Journal Home > Volume 16 , Issue 5

Textile-based electronic devices have attracted increasing interest in recent years due to their wearability, breathability, and comfort. Among them, textile-based triboelectric nanogenerators (T-TENGs) exhibit remarkable advantages in mechanical energy harvesting and self-powered sensing. However, there are still some key challenges to the development and application of triboelectric fibers (the basic unit of T-TENG). Scalable production and large-scale integration are still significant factors hindering its application. At the same time, there are some difficulties to overcome in the manufacturing process, such as achieving good stretchability and a quick production, overcoming incompatibility between conductive and triboelectric materials. In this study, triboelectric fibers are produced continuously by one-step coaxial wet spinning. They are only 0.18 mm in diameter and consist of liquid metal (LM) core and polyurethane (PU) sheath. Due to the good mechanical properties between them, there is no interface incompatibility of the triboelectric fibers. In addition, triboelectric fibers can be made into large areas of T-TENG by means of digital embroidery and plain weave. The T-TENGs can be used for energy harvesting and self-powered sensing. When they are fixed on the forearm can monitor various strokes in badminton. This work provides a promising strategy for the large-scale fabrication and large-area integration of triboelectric fibers, and promotes the development of wearable T-TENGs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Scalable one-step wet-spinning of triboelectric fibers for large-area power and sensing textiles

Show Author's information Chuan Ning1,2Chuanhui Wei1,3Feifan Sheng1Renwei Cheng1,3Yingying Li1Guoqiang Zheng2Kai Dong1,3( )Zhong Lin Wang1,3,4( )
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
College of Materials Science and Engineering, Key Laboratory of Material Processing and Mold (Ministry of Education), Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Abstract

Textile-based electronic devices have attracted increasing interest in recent years due to their wearability, breathability, and comfort. Among them, textile-based triboelectric nanogenerators (T-TENGs) exhibit remarkable advantages in mechanical energy harvesting and self-powered sensing. However, there are still some key challenges to the development and application of triboelectric fibers (the basic unit of T-TENG). Scalable production and large-scale integration are still significant factors hindering its application. At the same time, there are some difficulties to overcome in the manufacturing process, such as achieving good stretchability and a quick production, overcoming incompatibility between conductive and triboelectric materials. In this study, triboelectric fibers are produced continuously by one-step coaxial wet spinning. They are only 0.18 mm in diameter and consist of liquid metal (LM) core and polyurethane (PU) sheath. Due to the good mechanical properties between them, there is no interface incompatibility of the triboelectric fibers. In addition, triboelectric fibers can be made into large areas of T-TENG by means of digital embroidery and plain weave. The T-TENGs can be used for energy harvesting and self-powered sensing. When they are fixed on the forearm can monitor various strokes in badminton. This work provides a promising strategy for the large-scale fabrication and large-area integration of triboelectric fibers, and promotes the development of wearable T-TENGs.

Keywords: triboelectric nanogenerators, self-powered sensing, coaxial wet spinning, scale production, large-area integration

References(44)

[1]

Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

[2]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[3]

Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

[4]

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

[5]

Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672.

[6]

Dong, K.; Wu, Z. Y.; Deng, J. N.; Wang, A. C.; Zou, H. Y.; Chen, C. Y.; Hu, D. M.; Gu, B. H.; Sun, B. Z.; Wang, Z. L. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 2018, 30, 1804944.

[7]

Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

[8]

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

[9]

Lai, Y. C.; Deng, J. N.; Niu, S. M.; Peng, W. B.; Wu, C. S.; Liu, R. Y.; Wen, Z.; Wang, Z. L. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater. 2016, 28, 10024–10032.

[10]

Dong, K.; Deng, J. N.; Zi, Y. L.; Wang, Y. C.; Xu, C.; Zou, H. Y.; Ding, W. B.; Dai, Y. J.; Gu, B. H.; Sun, B. Z. et al. 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 2017, 29, 1702648.

[11]

Cheng, R. W.; Dong, K.; Liu, L. X.; Ning, C.; Chen, P. F.; Peng, X.; Liu, D.; Wang, Z. L. Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano 2020, 14, 15853–15863.

[12]

Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

[13]

Ning, C.; Cheng, R. W.; Jiang, Y.; Sheng, F. F.; Yi, J.; Shen, S.; Zhang, Y. H.; Peng, X.; Dong, K.; Wang, Z. L. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano 2022, 16, 2811–2821.

[14]

Libanori, A.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156.

