Journal Home > Volume 16 , Issue 5

Drug delivery has made tremendous advances in the last decade. Targeted therapies are increasingly common, with intracellular delivery highly impactful and sought after. Intracellular drug delivery systems have limitations due to imprecise and non-targeted release profiles. One way this can be addressed is through using stimuli-responsive soft nanoparticles, which contain materials with an organic backbone such as lipids and polymers. The choice of biomaterial is essential for soft nanoparticles to be responsive to internal or external stimuli. The nanoparticle must retain its integrity and payload in non-targeted physiological conditions while responding to particular intracellular environments where payload release is desired. Multiple internal and external factors could stimulate the intracellular release of drugs from nanoparticles. Internal stimuli include pH, oxidation, and enzymes, while external stimuli include ultrasound, light, electricity, and magnetic fields. Stimulatory responsive soft nanoparticulate systems specifically utilized to modulate intracellular delivery of drugs are explored in this review.


menu
Abstract
Full text
Outline
About this article

Use of stimulatory responsive soft nanoparticles for intracellular drug delivery

Show Author's information Krystal A Hughes1Bishal Misra1Maryam Maghareh2Sharan Bobbala1( )
Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA
Department of Clinical Pharmacy, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA

Abstract

Drug delivery has made tremendous advances in the last decade. Targeted therapies are increasingly common, with intracellular delivery highly impactful and sought after. Intracellular drug delivery systems have limitations due to imprecise and non-targeted release profiles. One way this can be addressed is through using stimuli-responsive soft nanoparticles, which contain materials with an organic backbone such as lipids and polymers. The choice of biomaterial is essential for soft nanoparticles to be responsive to internal or external stimuli. The nanoparticle must retain its integrity and payload in non-targeted physiological conditions while responding to particular intracellular environments where payload release is desired. Multiple internal and external factors could stimulate the intracellular release of drugs from nanoparticles. Internal stimuli include pH, oxidation, and enzymes, while external stimuli include ultrasound, light, electricity, and magnetic fields. Stimulatory responsive soft nanoparticulate systems specifically utilized to modulate intracellular delivery of drugs are explored in this review.

Keywords: nanoparticles, biomaterials, stimuli-responsive, targeted delivery, intracellular drug delivery

References(166)

[1]

Vincent, M. P.; Navidzadeh, J. O.; Bobbala, S.; Scott, E. A. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell. 2022, 40, 255–276.

[2]

Sangtani, A.; Nag, O. K.; Field, L. D.; Breger, J. C.; Delehanty, J. B. Multifunctional nanoparticle composites: Progress in the use of soft and hard nanoparticles for drug delivery and imaging. WIREs Nanomed. Nanobi. 2017, 9, e1466.

[3]

Brunk, N. E.; Jadhao, V. Computational studies of shape control of charged deformable nanocontainers. J. Mater. Chem. B 2019, 7, 6370–6382.

[4]

Latreille, P. L.; Adibnia, V.; Nour, A.; Rabanel, J. M.; Lalloz, A.; Arlt, J.; Poon, W. C. K.; Hildgen, P.; Martinez, V. A.; Banquy, X. Spontaneous shrinking of soft nanoparticles boosts their diffusion in confined media. Nat. Commun. 2019, 10, 4294.

[5]

Guo, P.; Liu, D. X.; Subramanyam, K.; Wang, B. R.; Yang, J.; Huang, J.; Auguste, D. T.; Moses, M. A. Nanoparticle elasticity directs tumor uptake. Nat. Commun. 2018, 9, 130.

[6]

Jeong, S. H.; Jang, J. H.; Cho, H. Y.; Lee, Y. B. Soft- and hard-lipid nanoparticles: A novel approach to lymphatic drug delivery. Arch. Pharm. Res. 2018, 41, 797–814.

[7]
Bruschi, M. L. Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing: Cambridge, 2015.
[8]

Güven, E. Nanotechnology-based drug delivery systems in orthopedics. Jt. Dis. Relat. Surg. 2021, 32, 267–273.

[9]

Xu, L. T.; Wang, X.; Liu, Y.; Yang, G. Z.; Falconer, R. J.; Zhao, C. X. Lipid nanoparticles for drug delivery. Adv. Nanobiomed Res. 2022, 2, 2100109.

[10]

Tenchov, R.; Bird, R.; Curtze, A. E.; Zhou, Q. Q. Lipid nanoparticles-from liposomes to mrna vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021, 15, 16982–17015.

[11]

Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020, 10, 1403.

[12]

Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S. et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71.

[13]
Israelachvili, J. N. Soft and biological structures. In Intermolecular and Surface Forces, 3rd ed.; Israelachvili, J. N., Ed.; Academic Press: Burlington, 2011; pp 535–576.
[14]

Thi, T. T. H.; Suys, E. J. A.; Lee, J. S.; Nguyen, D. H.; Park, K. D.; Truong, N. P. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines. Vaccines 2021, 9, 359.

[15]

Anselmo, A. C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29.

[16]

Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res. 2018, 137, 115–170.

[17]

Sharma, S.; Zvyagin, A. V.; Roy, I. Theranostic applications of nanoparticle-mediated photoactivated therapies. J. Nanotheranostics 2021, 2, 131–156.

