Journal Home > Volume 16 , Issue 5

Nanomaterials doped with non-metallic C have attracted tremendous attention as potential nano-artificial enzymes due to their ability to change the energy band structure to improve their intrinsic properties. Herein, we report a green, facile, efficient, and fast strategy to access high-performance nanozymes via supercritical CO2 fluid technology-fabricated polymer nanoreactor of poly-(methyl vinyl ether-co-maleic anhydride) (PVM/MA) coated Co(NO3)2 into C-doped Co3O4 (C-Co3O4) nanozyme by a one-step calcination process. Converting PVM/MA to C doping into Co3O4 shortens the entire lattice constant of the crystal structure, and the overall valence band energy level below the Fermi level shifts toward the lower energy direction. The as-prepared C-Co3O4 demonstrated significant peroxidase-like catalytic activity, significantly greater than the undoped Co3O4 nanoparticle nanozyme. The following density functional theory (DFT) calculations revealed that the doped nano-enzyme catalytic site displayed a unique electronic structure, altering the material surface with more electrons to fill the anti-bond of the two molecular orbitals, and significantly improving the peroxidase-like enzyme catalytic and glucose sensor performance. The resultant enzymatic glucose sensing in a linear range of 0.1–0.6 mM with a detection limit of 3.86 μM is in line with standard Michaelis–Menten theory. Collectively, this work demonstrates that converting polymers into nanozymes of C-doped form by supercritical CO2 fluid technology in a step is an effective strategy for constructing high-performance glucose sensor nanozymes. This cost-effective, reliable, and precise system offers the potential for rapid analyte detection, facilitating its application in a variety of fields.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Supercritical fluid-assisted fabrication of C-doped Co3O4 nanoparticles based on polymer-coated metal salt nanoreactors for efficient enzyme-mimicking and glucose sensor properties

Show Author's information Ze-Wen Kang1,2Jun-Yu Zhang3Ze-Zhen Li1Ranjith Kumar Kankala1,2Shi-Bin Wang1,2Ai-Zheng Chen1,2( )
Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China
Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen 361021, China

Abstract

Nanomaterials doped with non-metallic C have attracted tremendous attention as potential nano-artificial enzymes due to their ability to change the energy band structure to improve their intrinsic properties. Herein, we report a green, facile, efficient, and fast strategy to access high-performance nanozymes via supercritical CO2 fluid technology-fabricated polymer nanoreactor of poly-(methyl vinyl ether-co-maleic anhydride) (PVM/MA) coated Co(NO3)2 into C-doped Co3O4 (C-Co3O4) nanozyme by a one-step calcination process. Converting PVM/MA to C doping into Co3O4 shortens the entire lattice constant of the crystal structure, and the overall valence band energy level below the Fermi level shifts toward the lower energy direction. The as-prepared C-Co3O4 demonstrated significant peroxidase-like catalytic activity, significantly greater than the undoped Co3O4 nanoparticle nanozyme. The following density functional theory (DFT) calculations revealed that the doped nano-enzyme catalytic site displayed a unique electronic structure, altering the material surface with more electrons to fill the anti-bond of the two molecular orbitals, and significantly improving the peroxidase-like enzyme catalytic and glucose sensor performance. The resultant enzymatic glucose sensing in a linear range of 0.1–0.6 mM with a detection limit of 3.86 μM is in line with standard Michaelis–Menten theory. Collectively, this work demonstrates that converting polymers into nanozymes of C-doped form by supercritical CO2 fluid technology in a step is an effective strategy for constructing high-performance glucose sensor nanozymes. This cost-effective, reliable, and precise system offers the potential for rapid analyte detection, facilitating its application in a variety of fields.

Keywords: nanozymes, density functional theory (DFT) calculation, supercritical fluid, poly-(methyl vinyl ether-co-maleic anhydride) (PVM/MA), C-doped Co3O4

References(84)

[1]

Ai, Y. J.; Hu, Z. N.; Liang, X. P.; Sun, H. B.; Xin, H. B.; Liang, Q. L. Recent advances in nanozymes: From matters to bioapplications. Adv. Funct. Mater. 2022, 32, 2110432.

[2]

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

[3]

Fan, K. L.; Cao, C. Q.; Pan, Y. X.; Lu, D.; Yang, D. L.; Feng, J.; Song, L. N.; Liang, M. M.; Yan, X. Y. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012, 7, 459–464.

