Journal Home > Volume 16 , Issue 2

Heterogeneous interface engineering strategy is an effective method to optimize electromagnetic functional materials. However, the mechanism of heterogeneous interfaces on microwave absorption is still unclear. In this study, abundant heterointerfaces were customized in hierarchical structures via a collaborative strategy of lyophilization and hard templates. The impressive electromagnetic heterostructures and strong interfacial polarization were realized on the zero-dimensional (0D) hexagonal close- packed (hcp)-face-centered cubic (fcc) Co/two-dimensional (2D) Co(OH)2 nanosheets@three-dimensional (3D) porous carbon nanosheets (Co/Co(OH)2@PCN). By controlling the carbonization temperature, the electromagnetic parameters were further adjusted to broaden the effective absorption bandwidth (EAB). Accordingly, the EAB of these absorbers were almost greater than 6 GHz (covering the entire Ku-band) in the thickness range of 2.0–2.2 mm except the sample S-1.0-800. As far as to the S-0.8-700 achieved an EAB up to 7.1 GHz at 2.2 mm and the minimum reflection loss (RLmin) value was −25.8 dB. Moreover, in the far-field condition, the radar cross section (RCS) of S-0.8-700 can be reduced to 19.6 dB·m2. We believe that this work will stimulate interest in interface engineering and provide a direction for achieving efficient absorbing materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption

Show Author's information Yuhan Wu1Guodong Wang2Xixi Yuan1Gang Fang1Peng Li1( )Guangbin Ji1( )
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Aerospace Research Institute of Material & Processing Technology, Beijing 100076, China

Abstract

Heterogeneous interface engineering strategy is an effective method to optimize electromagnetic functional materials. However, the mechanism of heterogeneous interfaces on microwave absorption is still unclear. In this study, abundant heterointerfaces were customized in hierarchical structures via a collaborative strategy of lyophilization and hard templates. The impressive electromagnetic heterostructures and strong interfacial polarization were realized on the zero-dimensional (0D) hexagonal close- packed (hcp)-face-centered cubic (fcc) Co/two-dimensional (2D) Co(OH)2 nanosheets@three-dimensional (3D) porous carbon nanosheets (Co/Co(OH)2@PCN). By controlling the carbonization temperature, the electromagnetic parameters were further adjusted to broaden the effective absorption bandwidth (EAB). Accordingly, the EAB of these absorbers were almost greater than 6 GHz (covering the entire Ku-band) in the thickness range of 2.0–2.2 mm except the sample S-1.0-800. As far as to the S-0.8-700 achieved an EAB up to 7.1 GHz at 2.2 mm and the minimum reflection loss (RLmin) value was −25.8 dB. Moreover, in the far-field condition, the radar cross section (RCS) of S-0.8-700 can be reduced to 19.6 dB·m2. We believe that this work will stimulate interest in interface engineering and provide a direction for achieving efficient absorbing materials.

Keywords: microwave absorption, hierarchical porous structure, interface engineering, wide bandwidth, absorption mechanism

References(61)

[1]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

[2]

Su, Z.; Zhang, W. Y.; Lu, J. W.; Tian, L. Y.; Yi, S.; Zhang, Y. Y.; Zhou, S. S.; Niu, B.; Long, D. H. Oxygen-vacancy-rich Fe3O4/carbon nanosheets enabling high-attenuation and broadband microwave absorption through the integration of interfacial polarization and charge-separation polarization. J. Mater. Chem. A 2022, 10, 8479–8490.

[3]

Zhao, Y.; Hao, L. L.; Zhang, X. D.; Tan, S. J.; Li, H. H.; Zheng, J.; Ji, G. B. A novel strategy in electromagnetic wave absorbing and shielding materials design: Multi-responsive field effect. Small Sci. 2022, 2, 2100077.

[4]

Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

[5]

Guan, X. M.; Yang, Z. H.; Zhou, M.; Yang, L.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. 2D MXene nanomaterials: Synthesis, mechanism, and multifunctional applications in microwave absorption. Small Str. 2022, 3, 2200102.

[6]

Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689–2704.

[7]

Zhang, C. M.; Chen, Y. J.; Li, H.; Tian, R.; Liu, H. Z. Facile fabrication of three-dimensional lightweight RGO/PPy nanotube/Fe3O4 aerogel with excellent electromagnetic wave absorption properties. ACS Omega 2018, 3, 5735–5743.

[8]

Li, Y.; Meng, F. B.; Mei, Y.; Wang, H. G.; Guo, Y. F.; Wang, Y.; Peng, F. X.; Huang, F.; Zhou, Z. W. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 2020, 391, 123512.

[9]

Yang, Y. N.; Xia, L.; Zhang, T.; Shi, B.; Huang, L. N.; Zhong, B.; Zhang, X. Y.; Wang, H. T.; Zhang, J.; Wen, G. W. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J. 2018, 352, 510–518.

[10]

Kegl, T.; Ban, I.; Lobnik, A.; Košak, A. Synthesis and characterization of novel γ-Fe2O3-NH4OH@SiO2(APTMS) nanoparticles for dysprosium adsorption. J. Hazard. Mater. 2019, 378, 120764.

[11]

Niu, H. H.; Tu, X. Y.; Zhang, S.; Li, Y. Y.; Wang, H. L.; Shao, G.; Zhang, R.; Li, H. X.; Zhao, B.; Fan, B. B. Engineered core–shell SiO2@Ti3C2Tx composites: Towards ultra-thin electromagnetic wave absorption materials. Chem. Eng. J. 2022, 446, 137260.

