Journal Home > Volume 16 , Issue 5

In this work, we report that high catalytic performance of metal–organic frameworks (MOFs) can be obtained through a synergistic effect of postsynthetic modification of MOF nanoparticles and liquid superwetting and confinement in the MOF coating. Specifically, 2-ureido-4[1H]pyrimidinone (UPy) functionalized polysiloxanes were covalently appended onto the UiO-66 nanoparticles via a postsynthetic approach, which were further anchored onto different porous films through multivalent hydrogen bonding of the UPy motifs. The hydrophobic MOF coating can preserve the porosity of the solid substrates, and enable rapid liquid superwetting and confinement within the porous substrates. Using the Knoevenagel condensation as a modeled system, robust and highly catalytic performances of the MOF coating were observed on a range of aldehyde substrates. Gram-scale production of chromene, a pharmaceutical which is typically synthesized via expensive catalysis, was successfully demonstrated on the MOF coating with high yielding rates, demonstrating the great potential of the MOF coating in pharmaceutical synthesis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly catalytic metal–organic framework coating enabled by liquid superwetting and confinement

Show Author's information Bo Yi1,§Yan-Lung Wong1,§Kedi Li2Changshun Hou1Tengrui Ma2Zhengtao Xu3( )Xi Yao1,4( )
Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China

§ Bo Yi and Yan-Lung Wong contributed equally to this work.

Abstract

In this work, we report that high catalytic performance of metal–organic frameworks (MOFs) can be obtained through a synergistic effect of postsynthetic modification of MOF nanoparticles and liquid superwetting and confinement in the MOF coating. Specifically, 2-ureido-4[1H]pyrimidinone (UPy) functionalized polysiloxanes were covalently appended onto the UiO-66 nanoparticles via a postsynthetic approach, which were further anchored onto different porous films through multivalent hydrogen bonding of the UPy motifs. The hydrophobic MOF coating can preserve the porosity of the solid substrates, and enable rapid liquid superwetting and confinement within the porous substrates. Using the Knoevenagel condensation as a modeled system, robust and highly catalytic performances of the MOF coating were observed on a range of aldehyde substrates. Gram-scale production of chromene, a pharmaceutical which is typically synthesized via expensive catalysis, was successfully demonstrated on the MOF coating with high yielding rates, demonstrating the great potential of the MOF coating in pharmaceutical synthesis.

Keywords: postsynthetic modification, hydrogen bonding, metal–organic framework, superwetting, liquid confinement

References(39)

[1]

Bavykina, A.; Kolobov, N.; Khan, I. S.; Bau, J. A.; Ramirez, A.; Gascon, J. Metal–organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem. Rev. 2020, 120, 8468–8535.

[2]

Qian, Q. H.; Asinger, P. A.; Lee, M. J.; Han, G.; Rodriguez, K. M.; Lin, S.; Benedetti, F. M.; Wu, A. X.; Chi, W. S.; Smith, Z. P. MOF-based membranes for gas separations. Chem. Rev. 2020, 120, 8161–8266.

[3]

Chaemchuen, S.; Kabir, N. A.; Zhou, K.; Verpoort, F. Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chem. Soc. Rev. 2013, 42, 9304–9332.

[4]

Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal–organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

[5]

Ma, L.; Jiang, F. B.; Fan, X.; Wang, L. Y.; He, C.; Zhou, M.; Li, S.; Luo, H. R.; Cheng, C.; Qiu, L. Metal–organic-framework-engineered enzyme-mimetic catalysts. Adv. Mater. 2020, 32, 2003065.

[6]

Mitchell, S.; Qin, R. X.; Zheng, N. F.; Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 2021, 16, 129–139.

[7]

Chen, L. Y.; Xu, Q. Metal–organic framework composites for catalysis. Matter 2019, 1, 57–89.

[8]

Yi, B.; Ai, L. Q.; Hou, C. S.; Lv, D.; Cao, C. Y.; Yao, X. Liquid metal nanoparticles as a highly efficient photoinitiator to develop multifunctional hydrogel composites. ACS Appl. Mater. Interfaces 2022, 14, 29315–29323.

[9]

Kalaj, M.; Cohen, S. M. Postsynthetic modification: An enabling technology for the advancement of metal–organic frameworks. ACS Cent. Sci. 2020, 6, 1046–1057.

