yue, L.; Zhang, L. Z.; Zhong, H. X. Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries. J. Power Sources 2014, 247, 327–331.

[44]

Munaoka, T.; Yan, X. Z.; Lopez, J.; To, J. W. F.; Park, J.; Tok, J. B. H.; Cui, Y.; Bao, Z. N. Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries. Adv. Energy Mater. 2018, 8, 1703138.

[45]

Rajeev, K. K.; Kim, E.; Nam, J.; Lee, S.; Mun, J.; Kim, T. H. Chitosan-grafted-polyaniline copolymer as an electrically conductive and mechanically stable binder for high-performance Si anodes in Li-ion batteries. Electrochim. Acta 2020, 333, 135532.

[46]

Liu, Z.; Han, S. J.; Xu, C.; Luo, Y. W.; Peng, N.; Qin, C. Y.; Zhou, M. J.; Wang, W. Q.; Chen, L. W.; Okada, S. In situ crosslinked PVA-PEI polymer binder for long-cycle silicon anodes in Li-ion batteries. RSC Adv. 2016, 6, 68371–68378.

[47]

Jeena, M. T.; Bok, T.; Kim, S. H.; Park, S.; Kim, J. Y.; Park, S.; Ryu, J. H. A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries. Nanoscale 2016, 8, 9245–9253.

[48]

Zhao, E. Y.; Guo, Z. L.; Liu, J.; Zhang, Q.; Guo, Z. Y.; Yang, Y.; Wang, H.; Wang, L. A low-cost and eco-friendly network binder coupling stiffness and softness for high-performance Li-ion batteries. Electrochim. Acta 2021, 387, 138491.

[49]

Hapuarachchi, S. N. S.; Wasalathilake, K. C.; Nerkar, J. Y.; Jaatinen, E.; O’Mullane, A. P.; Yan, C. Mechanically robust tapioca starch composite binder with improved ionic conductivity for sustainable lithium-ion batteries. ACS Sustainable Chem. Eng. 2020, 8, 9857–9865.

[50]

Taskin, O. S.; Yuca, N.; Papavasiliou, J.; Avgouropoulos, G. Interconnected conductive gel binder for high capacity silicon anode for Li-ion batteries. Mater. Lett. 2020, 273, 127918.

[51]

Li, Z. H.; Zhang, Y. P.; Liu, T. F.; Gao, X. H.; Li, S. Y.; Ling, M.; Liang, C. D.; Zheng, J. C.; Lin, Z. Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv. Energy Mater. 2020, 10, 1903110.

[52]

Song, J. X.; Zhou, M. J.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D. H.; Yu, Z. X.; Regula, M.; Wang, D. H. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 5904–5910.

[53]

Zeng, W. W.; Wang, L.; Peng, X.; Liu, T. F.; Jiang, Y. Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K. F.; Zhou, Y. H. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1702314.

[54]

Zhao, X. Y.; Yim, C. H.; Du, N. Y.; Abu-Lebdeh, Y. Crosslinked chitosan networks as binders for silicon/graphite composite electrodes in Li-ion batteries. J. Electrochem. Soc. 2018, 165, A1110–A1121.

[55]

Han, Z. J.; Yabuuchi, N.; Shimomura, K.; Murase, M.; Yui, H.; Komaba, S. High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries. Energy Environ. Sci. 2012, 5, 9014–9020.

[56]

Tang, R. X.; Zheng, X.; Zhang, Y.; Ma, L.; Dong, Y. R.; Kong, G. L.; Wei, L. M. Highly adhesive and stretchable binder for silicon-based anodes in Li-ion batteries. Ionics 2020, 26, 5889–5896.

[57]

Zhao, X. Y.; Yim, C. H.; Du, N. Y.; Abu-Lebdeh, Y. Shortly branched, linear dextrans as efficient binders for silicon/graphite composite electrodes in Li-ion batteries. Ind. Eng. Chem. Res. 2018, 57, 9062–9074.

[58]

Lee, D.; Park, H.; Goliaszewski, A.; Byeun, Y. K.; Song, T.; Paik, U. In situ cross-linked carboxymethyl cellulose-polyethylene glycol binder for improving the long-term cycle life of silicon anodes in Li ion batteries. Ind. Eng. Chem. Res. 2019, 58, 8123–8130.

[59]

Xie, Z. H.; Rong, M. Z.; Zhang, M. Q. Dynamically cross-linked polymeric binder-made durable silicon anode of a wide operating temperature Li-ion battery. ACS Appl. Mater. Interfaces 2021, 13, 28737–28748.

