Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing agents that can accurately differentiate tumors from normal healthy tissues is of utmost importance for safe cancer therapy. Active targeting has been considered as an effective technique for tumor recognition. In this work, we demonstrate a folate-functionalized nanoscale covalent organic framework (FATD nCOF) highly specific to cancer cells through active targeting of their enriched folate receptors (FRs). The FATD nCOF prepared by simple post-synthetic modification of the COF surface defeats disperses well in water and exhibits a high loading capacity for various anticancer drugs. The biocompatible FATD nCOF is selectively internalized by FR-harboring cancer cells and consequently augments the efficacy of the loaded drug, Withaferin A (Wi-A), for targeted cancer cell killing. In biomolecular mechanism studies, Wi-A-loaded FATD (FATD@Wi-A) nanocomposites show remarkably a higher rate of apoptosis in FR-enriched cancer cells. Comparative analyses of FR-positive and FR-negative tumor xenografts reveal enhanced selective antitumor activity of FATD@Wi-A nanotherapeutics. Taken together, the study findings suggest that FATD nCOF holds great promise for active targeting of tumors in vivo. Our simple yet effective technology might be valuable for creating new state-of-the-art COFs for chemical and biomedical applications.
Sawyers, C. Targeted cancer therapy. Nature 2004, 432, 294–297.
Kowalski, P. S.; Bhattacharya, C.; Afewerki, S.; Langer, R. Smart Biomaterials: Recent advances and future directions. ACS Biomater. Sci. Eng. 2018, 4, 3809–3817.
Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2017, 2, 16075–16092.
Van Der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W. J. M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol. 2019, 14, 1007–1017.
Srinivasarao, M.; Galliford, C. V.; Low, P. S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov. 2015, 14, 203–219.
Yu, Y.; Yang, X.; Reghu, S.; Kaul, S. C.; Wadhwa, R.; Miyako, E. Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes. Nat. Commun. 2020, 11, 4117.
Xue, X. D.; Huang, Y. E.; Bo, R. N.; Jia, B.; Wu, H.; Yuan, Y.; Wang, Z. L.; Ma, Z.; Jing, D.; Xu, X. B. et al. Trojan horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat. Commun. 2018, 9, 3653.
Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel) 2019, 9, 474.
Liu, X. G.; Wu, M.; Wang, M.; Duan, Y. K.; Phan, C. U.; Chen, H.; Tang, G. P.; Liu, B. AIEgen-lipid conjugate for rapid labeling of neutrophils and monitoring of their behavior. Angew. Chem., Int. Ed. 2021, 60, 3175–3181.
Yu, Y.; Yang, X.; Liu, M.; Nishikawa, M.; Tei, T.; Miyako, E. Amphipathic nanodiamond supraparticles for anticancer drug loading and delivery. ACS Appl. Mater. Interfaces 2019, 11, 18978–18987.
Reina, G.; Zhao, L.; Bianco, A.; Komatsu, N. Chemical functionalization of nanodiamonds: Opportunities and challenges ahead. Angew. Chem., Int. Ed. 2019, 58, 17918–17929.
Ambrogio, M. W.; Thomas, C. R.; Zhao, Y. L.; Zink, J. I.; Stoddart, J. F. Mechanized silica nanoparticles: A new frontier in theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 903–913.
Zhang, Z. J.; Wang, L. M.; Wang, J.; Jiang, X. M.; Li, X. H.; Hu, Z. J.; Ji, Y. L.; Wu, X. C.; Chen, C. Y. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 2012, 24, 1418–1423.
Gong, F.; Cheng, L.; Yang, N. L.; Gong, Y. H.; Ni, Y. W.; Bai, S.; Wang, X. W.; Chen, M. C.; Chen, Q.; Liu, Z. Preparation of TiH1.924 nanodots by liquid-phase exfoliation for enhanced sonodynamic cancer therapy. Nat. Commun. 2020, 11, 3712.
Pearce, A. K.; O’Reilly, R. K. Insights into active targeting of nanoparticles in drug delivery: Advances in clinical studies and design considerations for cancer nanomedicine. Bioconjugate Chem. 2019, 30, 2300–2311.