[4]

Feng, L. S.; Dou, C. R.; Xia, Y. G.; Li, B. H.; Zhao, M. Y.; Yu, P.; Zheng, Y. Y.; El-Toni, A. M.; Atta, N. F.; Galal, A. et al. Neutrophil-like cell-membrane-coated nanozyme therapy for ischemic brain damage and long-term neurological functional recovery. ACS Nano 2021, 15, 2263–2280.

[5]

Yuan, A. R.; Xia, F.; Bian, Q.; Wu, H. B.; Gu, Y. T.; Wang, T.; Wang, R. X.; Huang, L. L.; Huang, Q. L.; Rao, Y. F. et al. Ceria nanozyme-integrated microneedles reshape the perifollicular microenvironment for androgenetic alopecia treatment. ACS Nano 2021, 15, 13759–13769.

[6]

Kim, M. S.; Lee, J.; Kim, H. S.; Cho, A.; Shim, K. H.; Le, T. N.; An, S. S. A.; Han, J. W.; Kim, M. I.; Lee, J. Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Adv. Funct. Mater. 2020, 30, 1905410.

[7]

Zhu, D. M.; Chen, H.; Huang, C. Y.; Li, G. X.; Wang, X.; Jiang, W.; Fan, K. L. H2O2 Self-producing single-atom nanozyme hydrogels as light-controlled oxidative stress amplifier for enhanced synergistic therapy by transforming “cold” tumors. Adv. Funct. Mater. 2022, 32, 2110268.

[8]

He, S. Y.; Huang, J. Q.; Zhang, Q.; Zhao, W.; Xu, Z. A.; Zhang, W. Bamboo-like nanozyme based on nitrogen-doped carbon nanotubes encapsulating cobalt nanoparticles for wound antibacterial applications. Adv. Funct. Mater. 2021, 31, 2105198.

[9]

Wang, K. Y.; Zhang, Y.; Mao, W. P.; Feng, W.; Lu, S. T.; Wan, J.; Song, X. R.; Chen, Y.; Peng, B. Engineering ultrasmall ferroptosis-targeting and reactive oxygen/nitrogen species-scavenging nanozyme for alleviating acute kidney injury. Adv. Funct. Mater. 2022, 32, 2109221.

[10]

Wang, H.; Wan, K. W.; Shi, X. H. Recent advances in nanozyme research. Adv. Mater. 2019, 31, 1805368.

[11]

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

[12]

Jv, Y.; Li, B. X.; Cao, R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 2010, 46, 8017–8019.

[13]

Herget, K.; Hubach, P.; Pusch, S.; Deglmann, P.; Götz, H.; Gorelik, T. E.; Gural’skiy, I. A.; Pfitzner, F.; Link, T.; Schenk, S. et al. Haloperoxidase mimicry by CeO2−x nanorods combats biofouling. Adv. Mater. 2017, 29, 1603823.

[14]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[15]

Han, L.; Zhang, H. J.; Chen, D. Y.; Li, F. Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: Colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis. Adv. Funct. Mater. 2018, 28, 1800018.

[16]

Sun, Y. F.; Zhong, G. M.; Zhao, Z.; Cao, M.; Zhou, H.; Zhang, S. J.; Qian, H.; Lin, Z. Y.; Lu, D. R.; Wu, J. H. et al. Polymeric sulfur as a Li Ion conductor. Nano Lett. 2020, 20, 2191–2196.

[17]

André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H. C.; Müller, W. E. G.; Tremel, W. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 2011, 21, 501–509.

[18]

Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem., Int. Ed. 2009, 48, 2308–2312.

[19]

Dong, Y. L.; Zhang, H. G.; Rahman, Z. U.; Su, L.; Chen, X. J.; Hu, J.; Chen, X. G. Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 2012, 4, 3969–3976.

[20]

Gu, Y. D.; Min, Y. X.; Li, L.; Lian, Y. B.; Sun, H.; Wang, D.; Rummeli, M. H.; Guo, J.; Zhong, J.; Xu, L. et al. Crystal splintering of β-MnO2 induced by interstitial Ru doping toward reversible oxygen conversion. Chem. Mater. 2021, 33, 4135–4145.

[21]

Xie, K. W.; Wu, P.; Zhou, Y. Y.; Ye, Y.; Wang, H.; Tang, Y. W.; Zhou, Y. M.; Lu, T. H. Nitrogen-doped carbon-wrapped porous single-crystalline CoO nanocubes for high-performance lithium storage. ACS Appl. Mater. Interfaces 2014, 6, 10602–10607.