[60]

Yu, X. H.; Yang, H. Y.; Meng, H. W.; Sun, Y. L.; Zheng, J.; Ma, D. Q.; Xu, X. H. Three-dimensional conductive gel network as an effective binder for high-performance Si electrodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 15961–15967.

[61]

Zhang, J. H.; Wang, N.; Zhang, W.; Fang, S.; Yu, Z. L.; Shi, B. M.; Yang, J. Y. A cycling robust network binder for high performance Si-based negative electrodes for lithium-ion batteries. J. Colloid Interface Sci. 2020, 578, 452–460.

[62]

Chen, H.; Wu, Z. Z.; Su, Z.; Chen, S.; Yan, C.; Al-Mamun, M.; Tang, Y. B.; Zhang, S. Q. A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 2021, 81, 105654.

[63]

Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.; Raimann, P. R.; Wöhrle, T.; Wurm, C.; Winter, M. Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability. Electrochem. Solid-State Lett. 2008, 11, A76–A80.

[64]

Mandal, P.; Stokes, K.; Hernández, G.; Brandell, D.; Mindemark, J. Influence of binder crystallinity on the performance of Si electrodes with poly(vinyl alcohol) binders. ACS Appl. Energy Mater. 2021, 4, 3008–3016.

[65]

Jung, C. H.; Kim, K. H.; Hong, S. H. Stable silicon anode for lithium-ion batteries through covalent bond formation with a binder via esterification. ACS Appl. Mater. Interfaces 2019, 11, 26753–26763.

[66]

Nguyen, C. C.; Yoon, T.; Seo, D. M.; Guduru, P.; Lucht, B. L. Systematic investigation of binders for silicon anodes: Interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl. Mater. Interfaces 2016, 8, 12211–12220.

[67]

Kuruba, R.; Datta, M. K.; Damodaran, K.; Jampani, P. H.; Gattu, B.; Patel, P. P.; Shanthi, P. M.; Damle, S.; Kumta, P. N. Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon-carbon composite rechargeable Li-ion battery anodes. J. Power Sources 2015, 298, 331–340.

[68]

Ling, M.; Xu, Y. N.; Zhao, H.; Gu, X. X.; Qiu, J. X.; Li, S.; Wu, M. Y.; Song, X. Y.; Yan, C.; Liu, G. et al. Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy 2015, 12, 178–185.

[69]

Patnaik, S. G.; Vedarajan, R.; Matsumi, N. BIAN based functional diimine polymer binder for high performance Li ion batteries. J. Mater. Chem. A 2017, 5, 17909–17919.

[70]

Miranda, A.; Li, X. Y.; Haregewoin, A. M.; Sarang, K.; Lutkenhaus, J.; Kostecki, R.; Verduzco, R. A comprehensive study of hydrolyzed polyacrylamide as a binder for silicon anodes. ACS Appl. Mater. Interfaces 2019, 11, 44090–44100.

[71]

Feng, J. S.; Wang, D.; Zhang, Q.; Liu, J.; Wu, Y. M.; Wang, L. Stabilizing a Si anode via an inorganic oligomer binder enabled by robust polar interfacial interactions. ACS Appl. Mater. Interfaces 2021, 13, 44312–44320.

[72]

Hu, S. M.; Cai, Z. X.; Huang, T.; Zhang, H. B.; Yu, A. S. A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 4311–4317.

[73]

Lee, J. I.; Kang, H.; Park, K. H.; Shin, M.; Hong, D.; Cho, H. J.; Kang, N. R.; Lee, J.; Lee, S. M.; Kim, J. Y. et al. Amphiphilic graft copolymers as a versatile binder for various electrodes of high-performance lithium-ion batteries. Small 2016, 12, 3119–3127.

[74]

Cao, P. F.; Naguib, M.; Du, Z. J.; Stacy, E.; Li, B. R.; Hong, T.; Xing, K. Y.; Voylov, D. N.; Li, J. L.; Wood, D. L. et al. Effect of binder architecture on the performance of silicon/graphite composite anodes for lithium ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 3470–3478.

[75]

Wei, L. M.; Chen, C. X.; Hou, Z. Y.; Wei, H. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries. Sci. Rep. 2016, 6, 19583.

[76]

He, J. R.; Zhang, L. Z. Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode. J. Alloys Compd. 2018, 763, 228–240.

[77]

Kim, S.; Jeong, Y. K.; Wang, Y.; Lee, H.; Choi, J. W. A “sticky” mucin-inspired DNA-polysaccharide binder for silicon and silicon-graphite blended anodes in lithium-ion batteries. Adv. Mater. 2018, 30, 1707594.