[18]

Nanashima, A.; Hiyoshi, M.; Imamura, N.; Yano, K.; Hamada, T.; Kai, K. Recent advances in photodynamic imaging and therapy in hepatobiliary malignancies: Clinical and experimental aspects. Curr. Oncol. 2021, 28, 4067–4079.

[19]

Liu, P.; Ren, J. H.; Xiong, Y. X.; Yang, Z.; Zhu, W.; He, Q. Y.; Xu, Z. S.; He, W. S.; Wang, J. Enhancing magnetic resonance/photoluminescence imaging-guided photodynamic therapy by multiple pathways. Biomaterials 2019, 199, 52–62.

[20]

Malik, O.; Kaye, A. D.; Kaye, A.; Belani, K.; Urman, R. D. Emerging roles of liposomal bupivacaine in anesthesia practice. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 151–156.

[21]

Adler-Moore, J.; Proffitt, R. T. Ambisome: Liposomal formulation, structure, mechanism of action and pre-clinical experience. J. Antimicrob. Chemother. 2002, 49 Suppl 1, 21–30.

[22]
Zeng, C. X.; Zhang, C. X.; Walker, P. G.; Dong, Y. Z. Formulation and delivery technologies for mRNA vaccines. In Current topics in Microbiology and Immunology; Springer: Berlin, Heidelberg, 2020.
[23]

Roldão, A.; Mellado, M. C. M.; Castilho, L. R.; Carrondo, M. J. T.; Alves, P. M. Virus-like particles in vaccine development. Expert Rev. Vaccines 2010, 9, 1149–1176.

[24]

Anselmo, A. C.; Mitragotri, S. Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioeng. Transl. Med. 2021, 6, e10246.

[25]

Facciolà, A.; Visalli, G.; Laganà, P.; La Fauci, V.; Squeri, R.; Pellicanò, G. F.; Nunnari, G.; Trovato, M.; Di Pietro, A. The new era of vaccines: The “nanovaccinology”. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 7163–7182.

[26]

Andraos, C.; Gulumian, M. Intracellular and extracellular targets as mechanisms of cancer therapy by nanomaterials in relation to their physicochemical properties. WIREs Nanomed. Nanobiotechnol. 2021, 13, e1680.

[27]

Cho, H.; Cho, Y. Y.; Shim, M. S.; Lee, J. Y.; Lee, H. S.; Kang, H. C. Mitochondria-targeted drug delivery in cancers. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1866, 165808.

[28]

Sahay, G.; Alakhova, D. Y.; Kabanov, A. V. Endocytosis of nanomedicines. J. Control. Release 2010, 145, 182–195.

[29]

Vasir, J. K.; Labhasetwar, V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv. Drug Deliv. Rev. 2007, 59, 718–728.

[30]

Pacifici, N.; Bolandparvaz, A.; Lewis, J. S. Stimuli-responsive biomaterials for vaccines and immunotherapeutic applications. Adv. Ther. 2020, 3, 2000129.

[31]

Yameen, B.; Choi, W. I.; Vilos, C.; Swami, A.; Shi, J. J.; Farokhzad, O. C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 2014, 190, 485–499.

[32]

Donahue, N. D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 2019, 143, 68–96.

[33]

Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410.

[34]

Kaksonen, M.; Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2018, 19, 313–326.

[35]

Foroozandeh, P.; Aziz, A. A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018, 13, 339.

[36]

de Almeida, M. S.; Susnik, E.; Drasler, B.; Taladriz-Blanco, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem. Soc. Rev. 2021, 50, 5397–5434.

[37]

Henley, J. R.; Krueger, E. W. A.; Oswald, B. J.; McNiven, M. A. Dynamin-mediated internalization of caveolae. J. Cell Biol. 1998, 141, 85–99.

[38]

Ferreira, A. P. A.; Casamento, A.; Carrillo Roas, S.; Halff, E. F.; Panambalana, J.; Subramaniam, S.; Schützenhofer, K.; Hak, L. C. W.; McGourty, K.; Thalassinos, K. et al. Cdk5 and GSK3β inhibit fast endophilin-mediated endocytosis. Nat. Commun. 2021, 12, 2424.

[39]

Casamento, A.; Boucrot, E. Molecular mechanism of fast endophilin-mediated endocytosis. Biochem. J. 2020, 477, 2327–2345.

[40]

Sathe, M.; Muthukrishnan, G.; Rae, J.; Disanza, A.; Thattai, M.; Scita, G.; Parton, R. G.; Mayor, S. Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nat. Commun. 2018, 9, 1835.

[41]

Rennick, J. J.; Johnston, A. P. R.; Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 2021, 16, 266–276.

[42]

Xiao, F.; Li, J. Y.; Huang, K.; Li, X.; Xiong, Y. P.; Wu, M. J.; Wu, L.; Kuang, W.; Lv, S. G.; Wu, L. et al. Macropinocytosis: Mechanism and targeted therapy in cancers. Am. J. Cancer Res. 2021, 11, 14–30.

[43]

Lin, X. P.; Mintern, J. D.; Gleeson, P. A. Macropinocytosis in different cell types: Similarities and differences. Membranes 2020, 10, 177.

[44]

Kumar, A.; Ahmad, A.; Vyawahare, A.; Khan, R. Membrane trafficking and subcellular drug targeting pathways. Front. Pharmacol. 2020, 11, 629.