[22]

Zhang, X. Y.; Sun, G. H.; Jia, S. S.; Xie, H. L.; Kang, Z. W.; Chen, W. J.; Cui, M. L.; Wang, B. Q.; Wang, B.; Chen, X. R. et al. Intrinsic carbon defects induced nickel phosphate/carbon photocatalyst for high performance bacterial disinfection. Chem. Eng. J. 2022, 438, 135624.

[23]

Wei, M.; Lee, J.; Xia, F.; Lin, P. H.; Hu, X.; Li, F. Y.; Ling, D. S. Chemical design of nanozymes for biomedical applications. Acta Biomater. 2021, 126, 15–30.

[24]

Zeng, H.; Wu, M.; Wang, H. Q.; Zheng, J. C.; Kang, J. Y. Tuning the magnetism in boron-doped strontium titanate. Materials (Basel) 2020, 13, 5686.

[25]

Dong, S. J.; Zhao, H. Magnetism driven by non-metal interstitials from first-principles prediction: The case of hydrogen- and fluorine-doped calcium monoxide with rock-salt structure. Solid State Commun. 2014, 199, 11–16.

[26]

Xie, J. F.; Zhao, X. T.; Wu, M. X.; Li, Q. H.; Wang, Y. B.; Yao, J. N. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9640–9644.

[27]

Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236–2241.

[28]

Wang, L. W.; Li, B.; You, Z.; Wang, A. Z.; Chen, X. Y.; Song, G. J.; Yang, L.; Chen, D.; Yu, X.; Liu, J. et al. Heterojunction of vertically arrayed MoS2 nanosheet/N-doped reduced graphene oxide enabling a nanozyme for sensitive biomolecule monitoring. Anal. Chem. 2021, 93, 11123–11132.

[29]

Li, S.; Zhao, X. T.; Gang, R.; Cao, B. Q.; Wang, H. Doping nitrogen into Q-graphene by plasma treatment toward peroxidase mimics with enhanced catalysis. Anal. Chem. 2020, 92, 5152–5157.

[30]

Yan, C. S.; Zhu, Y.; Li, Y. T.; Fang, Z. W.; Peng, L. L.; Zhou, X.; Chen, G.; Yu, G. H. Local built-in electric field enabled in carbon-doped Co3O4 nanocrystals for superior lithium-ion storage. Adv. Funct. Mater. 2018, 28, 1705951.

[31]

Reghunath, R.; Devi, K.; Singh, K. K. Recent advances in graphene based electrochemical glucose sensor. Nano-Struct. Nano-Objects 2021, 26, 100750.

[32]

Pfützner, A.; Caduff, A.; Larbig, M.; Schrepfer, T.; Forst, T. Impact of posture and fixation technique on impedance spectroscopy used for continuous and noninvasive glucose monitoring. Diabetes Technol. Ther. 2004, 6, 435–441.

[33]

Gao, X. H.; Feng, W. S.; Zhu, Z.; Wu, Z. P.; Li, S.; Kan, S. T.; Qiu, X. Q.; Guo, A. M.; Chen, W.; Yin, K. Rapid fabrication of superhydrophilic micro/nanostructured nickel foam toward high-performance glucose sensor. Adv. Mater. Interfaces 2021, 8, 2002133.

[34]

Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137.

[35]

Yin, F. X.; Ji, S. F.; Chen, B. H.; Zhao, L. P.; Liu, H.; Li, C. Y. Preparation and characterization of LaFe1−xMgxO3/Al2O3/FeCrAl: Catalytic properties in methane combustion. Appl. Catal. B Environ. 2006, 66, 265–273.

[36]

Zhang, P.; Wang, T.; Chang, X. X.; Zhang, L.; Gong, J. L. Synergistic cocatalytic effect of carbon nanodots and Co3O4 nanoclusters for the photoelectrochemical water oxidation on hematite. Angew. Chem., Int. Ed. 2016, 55, 5851–5855.

[37]

Li, Z. H.; Yang, D. P.; Chen, Y. S.; Du, Z. Y.; Guo, Y. L.; Huang, J. L.; Li, Q. B. Waste eggshells to valuable Co3O4/CaCO3 materials as efficient catalysts for VOCs oxidation. Mol. Catal. 2020, 483, 110766.