[78]

Yao, D. H.; Feng, J. W.; Wang, J.; Deng, Y. H.; Wang, C. Y. Synthesis of silicon anode binders with ultra-high content of catechol groups and the effect of molecular weight on battery performance. J. Power Sources 2020, 463, 228188.

[79]

Zhang, Q. Y.; Zhang, C. F.; Luo, W. W.; Cui, L. F.; Wang, Y. J.; Jian, T. Y.; Li, X. L.; Yan, Q. Z.; Liu, H. D.; Ouyang, C. Y. et al. Sequence-defined peptoids with –OH and –COOH groups as binders to reduce cracks of Si nanoparticles of lithium-ion batteries. Adv. Sci. 2020, 7, 2000749.

[80]

Jiang, S. S.; Hu, B.; Shi, Z. X.; Chen, W.; Zhang, Z. C.; Zhang, L. Re-engineering poly(acrylic acid) binder toward optimized electrochemical performance for silicon lithium-ion batteries: Branching architecture leads to balanced properties of polymeric binders. Adv. Funct. Mater. 2020, 30, 1908558.

[81]

Yuan, J. M.; Ren, W. F.; Wang, K.; Su, T. T.; Jiao, G. J.; Shao, C. Y.; Xiao, L. P.; Sun, R. C. Ultrahighly elastic lignin-based copolymers as an effective binder for silicon anodes of lithium-ion batteries. ACS Sustainable Chem. Eng. 2022, 10, 166–176.

[82]

Gao, Y.; Qiu, X. T.; Wang, X. L.; Gu, A. Q.; Zhang, L.; Chen, X. C.; Li, J. F.; Yu, Z. L. Chitosan-g-poly(acrylic acid) copolymer and its sodium salt as stabilized aqueous binders for silicon anodes in lithium-ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 16274–16283.

[83]

Jeena, M. T.; Lee, J. I.; Kim, S. H.; Kim, C.; Kim, J. Y.; Park, S.; Ryu, J. H. Multifunctional molecular design as an efficient polymeric binder for silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 18001–18007.

[84]

Shi, Z. X.; Liu, Q.; Yang, Z. Z.; Robertson, L. A.; Bheemireddy, S. R.; Zhao, Y. Y.; Zhang, Z. C.; Zhang, L. A chemical switch enabled autonomous two-stage crosslinking polymeric binder for high performance silicon anodes. J. Mater. Chem. A 2022, 10, 1380–1389.

[85]

Wang, W.; Li, Y. C.; Wang, Y.; Huang, W. B.; Lv, L. Z.; Zhu, G. B.; Qu, Q. T.; Liang, Y. R.; Zheng, W.; Zheng, H. H. A novel covalently grafted binder through in-situ polymerization for high-performance Si-based lithium-ion batteries. Electrochim. Acta 2021, 400, 139442.

[86]

Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem., Int. Ed. 2012, 51, 8762–8767.

[87]

Hwang, C.; Cho, Y. G.; Kang, N. R.; Ko, Y.; Lee, U.; Ahn, D.; Kim, J. Y.; Kim, Y. J.; Song, H. K. Selectively accelerated lithium ion transport to silicon anodes via an organogel binder. J. Power Sources 2015, 298, 8–13.

[88]

Kuo, T. C.; Chiou, C. Y.; Li, C. C.; Lee, J. T. In situ cross-linked poly(ether urethane) elastomer as a binder for high-performance Si anodes of lithium-ion batteries. Electrochim. Acta 2019, 327, 135011.

[89]

Li, Z. H.; Wan, Z. W.; Zeng, X. Q.; Zhang, S. M.; Yan, L. J.; Ji, J. P.; Wang, H. X.; Ma, Q. X.; Liu, T. F.; Lin, Z. et al. A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries. Nano Energy 2021, 79, 105430.

[90]

Zheng, Z. M.; Gao, H. W.; Ke, C. Z.; Li, M.; Cheng, Y.; Peng, D. L.; Zhang, Q. B.; Wang, M. S. Constructing robust cross-linked binder networks for silicon anodes with improved lithium storage performance. ACS Appl. Mater. Interfaces 2021, 13, 53818–53828.

[91]

Liao, H. J.; He, W. J.; Liu, N.; Luo, D. R.; Dou, H.; Zhang, X. G. Facile in situ cross-linked robust three-dimensional binder for high-performance SiOx anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 49313–49321.

[92]

Cai, Z. X.; Hu, S. M.; Wei, Y.; Huang, T.; Yu, A. S.; Zhang, H. B. In situ room-temperature cross-linked highly branched biopolymeric binder based on the diels-alder reaction for high-performance silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 56095–56108.