[45]

Meng, F. H.; Cheng, R.; Deng, C.; Zhong, Z. Y. Intracellular drug release nanosystems. Mater. Today 2012, 15, 436–442.

[46]

Sakhrani, N. M.; Padh, H. Organelle targeting: Third level of drug targeting. Drug Des. Devel. Ther. 2013, 7, 585–599.

[47]

Pandya, H.; Debinski, W. Toward intracellular targeted delivery of cancer therapeutics: Progress and clinical outlook for brain tumor therapy. BioDrugs 2012, 26, 235–244.

[48]

Tiwari, R.; Jain, P.; Asati, S.; Haider, T.; Soni, V.; Pandey, V. State-of-art based approaches for anticancer drug-targeting to nucleus. J. Drug Deliv. Sci. Technol. 2018, 48, 383–392.

[49]

Jeena, M. T.; Kim, S.; Jin, S.; Ryu, J. H. Recent progress in mitochondria-targeted drug and drug-free agents for cancer therapy. Cancers 2020, 12, 4.

[50]

Cao, M. D.; Luo, X. Y.; Wu, K. M.; He, X. X. Targeting lysosomes in human disease: From basic research to clinical applications. Sig. Transduct. Target. Ther. 2021, 6, 379.

[51]

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

[52]

Ma, C.; Wu, M. J.; Ye, W. F.; Huang, Z. W.; Ma, X. Y.; Wang, W. H.; Wang, W. H.; Huang, Y.; Pan, X.; Wu, C. B. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: Macrophage-targeting and pH-sensitive properties. Drug Deliv. Transl. Res. 2021, 11, 1218–1235.

[53]

Yang, H.; Luo, Y.; Hu, H.; Yang, S. B.; Li, Y. N.; Jin, H. J.; Chen, S. C.; He, Q. W.; Hong, C. D.; Wu, J. H. et al. pH-sensitive, cerebral vasculature-targeting hydroxyethyl starch functionalized nanoparticles for improved angiogenesis and neurological function recovery in ischemic stroke. Adv. Healthc. Mater. 2021, 10, 2100028.

[54]

Tang, S.; Wen, P. Q.; Li, K. H.; Deng, J. H.; Yang, B. Tumor targetable and pH-sensitive polymer nanoparticles for simultaneously improve the Type 2 Diabetes Mellitus and malignant breast cancer. Bioengineered 2022, 13, 9757–9768.

[55]

Zhu, H. R.; Kong, L.; Zhu, X.; Ran, T. T.; Ji, X. J. pH-responsive nanoparticles for delivery of paclitaxel to the injury site for inhibiting vascular restenosis. Pharmaceutics 2022, 14, 535.

[56]

Zeng, X. L.; Zhang, Y. W.; Xu, X.; Chen, Z.; Ma, L. L.; Wang, Y. S.; Guo, X. L.; Li, J. C.; Wang, X. Construction of pH-sensitive targeted micelle system co-delivery with curcumin and dasatinib and evaluation of anti-liver cancer. Drug Deliv. 2022, 29, 792–806.

[57]

Liu, C. X.; Gao, Y.; Zhao, L. X.; Wang, R.; Xie, F.; Zhai, G. X.; Liu, A. C. The development of a redox-sensitive curcumin conjugated chitosan oligosaccharide nanocarrier for the efficient delivery of docetaxel to glioma cells. Ann. Transl. Med. 2022, 10, 297.

[58]

Chen, D. Y.; Zhang, P.; Li, M. H.; Li, C. C.; Lu, X. Y.; Sun, Y. Y.; Sun, K. X. Hyaluronic acid-modified redox-sensitive hybrid nanocomplex loading with siRNA for non-small-cell lung carcinoma therapy. Drug Deliv. 2022, 29, 574–587.

[59]

Guo, Y. F.; Liu, S.; Luo, F. Z.; Tang, D. Y.; Yang, T. S.; Yang, X. R.; Xie, Y. A nanosized codelivery system based on intracellular stimuli-triggered dual-drug release for multilevel chemotherapy amplification in drug-resistant breast cancer. Pharmaceutics 2022, 14, 422.

[60]

Viswanadh, M. K.; Agrawal, N.; Azad, S.; Jha, A.; Poddar, S.; Mahto, S. K.; Muthu, M. S. Novel redox-sensitive thiolated TPGS based nanoparticles for EGFR targeted lung cancer therapy. Int. J. Pharmaceut. 2021, 602, 120652.

[61]

Lou, X. Y.; Zhang, D.; Ling, H.; He, Z. G.; Sun, J.; Sun, M. C.; Liu, D. C. Pure redox-sensitive paclitaxel-maleimide prodrug nanoparticles: Endogenous albumin-induced size switching and improved antitumor efficiency. Acta Pharm. Sin. B 2021, 11, 2048–2058.

[62]

Wang, R. J.; Yang, H. T.; Khan, A. R.; Yang, X. Y.; Xu, J. K.; Ji, J. B.; Zhai, G. X. Redox-responsive hyaluronic acid-based nanoparticles for targeted photodynamic therapy/chemotherapy against breast cancer. J. Colloid Interf. Sci. 2021, 598, 213–228.

[63]

Pei, Q.; Lu, S. J.; Zhou, J. L.; Jiang, B. W.; Li, C. N.; Xie, Z. G.; Jing, X. B. Intracellular enzyme-responsive profluorophore and prodrug nanoparticles for tumor-specific imaging and precise chemotherapy. ACS Appl. Mater. Interfaces 2021, 13, 59708–59719.