[38]

Spinicci, R.; Faticanti, M.; Marini, P.; De Rossi, S.; Porta, P. Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion. J. Mol. Catal. A Chem. 2003, 197, 147–155.

[39]

Ma, C. Y.; Wang, D. H.; Xue, W. J.; Dou, B. J.; Wang, H. L.; Hao, Z. P. Investigation of formaldehyde oxidation over Co3O4-CeO2 and Au/Co3O4-CeO2 catalysts at room temperature: Effective removal and determination of reaction mechanism. Environ. Sci. Technol. 2011, 45, 3628–3634.

[40]

Kang, Z. W.; Kankala, R. K.; Chen, B. Q.; Fu, C. P.; Wang, S. B.; Chen, A. Z. Supercritical fluid-assisted fabrication of manganese(III) oxide hollow nanozymes mediated by polymer nanoreactors for efficient glucose sensing characteristics. ACS Appl. Mater. Interfaces 2019, 11, 28781–28790.

[41]

Chen, B. Q.; Kankala, R. K.; He, G. Y.; Yang, D. Y.; Li, G. P.; Wang, P.; Wang, S. B.; Zhang, Y. S.; Chen, A. Z. Supercritical fluid-assisted fabrication of indocyanine green-encapsulated silk fibroin nanoparticles for dual-triggered cancer therapy. ACS Biomater. Sci. Eng. 2018, 4, 3487–3497.

[42]

Kankala, R. K.; Xu, P. Y.; Chen, B. Q.; Wang, S. B.; Chen, A. Z. Supercritical fluid (SCF)-assisted fabrication of carrier-free drugs: An eco-friendly welcome to active pharmaceutical ingredients (APIs). Adv. Drug Deliv. Rev. 2021, 176, 113846.

[43]

Chen, B. Q.; Kankala, R. K.; Zhang, Y.; Xiang, S. T.; Tang, H. X.; Wang, Q.; Yang, D. Y.; Wang, S. B.; Zhang, Y. S.; Liu, G. et al. Gambogic acid augments black phosphorus quantum dots (BPQDs)-based synergistic chemo-photothermal therapy through downregulating heat shock protein expression. Chem. Eng. J. 2020, 390, 124312.

[44]

Chen, B. Q.; Liu, H.; Zhao, Y.; Lu, X. C.; Zhang, C. Y.; Kankala, R. K.; Wang, S. B.; Chen, A. Z. Preparation of astragaloside IV (AS-IV) nanoparticles via SAS process for anticancer efficacy: Optimization based on box-behnken design. J. Supercrit. Fluids 2022, 188, 105650.

[45]

Tang, H. X.; Cai, Y. Y.; Liu, C. G.; Zhang, J. T.; Kankala, R. K.; Wang, S. B.; Chen, A. Z. Sub-micronization of disulfiram and disulfiram-copper complexes by Rapid expansion of supercritical solution toward augmented anticancer effect. J. CO2 Util. 2020, 39, 101187.

[46]

Liu, H.; Chen, B. Q.; Pan, Y. J.; Fu, C. P.; Kankala, R. K.; Wang, S. B.; Chen, A. Z. Role of supercritical carbon dioxide (scCO2) in fabrication of inorganic-based materials: A green and unique route. Sci. Technol. Adv. Mater. 2021, 22, 695–717.

[47]

Kankala, R. K.; Zhang, Y. S.; Wang, S. B.; Lee, C. H.; Chen, A. Z. Supercritical fluid technology: An emphasis on drug delivery and related biomedical applications. Adv. Healthc. Mater. 2017, 6, 1700433.

[48]

Tang, H. X.; Kankala, R. K.; Wang, S. B.; Chen, A. Z. Supercritical fluid-assisted controllable fabrication of open and highly interconnected porous scaffolds for bone tissue engineering. Sci. China Life Sci. 2019, 62, 1670–1682.

[49]

Fu, C. P.; Wei, R. L.; Xu, P. Y.; Luo, S. W.; Zhang, C. Y.; Kankala, R. K.; Wang, S. B.; Jiang, X. Q.; Wei, X. H.; Zhang, L. M. et al. Supercritical fluid-assisted fabrication of diselenide-bridged polymeric composites for improved indocyanine green-guided photodynamic therapy. Chem. Eng. J. 2021, 407, 127108.

