Journal Home > Volume 16 , Issue 5

As a typical family of volatile toxic compounds, benzene derivatives are massive emission in industrial production and the automobile field, causing serious threat to human and environment. The reliable and convenient detection of low concentration benzene derivatives based on intelligent gas sensor is urgent and of great significance for environmental protection. Herein, through heteroatomic doping engineering, rare-earth gadolinium (Gd) doped mesoporous WO3 with uniform mesopores (15.7–18.1 nm), tunable high specific surface area (52–55 m2·g−1), and customized crystalline pore walls, was designed and utilized to fabricate highly sensitive gas sensors toward benzene derivatives, such as ethylbenzene. Thanks to the high-density oxygen vacancies (OV) and significantly increased defects (W5+) produced by Gd atoms doping into the lattice of WO3 octahedron, Gd-doped mesoporous WO3 exhibited excellent ethylbenzene sensing performance, including high response (237 vs. 50 ppm), rapid response–recovery dynamic (13 s/25 s vs. 50 ppm), and extremely low theoretical detection limit of 24 ppb. The in-situ diffuse reflectance infrared Fourier transform and gas chromatograph-mass spectrometry results revealed the gas sensing process underwent a catalytic oxidation conversion of ethylbenzene into alcohol species, benzaldehyde, acetophenone, and carboxylate species along with the resistance change of the Gd-doped mesoporous WO3 based sensor. Moreover, a portable smart gas sensing module was fabricated and demonstrated for real-time detecting ethylbenzene, which provided new ideas to design heteroatom doped mesoporous materials for intelligent sensors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Gadolinium-doped mesoporous tungsten oxides: Rational synthesis, gas sensing performance, and mechanism investigation

Show Author's information Yanyan Li1Keyu Chen1Yan Liu1Junhao Ma1Yaozu Liao2Haitao Yang3Jinsheng Cheng6Qin Yue4( )Kaiping Yuan5Yuan Ren1Yidong Zou1( )Yonghui Deng1,2,3( )
Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Zhangjiang Fudan International Innovation Center, State Key Laboratory of Molecular Engineering of Polymers, iChEM, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
Henry-Fork School of Food Sciences, Shaoguan University, Shaoguan 512005, China

Abstract

As a typical family of volatile toxic compounds, benzene derivatives are massive emission in industrial production and the automobile field, causing serious threat to human and environment. The reliable and convenient detection of low concentration benzene derivatives based on intelligent gas sensor is urgent and of great significance for environmental protection. Herein, through heteroatomic doping engineering, rare-earth gadolinium (Gd) doped mesoporous WO3 with uniform mesopores (15.7–18.1 nm), tunable high specific surface area (52–55 m2·g−1), and customized crystalline pore walls, was designed and utilized to fabricate highly sensitive gas sensors toward benzene derivatives, such as ethylbenzene. Thanks to the high-density oxygen vacancies (OV) and significantly increased defects (W5+) produced by Gd atoms doping into the lattice of WO3 octahedron, Gd-doped mesoporous WO3 exhibited excellent ethylbenzene sensing performance, including high response (237 vs. 50 ppm), rapid response–recovery dynamic (13 s/25 s vs. 50 ppm), and extremely low theoretical detection limit of 24 ppb. The in-situ diffuse reflectance infrared Fourier transform and gas chromatograph-mass spectrometry results revealed the gas sensing process underwent a catalytic oxidation conversion of ethylbenzene into alcohol species, benzaldehyde, acetophenone, and carboxylate species along with the resistance change of the Gd-doped mesoporous WO3 based sensor. Moreover, a portable smart gas sensing module was fabricated and demonstrated for real-time detecting ethylbenzene, which provided new ideas to design heteroatom doped mesoporous materials for intelligent sensors.

Keywords: gas sensor, mesoporous materials, semiconductor metal oxides, gadolinium doping, benzene derivatives

References(68)

[1]

Chen, W. Y.; Jiang, X. F.; Lai, S. N.; Peroulis, D.; Stanciu, L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 2020, 11, 1302.