[10]

Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A. Post-synthetic modification of metal–organic frameworks toward applications. Adv. Funct. Mater. 2021, 31, 2006291.

[11]

Zhang, Y. Y.; Feng, X.; Li, H. W.; Chen, Y. F.; Zhao, J. S.; Wang, S.; Wang, L.; Wang, B. Photoinduced postsynthetic polymerization of a metal–organic framework toward a flexible stand-alone membrane. Angew. Chem., Int. Ed. 2015, 54, 4259–4263.

[12]

Fei, H. H.; Cohen, S. M. Metalation of a thiocatechol-functionalized Zr(IV)-based metal–organic framework for selective C–H functionalization. J. Am. Chem. Soc. 2015, 137, 2191–2194.

[13]

Tehrani, A. A.; Abedi, S.; Morsali, A.; Wang, J.; Junk, P. C. Urea-containing metal–organic frameworks as heterogeneous organocatalysts. J. Mater. Chem. A 2015, 3, 20408–20415.

[14]

Kalaj, M.; Cohen, S. M. Spray-coating of catalytically active MOF-polythiourea through postsynthetic polymerization. Angew. Chem., Int. Ed. 2020, 59, 13984–13989.

[15]

McGuirk, C. M.; Katz, M. J.; Stern, C. L.; Sarjeant, A. A.; Hupp, J. T.; Farha, O. K.; Mirkin, C. A. Turning on catalysis: Incorporation of a hydrogen-bond-donating squaramide moiety into a Zr metal–organic framework. J. Am. Chem. Soc. 2015, 137, 919–925.

[16]

Li, H. B.; Xiao, J. P.; Fu, Q.; Bao, X. H. Confined catalysis under two-dimensional materials. Proc. Natl. Acad. Sci. USA 2017, 114, 5930–5934.

[17]

Sun, Q.; Aguila, B.; Perman, J. A.; Butts, T.; Xiao, F. S.; Ma, S. Q. Integrating superwettability within covalent organic frameworks for functional coating. Chem 2018, 4, 1726–1739.

[18]

Wu, Y. C.; Feng, J. G.; Gao, H. F.; Feng, X. J.; Jiang, L. Superwettability-based interfacial chemical reactions. Adv. Mater. 2019, 31, 1800718.

[19]

Zhu, H.; Cai, S.; Liao, G. F.; Gao, Z. F.; Min, X. H.; Huang, Y.; Jin, S. W.; Xia, F. Recent advances in photocatalysis based on bioinspired superwettabilities. ACS Catal. 2021, 11, 14751–14771.

[20]

Zhang, X. T.; Liu, S. Q.; Salim, A.; Seeger, S. Hierarchical structured multifunctional self-cleaning material with durable superhydrophobicity and photocatalytic functionalities. Small 2019, 15, 1901822.

[21]

Jayaramulu, K.; Geyer, F.; Schneemann, A.; Kment, Š.; Otyepka, M.; Zboril, R.; Vollmer, D.; Fischer, R. A. Hydrophobic metal–organic frameworks. Adv. Mater. 2019, 31, 1900820.

[22]

Xie, L. H.; Xu, M. M.; Liu, X. M.; Zhao, M. J.; Li, J. R. Hydrophobic metal–organic frameworks: Assessment, construction, and diverse applications. Adv. Sci. 2020, 7, 1901758.

[23]

Huang, G.; Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Polydimethylsiloxane coating for a palladium/MOF composite: Highly improved catalytic performance by surface hydrophobization. Angew. Chem., Int. Ed. 2016, 55, 7379–7383.

[24]

Cohen, S. M. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem. Rev. 2012, 112, 970–1000.

[25]

Hirschberg, J. H. K. K.; Beijer, F. H.; van Aert, H. A.; Magusin, P. C. M. M.; Sijbesma, R. P.; Meijer, E. W. Supramolecular polymers from linear telechelic siloxanes with quadruple-hydrogen-bonded units. Macromolecules 1999, 32, 2696–2705.

[26]

Yi, B.; Liu, P.; Hou, C. S.; Cao, C. Y.; Zhang, J. Q.; Sun, H. Y.; Yao, X. Dual-cross-linked supramolecular polysiloxanes for mechanically tunable, damage-healable and oil-repellent polymeric coatings. ACS Appl. Mater. Interfaces 2019, 11, 47382–47389.