[50]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[51]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[52]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[53]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[54]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[55]

Bai, X. Y.; Hou, Q. D.; Qian, H. L.; Nie, Y. F.; Xia, T. L.; Lai, R. T.; Yu, G. J.; Ur Rehman, M. L.; Xie, H. J.; Ju, M. T. Selective oxidation of glucose to gluconic acid and glucaric acid with chlorin e6 modified carbon nitride as metal-free photocatalyst. Appl. Catal. B Environ. 2022, 303, 120895.

[56]

Pan, Y. J.; Xu, P. Y.; Chen, B. Q.; Fu, C. P.; Kankala, R. K.; Chen, A. Z.; Wang, S. B. Supercritical antisolvent process-assisted fabrication of chrysin-polyvinylpyrrolidone sub-microparticles for improved anticancer efficiency. J. Supercrit. Fluids 2020, 162, 104847.

[57]

Xu, P. Y.; Fu, C. P.; Kankala, R. K.; Wang, S. B.; Chen, A. Z. Supercritical carbon dioxide-assisted nanonization of dihydromyricetin for anticancer and bacterial biofilm inhibition efficacies. J. Supercrit. Fluids 2020, 161, 104840.

[58]

Chen, L. F.; Xu, P. Y.; Fu, C. P.; Kankala, R. K.; Chen, A. Z.; Wang, S. B. Fabrication of Supercritical Antisolvent (SAS) process-assisted fisetin-encapsulated poly(vinyl pyrrolidone) (PVP) nanocomposites for improved anticancer therapy. Nanomaterials (Basel) 2020, 10, 322.

[59]

Shu, J. C.; Huang, X. Y.; Cao, M. S. Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption. Carbon 2021, 174, 638–646.

[60]

Salavati-Niasari, M.; Mir, N.; Davar, F. Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate. J. Phys. Chem. Solids 2009, 70, 847–852.

[61]

Tan, M. Y.; Zhu, L.; Liu, H.; Fu, Y. J.; Yin, S. F.; Yang, W. J. Microporous cobaltporphyrin covalent polymer mediated Co3O4@PNC nanocomposites for efficient catalytic C–H bond activation. Appl. Catal. A General 2021, 614, 118035.

[62]

Yan, C. S.; Chen, G.; Zhou, X.; Sun, J. X.; Lv, C. D. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 1428–1436.

[63]

Jiang, N. N.; Wang, Y. W.; Li, D. Y.; Niu, J.; Wang, S. B.; Chen, A. Z. Carbon-doped metal oxide nanoparticles prepared from metal nitrates in supercritical CO2-enabled polymer nanoreactors. Part. Part. Syst. Charact. 2019, 36, 1900016.

[64]

Mujtaba, J.; Liu, J. R.; Dey, K. K.; Li, T. L.; Chakraborty, R.; Xu, K. L.; Makarov, D.; Barmin, R. A.; Gorin, D. A.; Tolstoy, V. P. et al. Micro-bio-chemo-mechanical-systems: Micromotors, microfluidics, and nanozymes for biomedical applications. Adv. Mater. 2021, 33, 2007465.

[65]

Cheng, Y.; Cheng, C. Q.; Yao, J.; Yu, Y. J.; Liu, Y. F.; Zhang, H.; Miao, L. Y.; Wei, H. Mn3O4 nanozyme for inflammatory bowel disease therapy. Adv. Therap. 2021, 4, 2100081.

[66]

Mu, X. W.; Liu, Y. F.; Zhang, X. P.; Wei, H.; He, P.; Zhou, H. S. Using a heme-based nanozyme as bifunctional redox mediator for Li-O2 batteries. Batteries Supercaps 2020, 3, 336–340.

[67]

Li, Y. T.; Wang, L.; Liu, H.; Pan, Y.; Li, C. N.; Xie, Z. G.; Jing, X. B. Ionic covalent-organic framework nanozyme as effective cascade catalyst against bacterial wound infection. Small 2021, 17, 2100756.

[68]

Liu, F.; Lin, L.; Zhang, Y.; Wang, Y. B.; Sheng, S.; Xu, C. N.; Tian, H. Y.; Chen, X. S. A tumor-microenvironment-activated nanozyme-mediated theranostic nanoreactor for imaging-guided combined tumor therapy. Adv. Mater. 2019, 31, 1902885.