[2]

Fedorov, F. S.; Solomatin, M. A.; Uhlemann, M.; Oswald, S.; Kolosov, D. A.; Morozov, A.; Varezhnikov, A. S.; Ivanov, M. A.; Grebenko, A. K.; Sommer, M. et al. Quasi-2D Co3O4 nanoflakes as an efficient gas sensor versus alcohol VOCs. J. Mater. Chem. A 2020, 8, 7214–7228.

[3]

He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. P. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev. 2019, 119, 4471–4568.

[4]

Wang, Z. L.; Liu, K.; Chang, X. M.; Qi, Y. Y.; Shang, C. D.; Liu, T. H.; Liu, J.; Ding, L. P.; Fang, Y. Highly sensitive and discriminative detection of BTEX in the vapor phase: A film-based fluorescent approach. ACS Appl. Mater. Interfaces 2018, 10, 35647–35655.

[5]

Solomatin, M. A.; Glukhova, O. E.; Fedorov, F. S.; Sommer, M.; Shunaev, V. V.; Varezhnikov, A. S.; Nasibulin, A. G.; Ushakov, N. M.; Sysoev, V. V. The UV effect on the chemiresistive response of ZnO nanostructures to isopropanol and benzene at ppm concentrations in mixture with dry and wet air. Chemosensors 2021, 9, 181.

[6]

Kou, D. H.; Ma, W.; Zhang, S. F.; Tang, B. T. Copolymer-based photonic crystal sensor for discriminative detection of liquid benzene, toluene, ethylbenzene, and xylene. ACS Appl. Polym. Mater. 2020, 2, 2–11.

[7]
WHO Regional Office for Europe. WHO Guidelines for Indoor Air Quality: Selected Pollutants; WHO Regional Office for Europe: Copenhagen, 2010.
[8]

Pastor-Belda, M.; Viñas, P.; Campillo, N.; Hernández-Córdoba, M. Headspace sorptive extraction coupled to gas chromatography-mass spectrometry for the determination of benzene, toluene, ethylbenzene and xylenes in finger paints. Microchem. J. 2019, 145, 406–411.

[9]

Bahrami, A.; Ghamari, F.; Yamini, Y.; Shahna, F. G.; Koolivand, A. Ion-pair-based hollow-fiber liquid-phase microextraction combined with high-performance liquid chromatography for the simultaneous determination of urinary benzene, toluene, and styrene metabolites. J. Sep. Sci. 2018, 41, 501–508.

[10]

Anbia, M.; Irannejad, S. Modified SBA-15 mesoporous silica as a novel fiber coating in solid-phase microextraction and determination of BTEX compounds in water samples using gas chromatography-flame ionization detection. Anal. Methods 2013, 5, 1596–1603.

[11]

Ren, F. M.; Gao, L. P.; Yuan, Y. W.; Zhang, Y.; Alqrni, A.; Al-Dossary, O. M.; Xu, J. Q. Enhanced BTEX gas-sensing performance of CuO/SnO2 composite. Sens. Actuators B 2016, 223, 914–920.

[12]

Zhang, D.; Fan, Y.; Li, G. J.; Ma, Z. H.; Wang, X. H.; Cheng, Z. X.; Xu, J. Q. Highly sensitive BTEX sensors based on hexagonal WO3 nanosheets. Sens. Actuators B 2019, 293, 23–30.

[13]

Wang, D.; Yin, Y.; Xu, P. C.; Wang, F.; Wang, P.; Xu, J. C.; Wang, X. Y.; Li, X. X. The catalytic-induced sensing effect of triangular CeO2 nanoflakes for enhanced BTEX vapor detection with conventional ZnO gas sensors. J. Mater. Chem. A 2020, 8, 11188–11194.

[14]

Cao, Z. M.; Ge, Y. Z.; Wang, W.; Sheng, J. P.; Zhang, Z. J.; Li, J. Y.; Sun, Y. J.; Dong F. Chemical discrimination of benzene series and molecular recognition of the sensing process over Ti-doped Co3O4. ACS Sens. 2022, 7, 1757–1765.

[15]

Gounder Thangamani, G.; Khadheer Pasha, S. K. Hydrothermal synthesis of copper(II) oxide-nanoparticles with highly enhanced BTEX gas sensing performance using chemiresistive sensor. Chemosphere 2021, 277, 130237.