[27]

Sahu, P. K.; Sahu, P. K.; Gupta, S. K.; Agarwal, D. D. Role of calcinations and basicity of hydrotalcite as catalyst for environmental benign novel synthesis of 4H-pyrimido[2,1-b][1,3]benzothiazole derivatives of curcumin. Catal. Sci. Technol. 2013, 3, 1520–1530.

[28]

Yi, B.; Wang, S.; Hou, C. S.; Huang, X.; Cui, J. X.; Yao, X. Dynamic siloxane materials: From molecular engineering to emerging applications. Chem. Eng. J. 2021, 405, 127023.

[29]

Zhang, J. Q.; Wang, X. J.; Wang, Z. Y.; Pan, S. F.; Yi, B.; Ai, L. Q.; Gao, J.; Mugele, F.; Yao, X. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat. Commun. 2021, 12, 7136.

[30]

Wang, Z. Y.; Yi, B.; Wu, M. D.; Lv, D.; He, M. L.; Liu, M. J.; Yao, X. Bioinspired supramolecular slippery organogels for controlling pathogen spread by respiratory droplets. Adv. Funct. Mater. 2021, 31, 2102888.

[31]

Zhang, K. K.; Huang, S. S.; Wang, J. D.; Liu, G. J. Transparent omniphobic coating with glass-like wear resistance and polymer-like bendability. Angew. Chem., Int. Ed. 2019, 58, 12004–12009.

[32]

Dugan, E.; Wang, Z. Q.; Okamura, M.; Medina, A.; Cohen, S. M. Covalent modification of a metal–organic framework with isocyanates: Probing substrate scope and reactivity. Chem. Commun. 2008, 3366–3368.

[33]

Yi, B.; Wong, Y. L.; Hou, C. S.; Zhang, J. Q.; Xu, Z. T.; Yao, X. Coordination-driven assembly of metal–organic framework coating for catalytically active superhydrophobic surface. Adv. Mater. Interfaces 2021, 8, 2001202.

[34]

Madivada, L. R.; Anumala, R. R.; Gilla, G.; Alla, S.; Charagondla, K.; Kagga, M.; Bhattacharya, A.; Bandichhor, R. An improved process for pioglitazone and its pharmaceutically acceptable salt. Org. Process Res. Dev. 2009, 13, 1190–1194.

[35]

Martinez, C. A.; Hu, S. H.; Dumond, Y.; Tao, J. H.; Kelleher, P.; Tully, L. Development of a chemoenzymatic manufacturing process for pregabalin. Org. Process Res. Dev. 2008, 12, 392–398.

[36]

Luan, Y.; Qi, Y.; Gao, H. Y.; Andriamitantsoa, R. S.; Zheng, N. N.; Wang, G. A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction. J. Mater. Chem. A 2015, 3, 17320–17331.

[37]

Garrabou, X.; Wicky, B. I. M.; Hilvert, D. Fast knoevenagel condensations catalyzed by an artificial schiff-base-forming enzyme. J. Am. Chem. Soc. 2016, 138, 6972–6974.

[38]

Liu, M. J.; Wang, Z. Y.; Liu, P.; Wang, Z. K.; Yao, H. M.; Yao, X. Supramolecular silicone coating capable of strong substrate bonding, readily damage healing, and easy oil sliding. Sci. Adv. 2019, 5, eaaw5643.

[39]

Khan, G. A.; Naikoo, G. A.; War, J. A.; Sheikh, I. A.; Pandit, U. J.; Khan, I.; Harit, A. K.; Das, R. An efficient green synthesis of some functionalized spiro chromene based scaffolds as potential antitubercular agents. J. Heterocycl. Chem. 2018, 55, 699–708.

File
12274_2022_5271_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 September 2022
Revised: 24 October 2022
Accepted: 31 October 2022
Published: 29 December 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

X. Y. acknowledges the Research Grant Council of Hong Kong (Nos. 11305219 and 11307220), CityU Applied Research Grant (ARG, No. 9667203), and Shenzhen Basic Research Program (No. JCYJ20210324134009024). Z. X. acknowledges a Shenzhen-HK-Macau Science and Technology Grant (type C; No. SGDX2020110309300301) from the Science, Technology, and Innovation Commission of Shenzhen Municipality.

Return