[64]

Zhang, J. M.; Zhang, Y. Y.; Zhao, B. B.; Lv, M. T.; Chen, E. P.; Zhao, C. S.; Jiang, L. Y.; Qian, H. L.; Huang, D. C.; Zhong, Y. N. et al. Cascade-responsive hierarchical nanosystems for multisite specific drug exposure and boosted chemoimmunotherapy. ACS Appl. Mater. Interfaces 2021, 13, 58319–58328.

[65]

Li, W. N.; Zhang, X. Y.; Nan, Y.; Jia, L.; Sun, J. L.; Zhang, L. N.; Wang, Y. H. Hyaluronidase and pH dual-responsive nanoparticles for targeted breast cancer stem cells. Front. Oncol. 2021, 11, 760423.

[66]

Grünwald, B.; Vandooren, J.; Locatelli, E.; Fiten, P.; Opdenakker, G.; Proost, P.; Krüger, A.; Lellouche, J. P.; Israel, L. L.; Shenkman, L. et al. Matrix metalloproteinase-9 (MMP-9) as an activator of nanosystems for targeted drug delivery in pancreatic cancer. J. Control Release 2016, 239, 39–48.

[67]

Zhang, Q.; Wang, W.; Shen, H. Y.; Tao, H. Y.; Wu, Y. T.; Ma, L. Y.; Yang, G. F.; Chang, R. J.; Wang, J. X.; Zhang, H. F. et al. Low-intensity focused ultrasound-augmented multifunctional nanoparticles for integrating ultrasound imaging and synergistic therapy of metastatic breast cancer. Nanoscale Res. Lett. 2021, 16, 73.

[68]

Zhong, L. Y.; Chen, B. Q.; He, J. D.; He, M. N.; Zhao, Q. Y.; Wang, B. H.; Jiang, T. A. Focused ultrasound-augmented cancer phototheranostics using albumin-indocyanine green nanoparticles. Ultrasound Med. Biol. 2021, 47, 1801–1813.

[69]

Guo, H. L.; Xu, M.; Cao, Z.; Li, W.; Chen, L. D.; Xie, X. Y.; Wang, W.; Liu, J. Ultrasound-assisted miR-122-loaded polymeric nanodroplets for hepatocellular carcinoma gene therapy. Mol. Pharm. 2020, 17, 541–553.

[70]

Kulbacka, J.; Wilk, K. A.; Bazylińska, U.; Dubińska-Magiera, M.; Potoczek, S.; Saczko, J. Curcumin loaded nanocarriers with varying charges augmented with electroporation designed for colon cancer therapy. Int. J. Mol. Sci. 2022, 23, 1377.

[71]

Qu, J.; Liang, Y. P.; Shi, M. T.; Guo, B. L.; Gao, Y. Z.; Yin, Z. H. Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. Int. J. Biol. Macromol. 2019, 140, 255–264.

[72]

Zhao, T.; Qin, S. W.; Peng, L. N.; Li, P.; Feng, T.; Wan, J. Y.; Yuan, P.; Zhang, L. K. Novel hyaluronic acid-modified temperature-sensitive nanoparticles for synergistic chemo-photothermal therapy. Carbohyd. Polym. 2019, 214, 221–233.

[73]

Sarkar, S.; Levi, N. Variable molecular weight polymer nanoparticles for detection and hyperthermia-induced chemotherapy of colorectal cancer. Cancers 2021, 13, 4472.

[74]

Mohapatra, A.; Uthaman, S.; Park, I. K. External and internal stimuli-responsive metallic nanotherapeutics for enhanced anticancer therapy. Front. Mol. Biosci. 2021, 7, 597634.

[75]

Yan, Y. F.; Ding, H. W. pH-responsive nanoparticles for cancer immunotherapy: A brief review. Nanomaterials 2020, 10, 1613.

[76]

Le, H.; Karakasyan, C.; Jouenne, T.; Le Cerf, D.; Dé, E. Application of polymeric nanocarriers for enhancing the bioavailability of antibiotics at the target site and overcoming antimicrobial resistance. Appl. Sci. 2021, 11, 10695.

[77]

Du, J. Z.; Du, X. J.; Mao, C. Q.; Wang, J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 2011, 133, 17560–17563.

[78]

Jin, Y.; Song, L.; Su, Y.; Zhu, L. J.; Pang, Y.; Qiu, F.; Tong, G. S.; Yan, D. Y.; Zhu, B. S.; Zhu, X. Y. Oxime linkage: A robust tool for the design of pH-sensitive polymeric drug carriers. Biomacromolecules 2011, 12, 3460–3468.

[79]

Liu, S.; Deng, S. H.; Li, X. X.; Cheng, D. Size-and surface-dual engineered small polyplexes for efficiently targeting delivery of siRNA. Molecules 2021, 26, 3238.

[80]

Bachelder, E. M.; Beaudette, T. T.; Broaders, K. E.; Dashe, J.; Fréchet, J. M. J. Acetal-derivatized dextran: An acid-responsive biodegradable material for therapeutic applications. J. Am. Chem. Soc. 2008, 130, 10494–10495.