[93]

Wang, X.; Liu, S. J.; Zhang, Y. J.; Wang, H. Y.; Aboalhassan, A. A.; Li, G.; Xu, G.; Xue, C. L.; Yu, J. Y.; Yan, J. H. et al. Highly elastic block copolymer binders for silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 38132–38139.

[94]

Yoon, J.; Oh, D. X.; Jo, C.; Lee, J.; Hwang, D. S. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. Phys. Chem. Chem. Phys. 2014, 16, 25628–25635.

[95]

Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283.

[96]

Jeong, Y. K.; Kwon, T. W.; Lee, I.; Kim, T. S.; Coskun, A.; Choi, J. W. Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett. 2014, 14, 864–870.

[97]

Rajeev, K. K.; Nam, J.; Kim, E.; Kim, Y.; Kim, T. H. A self-healable polymer binder for Si anodes based on reversible Diels–Alder chemistry. Electrochim. Acta 2020, 364, 137311.

[98]

Deng, L.; Deng, S. S.; Pan, S. Y.; Wu, Z. Y.; Hu, Y. Y.; Li, K.; Zhou, Y.; Li, J. T.; Huang, L.; Sun, S. G. Multivalent amide-hydrogen-bond supramolecular binder enhances the cyclic stability of silicon-based anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 22567–22576.

[99]

Ren, W. F.; Le, J. B.; Li, J. T.; Hu, Y. Y.; Pan, S. Y.; Deng, L.; Zhou, Y.; Huang, L.; Sun, S. G. Improving the electrochemical property of silicon anodes through hydrogen-bonding cross-linked thiourea-based polymeric binders. ACS Appl. Mater. Interfaces 2021, 13, 639–649.

[100]

Wu, Z. Y.; Deng, L.; Li, J. T.; Huang, Q. S.; Lu, Y. Q.; Liu, J.; Zhang, T.; Huang, L.; Sun, S. G. Multiple hydrogel alginate binders for Si anodes of lithium-ion battery. Electrochim. Acta 2017, 245, 371–378.

[101]

Lim, S.; Chu, H.; Lee, K.; Yim, T.; Kim, Y. J.; Mun, J.; Kim, T. H. Physically cross-linked polymer binder induced by reversible acid-base interaction for high-performance silicon composite anodes. ACS Appl. Mater. Interfaces 2015, 7, 23545–23553.

[102]

Zhu, T. Y.; Liu, G. Communication-functional conductive polymer binder for practical Si-based electrodes. J. Electrochem. Soc. 2021, 168, 050533.

[103]

Shao, D.; Zhong, H. X.; Zhang, L. Z. Water-soluble conductive composite binder containing PEDOT:PSS as conduction promoting agent for Si anode of lithium-ion batteries. ChemElectroChem 2014, 1, 1679–1687.

[104]

Zheng, M. D.; Wang, C. X.; Xu, Y. L.; Li, K. Q.; Liu, D. A water-soluble binary conductive binder for Si anode lithium ion battery. Electrochim. Acta 2019, 305, 555–562.

[105]

Wu, M. Y.; Song, X. Y.; Liu, X. S.; Battaglia, V.; Yang, W. L.; Liu, G. Manipulating the polarity of conductive polymer binders for Si-based anodes in lithium-ion batteries. J. Mater. Chem. A 2015, 3, 3651–3658.

[106]

Liu, D.; Zhao, Y.; Tan, R.; Tian, L. L.; Liu, Y. D.; Chen, H. B.; Pan, F. Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy 2017, 36, 206–212.

[107]

Zhao, Y.; Yang, L. Y.; Zuo, Y. X.; Song, Z. B.; Liu, F.; Li, K.; Pan, F. Conductive binder for Si anode with boosted charge transfer capability via n-type doping. ACS Appl. Mater. Interfaces 2018, 10, 27795–27800.

[108]

Zhao, H.; Wei, Y.; Qiao, R. M.; Zhu, C. H.; Zheng, Z. Y.; Ling, M.; Jia, Z.; Bai, Y.; Fu, Y. B.; Lei, J. L. et al. Conductive polymer binder for high-tap-density nanosilicon material for lithium-ion battery negative electrode application. Nano Lett. 2015, 15, 7927–7932.

[109]

Zhao, H.; Wei, Y.; Wang, C.; Qiao, R. M.; Yang, W. L.; Messersmith, P. B.; Liu, G. Mussel-inspired conductive polymer binder for Si-alloy anode in lithium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 5440–5446.