Bhunia, S.; Deo, K. A.; Gaharwar, A. K. 2D covalent organic frameworks for biomedical applications. Adv. Funct. Mater. 2020, 30, 2002046.
Zhang, L.; Wang, S. B.; Zhou, Y.; Wang, C.; Zhang, X. Z.; Deng, H. X. Covalent organic frameworks as favorable constructs for photodynamic therapy. Angew. Chem., Int. Ed. 2019, 58, 14213–14218.
Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.
Yu, F.; Liu, W. B.; Ke, S. W.; Kurmoo, M.; Zuo, J. L.; Zhang, Q. C. Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat. Commun. 2020, 11, 5534.
Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.
Segura, J. L.; Mancheño, M. J.; Zamora, F. Covalent organic frameworks based on schiff-base chemistry: Synthesis, properties and potential applications. Chem. Soc. Rev. 2016, 45, 5635–5671.
She, P. F.; Qin, Y. Y.; Wang, X.; Zhang, Q. C. Recent progress in external-stimulus-responsive 2D covalent organic frameworks. Adv. Mater. 2022, 34, 2101175.
Guan, Q.; Zhou, L. L.; Li, W. Y.; Li, Y. A.; Dong, Y. B. Covalent organic frameworks (COFs) for cancer therapeutics. Chem.—Eur. J. 2020, 26, 5583–5591.
Zhang, L.; Yang, Q. C.; Wang, S.; Xiao, Y.; Wan, S. C.; Deng, H. X.; Sun, Z. J. Engineering multienzyme-mimicking covalent organic frameworks as pyroptosis inducers for boosting antitumor immunity. Adv. Mater. 2022, 34, 2108174.
Feng, L. L.; Qian, C.; Zhao, Y. L. Recent advances in covalent organic framework-based nanosystems for bioimaging and therapeutic applications. ACS Mater. Lett. 2020, 2, 1074–1092.
Li, Z. X.; Guo, J.; Wan, Y.; Qin, Y. T.; Zhao, M. T. Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications. Nano Res. 2022, 15, 3514–3532.
Gao, P.; Wei, R. Y.; Cui, B. J.; Liu, X. H.; Chen, Y. Y.; Pan, W.; Li, N.; Tang, B. Ultrathin functionalized covalent organic framework nanosheets for tumor-targeted photodynamic therapy. Chem. Commun. 2021, 57, 6082–6085.
Segura, J. L.; Royuela, S.; Ramos, M. M. Post-synthetic modification of covalent organic frameworks. Chem. Soc. Rev. 2019, 48, 3903–3945.
Singh, N.; Kim, J.; Kim, J.; Lee, K.; Zunbul, Z.; Lee, I.; Kim, E.; Chi, S. G.; Kim, J. S. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioact. Mater. 2023, 21, 358–380.
Chen, L.; Wang, W. X.; Tian, J.; Bu, F. X.; Zhao, T. C.; Liu, M. C.; Lin, R. F.; Zhang, F.; Lee, M.; Zhao, D. Y. et al. Imparting multi-functionality to covalent organic framework nanoparticles by the dual-ligand assistant encapsulation strategy. Nat. Commun. 2021, 12, 4556.
Diwakara, S. D.; Ong, W. S. Y.; Wijesundara, Y. H.; Gearhart, R. L.; Herbert, F. C.; Fisher, S. G.; McCandless, G. T.; Alahakoon, S. B.; Gassensmith, J. J.; Dodani, S. C. et al. Supramolecular reinforcement of a large-pore 2D covalent organic framework. J. Am. Chem. Soc. 2022, 144, 2468–2473.
Li, Z. E.; He, T.; Gong, Y. F.; Jiang, D. L. Covalent organic frameworks: Pore design and interface engineering. Acc. Chem. Res. 2020, 53, 1672–1685.
Mu, Z. J.; Zhu, Y. H.; Li, B. X.; Dong, A. W.; Wang, B.; Feng, X. Covalent organic frameworks with record pore apertures. J. Am. Chem. Soc. 2022, 144, 5145–5154.
Vardhan, H.; Nafady, A.; Al-Enizi, A. M.; Ma, S. Q. Pore surface engineering of covalent organic frameworks: Structural diversity and applications. Nanoscale 2019, 11, 21679–21708.