[81]

Chu, S. L.; Shi, X. L.; Tian, Y.; Gao, F. X. pH-responsive polymer nanomaterials for tumor therapy. Front. Oncol. 2022, 12, 855019.

[82]

Cheng, C.; Meng, Y. B.; Zhang, Z. H.; Chen, J. D.; Zhang, Q. Q. Imine bond-and coordinate bond-linked pH-sensitive cisplatin complex nanoparticles for active targeting to tumor cells. J. Nanosci. Nanotechnol. 2019, 19, 3277–3287.

[83]

Lang, S. Y.; Tan, Z. B.; Wu, X. J.; Huang, X. F. Synthesis of carboxy-dimethylmaleic amide linked polymer conjugate based ultra-pH-sensitive nanoparticles for enhanced antitumor immunotherapy. ACS Macro Lett. 2020, 9, 1693–1699.

[84]

Lan, S.; Liu, Y. M.; Shi, K. J.; Ma, D. Acetal-functionalized pillar[5]arene: A pH-responsive and versatile nanomaterial for the delivery of chemotherapeutic agents. ACS Appl. Bio Mater. 2020, 3, 2325–2333.

[85]

Wang, X.; Xu, J. X.; Xu, X. X.; Fang, Q.; Tang, R. P. pH-sensitive bromelain nanoparticles by ortho ester crosslinkage for enhanced doxorubicin penetration in solid tumor. Mater. Sci. Eng. C 2020, 113, 111004.

[86]

Luo, Q. H.; Shi, W.; Wang, P. X.; Zhang, Y.; Meng, J.; Zhang, L. Tumor microenvironment-responsive shell/core composite nanoparticles for enhanced stability and antitumor efficiency based on a pH-triggered charge-reversal mechanism. Pharmaceutics 2021, 13, 895.

[87]

Palanikumar, L.; Al-Hosani, S.; Kalmouni, M.; Nguyen, V. P.; Ali, L.; Pasricha, R.; Barrera, F. N.; Magzoub, M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun. Biol. 2020, 3, 95.

[88]

Kanamala, M.; Wilson, W. R.; Yang, M. M.; Palmer, B. D.; Wu, Z. M. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016, 85, 152–167.

[89]

Kermaniyan, S. S.; Chen, M.; Zhang, C. H.; Smith, S. A.; Johnston, A. P. R.; Such, C.; Such, G. K. Understanding the biological interactions of pH-swellable nanoparticles. Macromol. Biosci. 2022, 22, 2100445.

[90]
Maity, S.; Chatterjee, A.; Ganguly, J. Stimuli-responsive sugar-derived hydrogels: A modern approach in cancer biology. In Green Approaches in Medicinal Chemistry for Sustainable Drug Design; Banik, B. K. , Ed.; Elsevier: Amsterdam, 2020; pp 617–649.
[91]

Sauraj; Kumar, A.; Kumar, B.; Kulshreshtha, A.; Negi, Y. S. Redox-sensitive nanoparticles based on xylan-lipoic acid conjugate for tumor targeted drug delivery of niclosamide in cancer therapy. Carbohyd. Res. 2021, 499, 108222.

[92]

Wen, H.; Li, Y. Y. Redox sensitive nanoparticles with disulfide bond linked sheddable shell for intracellular drug delivery. Med. Chem. 2014, 4, 748–755.

[93]

Wu, G. Y.; Fang, Y. Z.; Yang, S.; Lupton, J. R.; Turner, N. D. Glutathione metabolism and its implications for health. J. Nutr. 2004, 134, 489–492.

[94]

Guo, X. S.; Cheng, Y.; Zhao, X. T.; Luo, Y. L.; Chen, J. J.; Yuan, W. E. Advances in redox-responsive drug delivery systems of tumor microenvironment. J. Nanobiotechnol. 2018, 16, 74.

[95]

Aoyama, K.; Nakaki, T. Impaired glutathione synthesis in neurodegeneration. Int. J. Mol. Sci. 2013, 14, 21021–21044.

[96]

Aoyama, K. Glutathione in the brain. Int. J. Mol. Sci. 2021, 22, 5010.

[97]

Kamenova, K.; Grancharov, G.; Kortenova, V.; Petrov, P. D. Redox-responsive crosslinked mixed micelles for controllable release of caffeic acid phenethyl ester. Pharmaceutics 2022, 14, 679.

[98]

Zhong, D.; Wu, H. Y.; Wu, Y. H.; Li, Y. K.; Yang, J.; Gong, Q. Y.; Luo, K.; Gu, Z. W. Redox dual-responsive dendrimeric nanoparticles for mutually synergistic chemo-photodynamic therapy to overcome drug resistance. J. Control. Release 2021, 329, 1210–1221.

[99]

Gao, F. X.; Xiong, Z. R. Reactive oxygen species responsive polymers for drug delivery systems. Front. Chem. 2021, 9, 649048.

[100]

Manaster, A. J.; Batty, C.; Tiet, P.; Ooi, A.; Bachelder, E. M.; Ainslie, K. M.; Broaders, K. E. Oxidation-sensitive dextran-based polymer with improved processability through stable boronic ester groups. ACS Appl. Bio Mater. 2019, 2, 3755–3762.

[101]

Bobbala, S.; Allen, S. D.; Scott, E. A. Flash nanoprecipitation permits versatile assembly and loading of polymeric bicontinuous cubic nanospheres. Nanoscale 2018, 10, 5078–5088.