[16]

Huang, Z. F.; Song, J. J.; Pan, L.; Zhang, X. W.; Wang, L.; Zou, J. J. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 2015, 27, 5309–5327.

[17]

Zhu, Y. H.; Zhao, Y.; Ma, J. H.; Cheng, X. W.; Xie, J.; Xu, P. C.; Liu, H. Q.; Liu, H. P.; Zhang, H. J.; Wu, M. H. et al. Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J. Am. Chem. Soc. 2017, 139, 10365–10373.

[18]

Xu, H. Y.; Gao, J.; Li, M. H.; Zhao, Y. Y.; Zhang, M.; Zhao, T.; Wang, L. J.; Jiang, W.; Zhu, G. J.; Qian, X. Y. et al. Mesoporous WO3 nanofibers with crystalline framework for high-performance acetone sensing. Front. Chem. 2019, 7, 266.

[19]

Ma, J. H.; Li, Y. Y.; Zhou, X. R.; Yang, X. Y.; Alharthi, F. A.; Alghamdi, A. A.; Cheng, X. W.; Deng, Y. H. Au nanoparticles decorated mesoporous SiO2-WO3 hybrid materials with improved pore connectivity for ultratrace ethanol detection at low operating temperature. Small 2020, 16, 2004772.

[20]

Wang, Y. L.; Zhang, B.; Liu, J.; Yang, Q. Y.; Cui, X. B.; Gao, Y.; Chuai, X. H.; Liu, F. M.; Sun, P.; Liang, X. S. et al. Au-loaded mesoporous WO3: Preparation and n-butanol sensing performances. Sens. Actuators B 2016, 236, 67–76.

[21]

Wang, Y. R.; Liu, B.; Xiao, S. H.; Wang, X. H.; Sun, L. M.; Li, H.; Xie, W. Y.; Li, Q. H.; Zhang, Q.; Wang, T. H. Low-temperature H2S detection with hierarchical Cr-doped WO3 microspheres. ACS Appl. Mater. Interfaces 2016, 8, 9674–9683.

[22]

Malik, R.; Tomer, V. K.; Chaudhary, V.; Dahiya, M. S.; Nehra, S. P.; Rana, P. S.; Duhan, S. Ordered mesoporous In-(TiO2/WO3) nanohybrid: An ultrasensitive n-butanol sensor. Sens. Actuators B 2017, 239, 364–373.

[23]

Zhang, Z. Y.; Haq, M.; Wen, Z.; Ye, Z. Z.; Zhu, L. P. Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe. Appl. Surf. Sci. 2018, 434, 891–897.

[24]

Duraisami, M. S.; Anburaj, D. B.; Parasuraman, K. Fabrication of room temperature operated ultra high sensitive gas sensor based on mesoporous Ni doped WO3 nanoparticles. Nanosyst. Phys. Chem. Math. 2021, 12, 291–302.

[25]

Wang, M. D.; Li, Y. Y.; Yao, B. H.; Zhai, K. H.; Li, Z. J.; Yao, H. C. Synthesis of three-dimensionally ordered macro/mesoporous C-doped WO3 materials: Effect of template sizes on gas sensing properties. Sens. Actuators B 2019, 288, 656–666.

[26]

Ren, Y.; Xie, W. H.; Li, Y. Y.; Cui, Y. Y.; Zeng, C.; Yuan, K. P.; Wu, L. M.; Deng, Y. H. Dynamic coassembly of amphiphilic block copolymer and polyoxometalates in dual solvent systems: An efficient approach to heteroatom-doped semiconductor metal oxides with controllable nanostructures. ACS Cent. Sci. 2022, 8, 1196–1208.

[27]

Wang, Y. L.; Cui, X. B.; Yang, Q. Y.; Liu, J.; Gao, Y.; Sun, P.; Lu, G. Y. Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sens. Actuators B 2016, 225, 544–552.

[28]

Ma, J. H.; Li, Y. Y.; Li, J. C.; Yang, X. Y.; Ren, Y.; Alghamdi, A. A.; Song, G. X.; Yuan, K. P.; Deng, Y. H. Rationally designed dual-mesoporous transition metal oxides/noble metal nanocomposites for fabrication of gas sensors in real-time detection of 3-hydroxy-2-butanone biomarker. Adv. Funct. Mater. 2022, 32, 2107439.