[69]

Li, S. S.; Shang, L.; Xu, B. L.; Wang, S. H.; Gu, K.; Wu, Q. Y.; Sun, Y.; Zhang, Q. H.; Yang, H. L.; Zhang, F. R. et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 12624–12631.

[70]

Hu, L. Z.; Yuan, Y. L.; Zhang, L.; Zhao, J. M.; Majeed, S.; Xu, G. B. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal. Chim. Acta 2013, 762, 83–86.

[71]

Qiao, F. M.; Chen, L. J.; Li, X. N.; Li, L. F.; Ai, S. Y. Peroxidase-like activity of manganese selenide nanoparticles and its analytical application for visual detection of hydrogen peroxide and glucose. Sens. Actuators B Chem. 2014, 193, 255–262.

[72]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

[73]

Zhang, L.; Yang, G. P.; Xiao, S. J.; Tan, Q. G.; Zheng, Q. Q.; Liang, R. P.; Qiu, J. D. Facile construction of covalent organic framework nanozyme for colorimetric detection of uranium. Small 2021, 17, 2102944.

[74]

Wu, Y.; Wen, J.; Xu, W. Q.; Huang, J. J.; Jiao, L.; Tang, Y. J.; Chen, Y. F.; Yan, H. Y.; Cao, S. Y.; Zheng, L. R. et al. Defect-engineered nanozyme-linked receptors. Small 2021, 17, 2101907.

[75]

Hu, C. Y.; Yang, D. P.; Zhu, F. J.; Jiang, F. J.; Shen, S. Y.; Zhang, J. L. Enzyme-labeled Pt@BSA nanocomposite as a facile electrochemical biosensing interface for sensitive glucose determination. ACS Appl. Mater. Interfaces 2014, 6, 4170–4178.

[76]

Wang, Q. P.; Chen, M.; Xiong, C.; Zhu, X. F.; Chen, C.; Zhou, F. Y.; Dong, Y.; Wang, Y.; Xu, J.; Li, Y. M. et al. Dual confinement of high-loading enzymes within metal-organic frameworks for glucose sensor with enhanced cascade biocatalysis. Biosens. Bioelectron. 2022, 196, 113695.

[77]

Zhu, J.; Liu, S. B.; Hu, Z. H.; Zhang, X. Z.; Yi, N.; Tang, K. R.; Dexheimer, M. G.; Lian, X. J.; Wang, Q.; Yang, J. et al. Laser-induced graphene non-enzymatic glucose sensors for on-body measurements. Biosens. Bioelectron. 2021, 193, 113606.

[78]

Dhanjai; Balla, P.; Sinha, A.; Wu, L. X.; Lu, X. B.; Tan, D. Q.; Chen, J. P. Co3O4 nanoparticles supported mesoporous carbon framework interface for glucose biosensing. Talanta 2019, 203, 112–121.

[79]

Li, Y. P.; Kang, Z. W.; Kong, L. Y.; Shi, H. T.; Zhang, Y. Z.; Cui, M. L.; Yang, D. P. MXene-Ti3C2/CuS nanocomposites: Enhanced peroxidase-like activity and sensitive colorimetric cholesterol detection. Mater. Sci. Eng. C 2019, 104, 110000.

[80]

Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.

[81]

Wei, H.; Wang, E. K. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008, 80, 2250–2254.

[82]

Yu, J.; Ma, D. Q.; Mei, L. Q.; Gao, Q.; Yin, W. Y.; Zhang, X.; Yan, L.; Gu, Z. J.; Ma, X. Y.; Zhao, Y. L. Peroxidase-like activity of MoS2 nanoflakes with different modifications and their application for H2O2 and glucose detection. J. Mater. Chem. B 2018, 6, 487–498.

[83]

Mu, J. S.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 2012, 48, 2540–2542.

[84]

Jia, H. M.; Yang, D. F.; Han, X. N.; Cai, J. H.; Liu, H. Y.; He, W. W. Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior. Nanoscale 2016, 8, 5938–5945.

File
12274_2022_5266_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 August 2022
Revised: 08 October 2022
Accepted: 31 October 2022
Published: 03 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 81971734, 32071323, and 32271410), Program for Innovative Research Team in Science and Technology in Fujian Province University, Instrumental Analysis Center of Huaqiao University for TEM images, and Subsidized Project for Cultivating Postgraduates’ Innovative Ability in Scientific Research of Huaqiao University are gratefully acknowledged.

Return