[110]

Ye, Q. Q.; Zheng, P. T.; Ao, X. H.; Yao, D. H.; Lei, Z. W.; Deng, Y. H.; Wang, C. Y. Novel multi-block conductive binder with polybutadiene for Si anodes in lithium-ion batteries. Electrochim. Acta 2019, 315, 58–66.

[111]

Zhang, C. K.; Chen, Q. L.; Ai, X.; Li, X. G.; Xie, Q. S.; Cheng, Y.; Kong, H. F.; Xu, W. J.; Wang, L. S.; Wang, M. S. et al. Conductive polyaniline doped with phytic acid as a binder and conductive additive for a commercial silicon anode with enhanced lithium storage properties. J. Mater. Chem. A 2020, 8, 16323–16331.

[112]

Wang, X. Y.; Zhang, Y.; Shi, Y. J.; Zeng, X. Y.; Tang, R. X.; Wei, L. M. Conducting polyaniline/poly (acrylic acid)/phytic acid multifunctional binders for Si anodes in lithium ion batteries. Ionics 2019, 25, 5323–5331.

[113]

Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C. F.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G. et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 2016, 10, 3702–3713.

[114]

Li, L.; Zuo, Z. C.; Shang, H.; Wang, F.; Li, Y. L. In-situ constructing 3D graphdiyne as all-carbon binder for high-performance silicon anode. Nano Energy 2018, 53, 135–143.

[115]

Jiao, X. X.; Yin, J. Q.; Xu, X. Y.; Wang, J. L.; Liu, Y. Y.; Xiong, S. Z.; Zhang, Q. L.; Song, J. X. Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2005699.

[116]

Guo, R. N.; Zhang, S. L.; Ying, H. J.; Yang, W. T.; Wang, J. L.; Han, W. Q. New, effective, and low-cost dual-functional binder for porous silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 14051–14058.

[117]

Wang, Z. C.; Huang, T.; Yu, A. S. A carboxymethyl vegetable gum as a robust water soluble binder for silicon anodes in lithium-ion batteries. J. Power Sources 2021, 489, 229530.

[118]

Nam, J.; Jang, W.; Rajeev, K. K.; Lee, J. H.; Kim, Y.; Kim, T. H. Ion-conductive self-healing polymer network based on reversible imine bonding for Si electrodes. J. Power Sources 2021, 499, 229968.

[119]

Kang, T. X.; Chen, J. H.; Cui, Y.; Wang, Z.; Xu, H. L.; Ma, Z.; Zuo, X. X.; Xiao, X.; Nan, J. M. Three-dimensional rigidity-reinforced SiOx anodes with stabilized performance using an aqueous multicomponent binder technology. ACS Appl. Mater. Interfaces 2019, 11, 26038–26046.

[120]

Lim, S.; Lee, K.; Shin, I.; Tron, A.; Mun, J.; Yim, T.; Kim, T. H. Physically cross-linked polymer binder based on poly(acrylic acid) and ion-conducting poly(ethylene glycol-co-benzimidazole) for silicon anodes. J. Power Sources 2017, 360, 585–592.

[121]

Lee, H. A.; Shin, M.; Kim, J.; Choi, J. W.; Lee, H. Designing adaptive binders for microenvironment settings of silicon anode particles. Adv. Mater. 2021, 33, 2007460.

[122]

Pan, Y. Y.; Ge, S. R.; Rashid, Z.; Gao, S. L.; Erwin, A.; Tsukruk, V.; Vogiatzis, K. D.; Sokolov, A. P.; Yang, H. B.; Cao, P. F. Adhesive polymers as efficient binders for high-capacity silicon electrodes. ACS Appl. Energy Mater. 2020, 3, 3387–3396.

[123]

Liu, H.; Chen, T. Q.; Xu, Z. X.; Liu, Z. Z.; Yang, J.; Chen, J. D. High-safety and long-life silicon-based lithium-ion batteries via a multifunctional binder. ACS Appl. Mater. Interfaces 2020, 12, 54842–54850.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 August 2022
Revised: 25 October 2022
Accepted: 31 October 2022
Published: 14 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFA0208200), the National Natural Science Foundation of China (Nos. 52202309, 52271230, 22208280, 22022505, and 21872069), the Fundamental Research Funds for the Central Universities of China (Nos. 020514380266, 020514380272, and 020514380274), the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province (No. BK20220008), the funding for school-level research projects of Yancheng Institute of Technology (No. xjr2019006), the Open Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, the Nanjing International Collaboration Research Program (Nos. 202201007 and 2022SX00000955), and the Suzhou Gusu Leading Talent Program of Science and Technology Innovation and Entrepreneurship in Wujiang District (No. ZXL2021273).

Return