[29]

Ren, Y.; Xie, W. H.; Li, Y. Y.; Ma, J. H.; Li, J. C.; Liu, Y.; Zou, Y. D.; Deng, Y. H. Noble metal nanoparticles decorated metal oxide semiconducting nanowire arrays interwoven into 3D mesoporous superstructures for low-temperature gas sensing. ACS Cent. Sci. 2021, 7, 1885–1897.

[30]

Wu, C. H.; Zhu, Z.; Huang, S. Y.; Wu, R. J. Preparation of palladium-doped mesoporous WO3 for hydrogen gas sensors. J. Alloys Compd. 2019, 776, 965–973.

[31]

Li, Y. Q.; Bastakoti, B. P.; Imura, M.; Dai, P. C.; Yamauchi, Y. Easy and general synthesis of large-sized mesoporous rare-earth oxide thin films by ‘micelle assembly’. Chem. Asian J. 2015, 10, 2590–2593.

[32]

Tian, S. Q.; Zhang, Y. P.; Zeng, D. W.; Wang, H.; Li, N.; Xie, C. S.; Pan, C. X.; Zhao, X. J. Surface doping of La ions into ZnO nanocrystals to lower the optimal working temperature for HCHO sensing properties. Phys. Chem. Chem. Phys. 2015, 17, 27437–27445.

[33]

Wang, J. R.; Shen, L. F.; Yan, S.; Pun, E. Y. B.; Lin, H. A novel multifunctional BVO-T1Y8 porous nanofibers for multi-selective gas sensing and real-time temperature monitoring. Chem. Eng. J. 2022, 431, 134175.

[34]

Bharathi, P.; Mohan, M. K.; Shalini, V.; Harish, S.; Navaneethan, M.; Archana, J.; Kumar, M. G.; Dhivya, P.; Ponnusamy, S.; Shimomura, M. et al. Growth and influence of Gd doping on ZnO nanostructures for enhanced optical, structural properties and gas sensing applications. Appl. Surf. Sci. 2020, 499, 143857.

[35]

Niu, X. S.; Zhong, H. X.; Wang, X. J.; Jiang, K. Sensing properties of rare earth oxide doped In2O3 by a sol-gel method. Sens. Actuators B 2006, 115, 434–438.

[36]

Sohal, M. K.; Mahajan, A.; Gasso, S.; Nahirniak, S. V.; Dontsova, T. A.; Singh, R. C. Rare earth-tuned oxygen vacancies in gadolinium-doped tin oxide for selective detection of volatile organic compounds. J. Mater. Sci.: Mater. Electron. 2020, 31, 8446–8455.

[37]

Kaur, J.; Anand, K.; Kaur, A.; Singh, R. C. Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite. Sens. Actuators B 2018, 258, 1022–1035.

[38]

Mathankumar, G.; Bharathi, P.; Mohan, M. K.; Harish, S.; Navaneethan, M.; Archana, J.; Suresh, P.; Mani, G. K.; Dhivya, P.; Ponnusamy, S. et al. Synthesis and functional properties of nanostructured Gd-doped WO3/TiO2 composites for sensing applications. Mater. Sci. Semicond. Process. 2020, 105, 104732.

[39]

Çolak, H.; Karaköse, E. Gadolinium(III)-doped ZnO nanorods and gas sensing properties. Mater. Sci. Semicond. Process. 2022, 139, 106329.

[40]

Li, Y. H.; Luo, W.; Qin, N.; Dong, J. P.; Wei, J.; Li, W.; Feng, S. S.; Chen, J. C.; Xu, J. Q.; Elzatahry, A. A. et al. Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S Sensing. Angew. Chem., Int. Ed. 2014, 53, 9035–9040.

[41]

Brezesinski, T.; Rohlfing, D. F.; Sallard, S.; Antonietti, M.; Smarsly, B. M. Highly crystalline WO3 thin films with ordered 3D mesoporosity and improved electrochromic performance. Small 2006, 2, 1203–1211.