[102]

Karabin, N. B.; Allen, S.; Kwon, H. K.; Bobbala, S.; Firlar, E.; Shokuhfar, T.; Shull, K. R.; Scott, E. A. Sustained micellar delivery via inducible transitions in nanostructure morphology. Nat. Commun. 2018, 9, 624.

[103]

Allen, S.; Osorio, O.; Liu, Y. G.; Scott, E. Facile assembly and loading of theranostic polymersomes via multi-impingement flash nanoprecipitation. J. Control. Release 2017, 262, 91–103.

[104]

Allen, S. D.; Liu, Y. G.; Kim, T.; Bobbala, S.; Yi, S. J.; Zhang, X. H.; Choi, J.; Scotta, E. A. Celastrol-loaded PEG-b-PPS nanocarriers as an anti-inflammatory treatment for atherosclerosis. Biomater. Sci. 2019, 7, 657–668.

[105]

Yi, S. J.; Kim, S. Y.; Vincent, M. P.; Yuk, S. A.; Bobbala, S.; Du, F. F.; Scott, E. A. Dendritic peptide-conjugated polymeric nanovectors for non-toxic delivery of plasmid DNA and enhanced non-viral transfection of immune cells. iScience 2022, 25, 104555.

[106]

Bobbala, S.; Allen, S. D.; Yi, S. J.; Vincent, M.; Frey, M.; Karabin, N. B.; Scott, E. A. Employing bicontinuous-to-micellar transitions in nanostructure morphology for on-demand photo-oxidation responsive cytosolic delivery and off-on cytotoxicity. Nanoscale 2020, 12, 5332–5340.

[107]

Kumari, R.; Sunil, D.; Ningthoujam, R. S. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. J. Control. Release 2020, 319, 135–156.

[108]

Mi, P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020, 10, 4557–4588.

[109]

Yu, F. Y.; Shang, X. W.; Zhu, Y.; Lou, H. Y.; Liu, Y. P.; Meng, T. T.; Hong, Y.; Yuan, H.; Hu, F. Q. Self-preparation system using glucose oxidase-inspired nitroreductase amplification for cascade-responsive drug release and multidrug resistance reversion. Biomaterials 2021, 275, 120927.

[110]

Joshi, U.; Filipczak, N.; Khan, M. M.; Attia, S. A.; Torchilin, V. Hypoxia-sensitive micellar nanoparticles for co-delivery of siRNA and chemotherapeutics to overcome multi-drug resistance in tumor cells. Int. J. Pharmaceut. 2020, 590, 119915.

[111]

Confeld, M. I.; Mamnoon, B.; Feng, L.; Jensen-Smith, H.; Ray, P.; Froberg, J.; Kim, J.; Hollingsworth, M. A.; Quadir, M.; Choi, Y. et al. Targeting the tumor core: Hypoxia-responsive nanoparticles for the delivery of chemotherapy to pancreatic tumors. Mol. Pharm. 2020, 17, 2849–2863.

[112]

Mamnoon, B.; Feng, L.; Froberg, J.; Choi, Y.; Sathish, V.; Mallik, S. Hypoxia-responsive, polymeric nanocarriers for targeted drug delivery to estrogen receptor-positive breast cancer cell spheroids. Mol. Pharm. 2020, 17, 4312–4322.

[113]

Li, R. R.; Peng, F. F.; Cai, J.; Yang, D. D.; Zhang, P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J. Pharm. Sci. 2020, 15, 311–325.

[114]

Dou, Y.; Li, C. W.; Li, L. L.; Guo, J. W.; Zhang, J. X. Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J. Control. Release 2020, 327, 641–666.

[115]

Colilla, M.; Vallet-Regí, M. Targeted stimuli-responsive mesoporous silica nanoparticles for bacterial infection treatment. Int. J. Mol. Sci. 2020, 21, 8605.

[116]

Li, M. Q.; Zhao, G. K.; Su, W. K.; Shuai, Q. Enzyme-responsive nanoparticles for anti-tumor drug delivery. Front. Chem. 2020, 8, 647.

[117]

Zheng, S. S.; Cai, Y.; Hong, Y. L.; Gong, Y. B.; Gao, L. C.; Li, Q. Y.; Li, L.; Sun, X. R. Legumain/pH dual-responsive lytic peptide-paclitaxel conjugate for synergistic cancer therapy. Drug Deliv. 2022, 29, 1764–1775.

[118]

Singh, A.; Amiji, M. Stimuli-responsive materials as intelligent drug delivery systems. Mater. Matters 2014, 9, 82–88.

[119]

Yildiz, T.; Gu, R.; Zauscher, S.; Betancourt, T. Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer. Int. J. Nanomedicine 2018, 13, 6961–6986.

[120]

Singh, S.; Drude, N.; Blank, L.; Desai, P. B.; Königs, H.; Rütten, S.; Langen, K. J.; Möller, M.; Mottaghy, F. M.; Morgenroth, A. Protease responsive nanogels for transcytosis across the blood-brain barrier and intracellular delivery of radiopharmaceuticals to brain tumor cells. Adv. Healthc. Mater. 2021, 10, 2100812.

[121]

Pitt, W. G.; Husseini, G. A.; Staples, B. J. Ultrasonic drug delivery-a general review. Expert Opin. Drug Del. 2004, 1, 37–56.