[15]

Dong, K.; Peng, X.; Cheng, R. W.; Ning, C.; Jiang, Y.; Zhang, Y. H.; Wang, Z. L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv. Mater. 2022, 34, 2109355.

[16]

Zhang, C.; Fan, W.; Wang, S. J.; Wang, Q.; Zhang, Y. F.; Dong, K. Recent progress of wearable piezoelectric nanogenerators. ACS Appl. Electron. Mater. 2021, 3, 2449–2467.

[17]

Yang, W. F.; Gong, W.; Gu, W.; Liu, Z. X.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Self-powered interactive fiber electronics with visual-digital synergies. Adv. Mater. 2021, 33, 2104681.

[18]

Ning, C.; Tian, L.; Zhao, X. Y.; Xiang, S. X.; Tang, Y. J.; Liang, E. J.; Mao, Y. C. Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics. J. Mater. Chem. A 2018, 6, 19143–19150.

[19]

Shen, S.; Yi, J.; Cheng, R. W.; Ma, L. Y.; Sheng, F. F.; Li, H. M.; Zhang, Y. H.; Ning, C.; Wang, H. B.; Dong, K. et al. Electromagnetic shielding triboelectric yarns for human-machine interacting. Adv. Electron. Mater. 2021, 8, 2101130.

[20]

Zhao, Z. Z.; Yan, C.; Liu, Z. X.; Fu, X. L.; Peng, L. M.; Hu, Y. F.; Zheng, Z. J. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016, 28, 10267–10274.

[21]

Dong, K.; Wang, Y. C.; Deng, J. N.; Dai, Y. J.; Zhang, S. L.; Zou, H. Y.; Gu, B. H.; Sun, B. Z.; Wang, Z. L. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 2017, 11, 9490–9499.

[22]

Dong, K.; Hu, Y. F.; Yang, J.; Kim, S. W.; Hu, W. G.; Wang, Z. L. Smart textile triboelectric nanogenerators: Current status and perspectives. MRS Bull. 2021, 46, 512–521.

[23]

Gunawardhana, K. R. S. D.; Wanasekara, N. D.; Dharmasena, R. D. I. G. Towards truly wearable systems: Optimizing and scaling up wearable triboelectric nanogenerators. iScience 2020, 23, 101360.

[24]

Chen, L. J.; Chen, C. Y.; Jin, L.; Guo, H. Y.; Wang, A. C.; Ning, F. G.; Xu, Q. L.; Du, Z. Q.; Wang, F. M.; Wang, Z. L. Stretchable negative Poisson’s ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor. Energy Environ. Sci. 2021, 14, 955–964.

[25]

Chen, M. X.; Wang, Z.; Zhang, Q. C.; Wang, Z. X.; Liu, W.; Chen, M.; Wei, L. Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nat. Commun. 2021, 12, 1416.

[26]

Dong, C. Q.; Leber, A.; Das Gupta, T.; Chandran, R.; Volpi, M.; Qu, Y. P.; Nguyen-Dang, T.; Bartolomei, N.; Yan, W.; Sorin, F. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat. Commun. 2020, 11, 3537.

[27]

Wang, Z.; Wu, T. T.; Wang, Z. X.; Zhang, T.; Chen, M. X.; Zhang, J.; Liu, L.; Qi, M.; Zhang, Q. C.; Yang, J. et al. Designer patterned functional fibers via direct imprinting in thermal drawing. Nat. Commun. 2020, 11, 3842.

[28]

Li, Y. Y.; Zhang, Y. H.; Yi, J.; Peng, X.; Cheng, R. W.; Ning, C.; Sheng, F. F.; Wang, S.; Dong, K.; Wang, Z. L. Large-scale fabrication of core–shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat 2022, 4, e12191.

[29]

Gong, W.; Guo, Y.; Yang, W. F.; Wu, Z. H.; Xing, R. Z.; Liu, J.; Wei, W.; Zhou, J.; Guo, Y. B.; Li, K. R. et al. Scalable and reconfigurable green electronic textiles with personalized comfort management. ACS Nano 2022, 16, 12635–12644.

[30]

Ning, C.; Dong, K.; Cheng, R. W.; Yi, J.; Ye, C. Y.; Peng, X.; Sheng, F. F.; Jiang, Y.; Wang, Z. L. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv. Funct. Mater. 2020, 31, 2006679.

[31]

He, X.; Zi, Y. L.; Guo, H. Y.; Zheng, H. W.; Xi, Y.; Wu, C. S.; Wang, J.; Zhang, W.; Lu, C. H.; Wang, Z. L. A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv. Funct. Mater. 2017, 27, 1604378.