[42]

Tahir, M. B.; Sagir, M. Carbon nanodots and rare metals (RM = La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen production. Sep. Purif. Technol. 2019, 209, 94–102.

[43]

Zhao, Y. F.; Zou, X. X.; Chen, H.; Chu, X. F.; Li, G. D. Tailoring energy level and surface basicity of metal oxide semiconductors by rare-earth incorporation for high-performance formaldehyde detection. Inorg. Chem. Front. 2019, 6, 1767–1774.

[44]

Villa, K.; Murcia-López, S.; Morante, J. R.; Andreu, T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl. Catal. B 2016, 187, 30–36.

[45]

Zhang, J. Y.; Deng, Y. H.; Gu, D.; Wang, S. T.; She, L.; Che, R. C.; Wang, Z. S.; Tu, B.; Xie, S. H.; Zhao, D. Y. Ligand-assisted assembly approach to synthesize large-pore ordered mesoporous titania with thermally stable and crystalline framework. Adv. Energy Mater. 2011, 1, 241–248.

[46]

Kuznetsova, Y. A.; Zatsepin, D. A.; Zatsepin, A. F.; Gavrilov, N. V. Energy gaps, refractive index and photon emission from point defects in copper-doped Gd2O3 nanocrystalline films. J. Alloys Compd. 2022, 904, 163872.

[47]

Xu, L.; Dong, B.; Wang, Y.; Bai, X.; Chen, J. S.; Liu, Q.; Song, H. W. Porous In2O3:RE (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb) nanotubes: Electrospinning preparation and room gas-sensing properties. J. Phys. Chem. C 2010, 114, 9089–9095.

[48]

Wang, L.; Ma, S. Y.; Xu, X. L.; Li, J. P.; Yang, T. T.; Cao, P. F.; Yun, P. D.; Wang, S. Y.; Han, T. Oxygen vacancy-based Tb-doped SnO2 nanotubes as an ultra-sensitive sensor for ethanol detection. Sens. Actuators B 2021, 344, 130111.

[49]

Kabtamu, D. M.; Chen, J. Y.; Chang, Y. C.; Wang, C. H. Electrocatalytic activity of Nb-doped hexagonal WO3 nanowire-modified graphite felt as a positive electrode for vanadium redox flow batteries. J. Mater. Chem. A 2016, 4, 11472–11480.

[50]

Sun, J. H.; Guo, J.; Ye, J. Y.; Song, B. J.; Zhang, K. W.; Bai, S. L.; Luo, R. X.; Li, D. Q.; Chen, A. F. Synthesis of Sb doping hierarchical WO3 microspheres and mechanism of enhancing sensing properties to NO2. J. Alloys Compd. 2017, 692, 876–884.

[51]

Yan, J.; Guo, X. Y.; Zhu, Y.; Song, Z. L.; Lee, L. Y. S. Solution-processed metal doping of sub-3 nm SnO2 quantum wires for enhanced H2S sensing at low temperature. J. Mater. Chem. A 2022, 10, 15657–15664.

[52]

Govindaraj, T.; Mahendran, C.; Marnadu, R.; Shkir, M.; Manikandan, V. S. The remarkably enhanced visible-light-photocatalytic activity of hydrothermally synthesized WO3 nanorods: An effect of Gd doping. Ceram. Int. 2021, 47, 4267–4278.

[53]

Chandrasekaran, S.; Zhang, P. X.; Peng, F.; Bowen, C.; Huo, J.; Deng, L. B. Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting. J. Mater. Chem. A 2019, 7, 6161–6172.

[54]

Ren, Y.; Zou, Y. D.; Liu, Y.; Zhou, X. R.; Ma, J. H.; Zhao, D. Y.; Wei, G. F.; Ai, Y. J.; Xi, S. B.; Deng, Y. H. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat. Mater. 2020, 19, 203–211.

[55]

Liu, Y.; Li, J.; Li, W. Z.; Yang, Y. H.; Li, Y. M.; Chen, Q. Y. Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping. J. Phys. Chem. C 2015, 119, 14834–14842.