Sajid, M. Toxicity of nanoscale metal organic frameworks: A perspective. Environ. Sci. Pollut. Res. 2016, 23, 14805–14807.
Zhao, F. L.; Liu, H. M.; Mathe, S. D. R.; Dong, A. J.; Zhang, J. H. Covalent organic frameworks: From materials design to biomedical application. Nanomaterials (Basel) 2018, 8, 15.
Vyas, V. S.; Vishwakarma, M.; Moudrakovski, I.; Haase, F.; Savasci, G.; Ochsenfeld, C.; Spatz, J. P.; Lotsch, B. V. Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Adv. Mater. 2016, 28, 8749–8754.
Liu, C. H.; Zhang, W.; Zeng, Q. D.; Lei, S. B. A photoresponsive surface covalent organic framework: Surface-confined synthesis, isomerization, and controlled guest capture and release. Chem.—Eur. J. 2016, 22, 6768–6773.
Zhang, G. Y.; Li, X. L.; Liao, Q. B.; Liu, Y. F.; Xi, K.; Huang, W. Y.; Jia, X. D. Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nat. Commun. 2018, 9, 2785.
Bertrand, N.; Wu, J.; Xu, X. Y.; Kamaly, N.; Farokhzad, O. C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014, 66, 2–25.
Attia, M. F.; Anton, N.; Wallyn, N. J.; Omran, Z.; Vandamme, T. F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019, 71, 1185–1198.
Mitra, S.; Sasmal, H. S.; Kundu, T.; Kandambeth, S.; Illath, K.; Díaz, D. D.; Banerjee, R. Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification. J. Am. Chem. Soc. 2017, 139, 4513–4520.
Zhi, Y. F.; Shao, P. P.; Feng, X.; Xia, H.; Zhang, Y. M.; Shi, Z.; Mu, Y.; Liu, X. M. Covalent organic frameworks: Efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO2 under mild conditions. J. Mater. Chem. A 2018, 6, 374–382.
Xu, Q.; Tang, Y. P.; Zhang, X. B.; Oshima, Y.; Chen, Q. H.; Jiang, D. L. Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv. Mater. 2018, 30, 1706330.
Fernández, M.; Javaid, F.; Chudasama. V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. 2018, 9, 790–810.
Van Dam, G. M.; Themelis, G.; Crane, L. M. A.; Harlaar, N. J.; Pleijhuis, R. G.; Kelder, W.; Sarantopoulos, A.; De Jong, J. S.; Arts, H. J. G.; Van Der Zee, A. G. J. et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: First in-human results. Nat. Med. 2011, 17, 1315–1319.
Yu, Y.; Wang, J.; Kaul, S. C.; Wadhwa, R.; Miyako, E. Folic acid receptor-mediated targeting enhances the cytotoxicity, efficacy, and selectivity of Withania somnifera leaf extract: In vitro and in vivo evidence. Front. Oncol. 2019, 9, 602.
Zwicke, G. L.; Mansoori, G. A.; Jeffery, C. J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012, 3, 18496.
Sudimack, J.; Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 2000, 41, 147–162.
Marchetti, C.; Palaia, I.; Giorgini, M.; De Medici, C.; Iadarola, R.; Vertechy, L.; Domenici, L.; Di Donato, V.; Tomao, F.; Muzii, L. et al. Targeted drug delivery via folate receptors in recurrent ovarian cancer: A review. OncoTargets Ther. 2014, 7, 1223–1236.
Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.
Vácha, R.; Martinez-Veracoechea, F. J.; Frenkel, D. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett. 2011, 11, 5391–5395.
Goldenthal, K. L.; Pastan, I.; Willingham, M. C. Initial steps in receptor-mediated endocytosis: The influence of temperature on the shape and distribution of plasma membrane clathrin-coated pits in cultured mammalian cells. Exp. Cell Res. 1984, 152, 558–564.
Qin, S. Y.; Zhang, A. Q.; Cheng, S. X.; Rong, L.; Zhang, X. Z. Drug self-delivery systems for cancer therapy. Biomaterials 2017, 112, 234–247.