[32]

Zhao, S. F.; Ran, W. H.; Lou, Z.; Li, L. L.; Poddar, S.; Wang, L. L.; Fan, Z. Y.; Shen, G. Z. Neuromorphic-computing-based adaptive learning using ion dynamics in flexible energy storage devices. Natl. Sci. Rev. 2022, 9, nwac158.

[33]

Dong, K.; Deng, J. N.; Ding, W. B.; Wang, A. C.; Wang, P. H.; Cheng, C. Y.; Wang, Y. C.; Jin, L. M.; Gu, B. H.; Sun, B. Z. et al. Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv. Energy Mater. 2018, 8, 1801114.

[34]

Gong, W.; Hou, C. Y.; Guo, Y. B.; Zhou, J.; Mu, J. K.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath–core structural triboelectric fibers. Nano Energy 2017, 39, 673–683.

[35]

Zhang, Y. M.; Cao, J. M.; Yuan, Z. Y.; Xu, H.; Li, D. D.; Li, Y. L.; Han, W.; Wang, L. L. TIVCTx MXene/chalcogenide heterostructure-based high-performance magnesium-ion battery as flexible integrated units. Small 2022, 18, 2202313.

[36]

Jing, T. T.; Xu, B. G.; Yang, Y. J. Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles. Nano Energy 2021, 84, 105867.

[37]

Wang, W.; Yu, A. F.; Liu, X.; Liu, Y. D.; Zhang, Y.; Zhu, Y. X.; Lei, Y.; Jia, M. M.; Zhai, J. Y.; Wang, Z. L. Large-scale fabrication of robust textile triboelectric nanogenerators. Nano Energy 2020, 71, 104605.

[38]

Sim, H. J.; Choi, C.; Kim, S. H.; Kim, K. M.; Lee, C. J.; Kim, Y. T.; Lepró, X.; Baughman, R. H.; Kim, S. J. Stretchable triboelectric fiber for self-powered kinematic sensing textile. Sci. Rep. 2016, 6, 35153.

[39]

Yang, Z. H.; Zhai, Z. R.; Song, Z. M.; Wu, Y. Z.; Liang, J. H.; Shan, Y. F.; Zheng, J. R.; Liang, H. C.; Jiang, H. Q. Conductive and elastic 3D helical fibers for use in washable and wearable electronics. Adv. Mater. 2020, 32, 1907495.

[40]

Cheng, Y.; Lu, X.; Hoe Chan, K.; Wang, R. R.; Cao, Z. R.; Sun, J.; Wei Ho, G. A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring. Nano Energy 2017, 41, 511–518.

[41]

Yi, F.; Wang, X. F.; Niu, S. M.; Li, S. M.; Yin, Y. J.; Dai, K. R.; Zhang, G. J.; Lin, L.; Wen, Z.; Guo H. Y. et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2016, 2, e1501624.

[42]

Li, L. L.; Zhao, S. F.; Ran, W. H.; Li, Z. X.; Yan, Y. X.; Zhong, B. W.; Lou, Z.; Wang, L. L.; Shen, G. Z. Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application. Nat. Commun. 2022, 13, 5975.

[43]

Lin, R. Z.; Kim, H. J.; Achavananthadith, S.; Xiong, Z.; Lee, J. K. W.; Kong, Y. L.; Ho, J. S. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat. Commun. 2022, 13, 2190.

[44]

Tan, P. C.; Han, X.; Zou, Y.; Qu, X. C.; Xue, J. T.; Li, T.; Wang, Y. Q.; Luo, R. Z.; Cui, X.; Xi, Y. et al. Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input. Adv. Mater. 2022, 34, 2200793.

Video
12274_2022_5273_MOESM2_ESM.avi
12274_2022_5273_MOESM3_ESM.avi
12274_2022_5273_MOESM4_ESM.avi
12274_2022_5273_MOESM5_ESM.avi
12274_2022_5273_MOESM6_ESM.avi
12274_2022_5273_MOESM7_ESM.avi
File
12274_2022_5273_MOESM1_ESM.pdf (898.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 September 2022
Revised: 15 October 2022
Accepted: 31 October 2022
Published: 12 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

The authors are grateful for the support received from the National Natural Science Foundation of China (No. 22109012), Natural Science Foundation of the Beijing Municipality (Nos. L222037 and 2212052), and the Fundamental Research Funds for the Central Universities (No. E1E46805).

Return