[56]

Wu, J.; Feng, S. L.; Wei, X. Z.; Shen, J.; Lu, W. Q.; Shi, H. F.; Tao, K.; Lu, S. R.; Sun, T.; Yu, L. Y. et al. Facile synthesis of 3D graphene flowers for ultrasensitive and highly reversible gas sensing. Adv. Funct. Mater. 2016, 26, 7462–7469.

[57]

Duy, L. T.; Kim, D. J.; Trung, T. Q.; Dang, V. Q.; Kim, B. Y.; Moon, H. K.; Lee, N. E. High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars. Adv. Funct. Mater. 2015, 25, 883–890.

[58]

Jeong, S. Y.; Moon, Y. K.; Kim, J. K.; Park, S. W.; Jo, Y. K.; Kang, Y. C.; Lee, J. H. A general solution to mitigate water poisoning of oxide chemiresistors: Bilayer sensors with Tb4O7 overlayer. Adv. Funct. Mater. 2021, 31, 2007895.

[59]

Zhang, J.; Su, D. S.; Blume, R.; Schlögl, R.; Wang, R.; Yang, X. G.; Gajović, A. Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angew. Chem., Int. Ed. 2010, 49, 8640–8644.

[60]

Sanz, S. G.; McMillan, L.; McGregor, J.; Zeitler, J. A.; Al-Yassir, N.; Al-Khattaf, S.; Gladden, L. F. The enhancement of the catalytic performance of CrOx/Al2O3 catalysts for ethylbenzene dehydrogenation through tailored coke deposition. Catal. Sci. Technol. 2016, 6, 1120–1133.

[61]

Yang, X. Q.; Yu, X. L.; Lin, M. Y.; Ma, X. Y.; Ge, M. F. Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation. Catal. Today 2019, 327, 254–261.

[62]

Sun, H.; Liu, Z. G.; Chen, S.; Quan, X. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene. Chem. Eng. J. 2015, 270, 58–65.

[63]

Zhao, L. L.; Zhang, Z. P.; Li, Y. S.; Leng, X. S.; Zhang, T. R.; Yuan, F. L.; Niu, X. Y.; Zhu, Y. J. Synthesis of CeaMnOx hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion. Appl. Catal. B 2019, 245, 502–512.

[64]

Sakai, G.; Matsunaga, N.; Shimanoe, K.; Yamazoe, N. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B 2001, 80, 125–131.

[65]

Wagner, T.; Haffer, S.; Weinberger, C.; Klaus, D.; Tiemann, M. Mesoporous materials as gas sensors. Chem. Soc. Rev. 2013, 42, 4036–4053.

[66]

Liu, F. J.; Wang, X. Z.; Chen, X. Y.; Song, X. J.; Tian, J.; Cui, H. Z. Porous ZnO ultrathin nanosheets with high specific surface areas and abundant oxygen vacancies for acetylacetone gas sensing. ACS Appl. Mater. Interfaces 2019, 11, 24757–24763.

[67]

Zhou, X. R.; Cheng, X. W.; Zhu, Y. H.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y. H.; Zhao, D. Y. Ordered porous metal oxide semiconductors for gas sensing. Chin. Chem. Lett. 2018, 29, 405–416.

[68]

Bai, J. L.; Luo, Y. B.; Chen, C.; Deng, Y.; Cheng, X.; An, B. X.; Wang, Q.; Li, J. P.; Zhou, J. Y.; Wang, Y. R. et al. Functionalization of 1D In2O3 nanotubes with abundant oxygen vacancies by rare earth dopant for ultra-high sensitive ethanol detection. Sens. Actuators B 2020, 324, 128755.

File
12274_2022_5274_MOESM1_ESM.pdf (5.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 September 2022
Revised: 26 October 2022
Accepted: 31 October 2022
Published: 21 December 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2020YFB2008600), the National Natural Science Foundation of China (Nos. 21875044, 22125501, and 22105043), the Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (No. 20JC1415300), the China Postdoctoral Science Foundation (Nos. 2021TQ0066 and 2021M690660), the Fundamental Research Funds for the Central Universities (No. 20720220010), the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, the young scientist project of MOE innovation platform, Donghua University (No. KF2120), and the Foshan Science and Technology Innovation Program (No. 2017IT100121).

Return