[122]

Boissenot, T.; Bordat, A.; Fattal, E.; Tsapis, N. Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J. Control. Release 2016, 241, 144–163.

[123]

Entzian, K.; Aigner, A. Drug delivery by ultrasound-responsive nanocarriers for cancer treatment. Pharmaceutics 2021, 13, 1135.

[124]

Ahmadi, F.; McLoughlin, I. V.; Chauhan, S.; ter-Haar, G. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. Prog. Biophys. Mol. Biol. 2012, 108, 119–138.

[125]

Mitragotri, S. Healing sound: The use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 2005, 4, 255–260.

[126]

Aldrich, J. E. Basic physics of ultrasound imaging. Crit. Care Med. 2007, 35, S131–S137.

[127]

Kossoff, G. Basic physics and imaging characteristics of ultrasound. World J. Surg. 2000, 24, 134–142.

[128]

Tharkar, P.; Varanasi, R.; Wong, W. S. F.; Jin, C. T.; Chrzanowski, W. Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond. Front. Bioeng. Biotechnol. 2019, 7, 324.

[129]

Song, C. W.; Kang, M. S.; Rhee, J. G.; Levitt, S. H. The effect of hyperthermia on vascular function, pH, and cell survival. Radiology 1980, 137, 795–803.

[130]

van den Bijgaart, R. J. E.; Eikelenboom, D. C.; Hoogenboom, M.; Fütterer, J. J.; den Brok, M. H.; Adema, G. J. Thermal and mechanical high-intensity focused ultrasound: Perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol. Immunother. 2017, 66, 247–258.

[131]

Landon, C. D.; Park, J. Y.; Needham, D.; Dewhirst, M. W. Nanoscale drug delivery and hyperthermia: The materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed. J. 2011, 3, 38–64.

[132]

Epp-Ducharme, B.; Dunne, M.; Fan, L. Y.; Evans, J. C.; Ahmed, L.; Bannigan, P.; Allen, C. Heat-activated nanomedicine formulation improves the anticancer potential of the HSP90 inhibitor luminespib in vitro. Sci. Rep. 2021, 11, 11103.

[133]

Roti Roti, J. L. Cellular responses to hyperthermia (40–46 °C): Cell killing and molecular events. Int. J. Hyperthermia 2008, 24, 3–15.

[134]

Centelles, M. N.; Wright, M.; So, P. W.; Amrahli, M.; Xu, X. Y.; Stebbing, J.; Miller, A. D.; Gedroyc, W.; Thanou, M. Image-guided thermosensitive liposomes for focused ultrasound drug delivery: Using NIRF-labelled lipids and topotecan to visualise the effects of hyperthermia in tumours. J. Control. Release 2018, 280, 87–98.

[135]

Ohl, C. D.; Arora, M.; Ikink, R.; de Jong, N.; Versluis, M.; Delius, M.; Lohse, D. Sonoporation from jetting cavitation bubbles. Biophys. J. 2006, 91, 4285–4295.

[136]

Prentice, P.; Cuschieri, A.; Dholakia, K.; Prausnitz, M.; Campbell, P. Membrane disruption by optically controlled microbubble cavitation. Nat. Phys. 2005, 1, 107–110.

[137]

Chen, H.; Kreider, W.; Brayman, A. A.; Bailey, M. R.; Matula, T. J. Blood vessel deformations on microsecond time scales by ultrasonic cavitation. Phys. Rev. Lett. 2011, 106, 034301.

[138]

Batchelor, D. V. B.; Abou-Saleh, R. H.; Coletta, P. L.; McLaughlan, J. R.; Peyman, S. A.; Evans, S. D. Nested nanobubbles for ultrasound-triggered drug release. ACS Appl. Mater. Interfaces 2020, 12, 29085–29093.

[139]

Fix, S. M.; Borden, M. A.; Dayton, P. A. Therapeutic gas delivery via microbubbles and liposomes. J. Control. Release 2015, 209, 139–149.

[140]
Blake, J. R. Cavitation and bubble dynamics. By C. E. Brennen. Oxford University Press, 1995. pp 282.
[141]

Arvanitis, C. D.; Bazan-Peregrino, M.; Rifai, B.; Seymour, L. W.; Coussios, C. C. Cavitation-enhanced extravasation for drug delivery. Ultrasound Med. Biol. 2011, 37, 1838–1852.

[142]

Wang, J.; Yi, J. Cancer cell killing via ROS: To increase or decrease, that is the question. Cancer Biol. Ther. 2008, 7, 1875–1884.

[143]

Hassan, M. A.; Campbell, P.; Kondo, T. The role of Ca2+ in ultrasound-elicited bioeffects: Progress, perspectives and prospects. Drug Discov. Today. 2010, 15, 892–906.

[144]

Wang, S. T.; Shin, I. S.; Hancock, H.; Jang, B. S.; Kim, H. S.; Lee, S. M.; Zderic, V.; Frenkel, V.; Pastan, I.; Paik, C. H. et al. Pulsed high intensity focused ultrasound increases penetration and therapeutic efficacy of monoclonal antibodies in murine xenograft tumors. J. Control. Release 2012, 162, 218–224.

[145]

Wang, Y. Y.; Deng, Y. B.; Luo, H. H.; Zhu, A. J.; Ke, H. T.; Yang, H.; Chen, H. B. Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS Nano 2017, 11, 12134–12144.

[146]

Rwei, A. Y.; Wang, W. P.; Kohane, D. S. Photoresponsive nanoparticles for drug delivery. Nano Today 2015, 10, 451–467.

[147]

Zhao, W.; Zhao, Y. M.; Wang, Q. F.; Liu, T. Q.; Sun, J. J.; Zhang, R. Remote light-responsive nanocarriers for controlled drug delivery: Advances and perspectives. Small 2019, 15, 1903060.

[148]

Salkho, N. M.; Awad, N. S.; Pitt, W. G.; Husseini, G. A. Photo-induced drug release from polymeric micelles and liposomes: Phototriggering mechanisms in drug delivery systems. Polymers 2022, 14, 1286.

[149]

Zhao, H.; Sterner, E. S.; Coughlin, E. B.; Theato, P. o-Nitrobenzyl alcohol derivatives: Opportunities in polymer and materials science. Macromolecules 2012, 45, 1723–1736.

[150]

Fernández, M.; Orozco, J. Advances in functionalized photosensitive polymeric nanocarriers. Polymers 2021, 13, 2464.

[151]

Goodwin, A. P.; Mynar, J. L.; Ma, Y. Z.; Fleming, G. R.; Fréchet, J. M. J. Synthetic micelle sensitive to IR light via a two-photon process. J. Am. Chem. Soc. 2005, 127, 9952–9953.

[152]

Andreopoulos, F. M.; Deible, C. R.; Stauffer, M. T.; Weber, S. G.; Wagner, W. R.; Beckman, E. J.; Russell, A. J. Photoscissable hydrogel synthesis via rapid photopolymerization of novel PEG-based polymers in the absence of photoinitiators. J. Am. Chem. Soc. 1996, 118, 6235–6240.

[153]

Zheng, Y. J.; Micic, M.; Mello, S. V.; Mabrouki, M.; Andreopoulos, F. M.; Konka, V.; Pham, S. M.; Leblanc, R. M. PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 2002, 35, 5228–5234.

[154]

Timko, B. P.; Dvir, T.; Kohane, D. S. Remotely triggerable drug delivery systems. Adv. Mater. 2010, 22, 4925–4943.

[155]

Rapp, T. L.; DeForest, C. A. Targeting drug delivery with light: A highly focused approach. Adv. Drug Deliv. Rev. 2021, 171, 94–107.

[156]

Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 144.

[157]

Ersoy, H.; Rybicki, F. J. Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. J. Magn. Reson. Imaging 2007, 26, 1190–1197.

[158]

Morcos, S. K. Nephrogenic systemic fibrosis following the administration of extracellular gadolinium based contrast agents: Is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition? Brit. J. Radiol. 2007, 80, 73–76.

[159]

Zhang, Z. Q.; Song, S. C. Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy. Biomaterials 2017, 132, 16–27.

[160]

Chen, Y. T.; Guo, F.; Qiu, Y.; Hu, H.; Kulaots, I.; Walsh, E.; Hurt, R. H. Encapsulation of particle ensembles in graphene nanosacks as a new route to multifunctional materials. ACS Nano 2013, 7, 3744–3753.

[161]

Yin, P. T.; Shah, S.; Pasquale, N. J.; Garbuzenko, O. B.; Minko, T.; Lee, K. B. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer. Biomaterials 2016, 81, 46–57.

[162]

Thirunavukkarasu, G. K.; Cherukula, K.; Lee, H.; Jeong, Y. Y.; Park, I. K.; Lee, J. Y. Magnetic field-inducible drug-eluting nanoparticles for image-guided thermo-chemotherapy. Biomaterials 2018, 180, 240–252.

[163]

Świętek, M.; Panchuk, R.; Skorokhyd, N.; Černoch, P.; Finiuk, N.; Klyuchivska, O.; Hrubý, M.; Molčan, M.; Berger, W.; Trousil, J. et al. Magnetic temperature-sensitive solid-lipid particles for targeting and killing tumor cells. Front. Chem. 2020, 8, 205.

[164]

Kolosnjaj-Tabi, J.; Gibot, L.; Fourquaux, I.; Golzio, M.; Rols, M. P. Electric field-responsive nanoparticles and electric fields: Physical, chemical, biological mechanisms and therapeutic prospects. Adv. Drug Deliv. Rev. 2019, 138, 56–67.

[165]

Uppalapati, D.; Boyd, B. J.; Garg, S.; Travas-Sejdic, J.; Svirskis, D. Conducting polymers with defined micro- or nanostructures for drug delivery. Biomaterials 2016, 111, 149–162.

[166]

Meng, X. Y.; Li, J. J.; Ni, T. J.; Lu, X. T.; He, T.; Men, Z. N.; Liu, J. S.; Shen, T. Electro-responsive brain-targeting mixed micelles based on pluronic F127 and D-α-tocopherol polyethylene glycol succinate-ferrocene. Colloids Surf. A: Physicochem. Eng. Aspects 2020, 601, 124986.

Publication history
Copyright
Acknowledgements

Publication history

Received: 05 August 2022
Revised: 30 October 2022
Accepted: 31 October 2022
Published: 14 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledegments

The authors acknowledge the Cell and Molecular Biology and Biomedical Engineering Training Program (No. 5T32GM133369-02)

Return