[12]

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

[13]
Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res., in press, https://doi.org/10.1007/s12274-022-5111-y.
[14]

Xu, J. M.; Xia, L.; Luo, J. H.; Lu, S. R.; Huang, X. X.; Zhong, B.; Zhang, T.; Wen, G. W.; Wu, X.; Xiong, L. et al. High-performance electromagnetic wave absorbing CNT/SiCf composites: Synthesis, tuning, and mechanism. ACS Appl. Mater. Interfaces 2020, 12, 20775–20784.

[15]

Wu, Y.; Zhao, Y.; Zhou, M.; Tan, S. J.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 2022, 14, 171.

[16]

Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

[17]

Wu, Y. H.; Peng, K. S.; Man, Z. M.; Zang, R.; Li, P. X.; Liu, S. S.; Wang, S. Y.; Liu, P. Y.; Li, P.; Cui, Y. H. A hierarchically three-dimensional CoNi/N-doped porous carbon nanosheets with high performance of electromagnetic wave absorption. Carbon 2022, 188, 503–512.

[18]
Gu, W. H.; Ong, S. J. H.; Shen, Y. H.; Guo, W. Y.; Fang, Y. T.; Ji, G. B.; Xu, Z. J. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci., in press, https://doi.org/10.1002/advs.202204165.
[19]

Zhang, Q. R.; Teng, J.; Zou, G. D.; Peng, Q. M.; Du, Q.; Jiao, T. F.; Xiang, J. Y. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 2016, 8, 7085–7093.

[20]

Qu, B.; Zhu, C. L.; Li, C. Y.; Zhang, X. T.; Chen, Y. J. Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2016, 8, 3730–3735.

[21]

Qiang, R.; Du, Y. C.; Zhao, H. T.; Wang, Y.; Tian, C. H.; Li, Z. G.; Han, X. J.; Xu, P. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 2015, 3, 13426–13434.

[22]

Lizárraga, R.; Pan, F.; Bergqvist, L.; Holmström, E.; Gercsi, Z.; Vitos, L. First principles theory of the hcp-fcc phase transition in cobalt. Sci. Rep. 2017, 7, 3778.

[23]

Ma, X. T.; Nolan, A. M.; Zhang, S.; Bai, J. M.; Xu, W. Q.; Wu, L. J.; Mo, Y. F.; Chen, H. L. Guiding synthesis of polymorphs of materials using nanometric phase diagrams. J. Am. Chem. Soc. 2018, 140, 17290–17296.

[24]

Wang, Y.; Du, Y. C.; Guo, D.; Qiang, R.; Tian, C. H.; Xu, P.; Han, X. J. Precursor-directed synthesis of porous cobalt assemblies with tunable close-packed hexagonal and face-centered cubic phases for the effective enhancement in microwave absorption. J. Mater. Sci. 2017, 52, 4399–4411.

[25]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[26]

Zhao, H. Q.; Cheng, Y.; Liu, W.; Yang, L. J.; Zhang, B. S.; Wang, L. P.; Ji, G. B.; Xu, Z. J. Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 2019, 11, 24.

[27]

Song, Y.; Yin, F. X.; Zhang, C. W.; Guo, W. B.; Han, L. Y.; Yuan, Y. Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 2021, 13, 76.

[28]

Chen, X. T.; Zhou, M.; Zhao, Y.; Gu, W. H.; Wu, Y.; Tang, S. L.; Ji, G. B. Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem. 2022, 24, 5280–5290.

[29]

Tao, J. Q.; Jiao, Z. B.; Xu, L. L.; Yi, P. S.; Yao, Z. J.; Yang, F.; Zhou, C. Y.; Chen, P.; Zhou, J. T.; Li, Z. Construction of MOF-derived Co/C shell on carbon fiber surface to enhance multi-polarization effect towards efficient broadband electromagnetic wave absorption. Carbon 2021, 184, 571–582.

[30]

Wang, F. Y.; Xu, P.; Shi, N.; Cui, L. R.; Wang, Y. H.; Liu, D. W.; Zhao, H. H.; Han, X. J.; Du, Y. C. Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution. J. Mater. Sci. Technol. 2021, 93, 7–16.

[31]

Xu, C. Y.; Liu, P. B.; Wu, Z. C.; Zhang, H. B.; Zhang, R. X.; Zhang, C.; Wang, L.; Wang, L. Y.; Yang, B. T.; Yang, Z. Q. et al. Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption. Adv. Sci. 2022, 9, 2200804.

[32]

Huan, X. H.; Wang, H. T.; Deng, W. C.; Yan, J. Q.; Xu, K.; Geng, H. B.; Guo, X. D.; Jia, X. L.; Zhou, J. S.; Yang, X. P. Integrating multi-heterointerfaces in a 1D@2D@1D hierarchical structure via autocatalytic pyrolysis for ultra-efficient microwave absorption performance. Small 2022, 18, 2105411.

[33]

Yang, J. J.; Wang, J. Q.; Li, H. Q.; Wu, Z.; Xing, Y. Q.; Chen, Y. F.; Liu, L. MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv. Sci. 2022, 9, 2101988.

[34]

Zhou, S. H.; Huang, Y.; Yan, J.; Han, X. P.; Chen, X. F. Fabrication of ternary CoNi@SiO2@RGO composites with enhanced electromagnetic (EM) wave absorption performances. J. Mater. Sci.: Mater. Electron. 2017, 28, 18558–18567.

[35]

Song, L. M.; Zhang, F.; Chen, Y. Q.; Guan, L.; Zhu, Y. Q.; Chen, M.; Wang, H. L.; Putra, B. R.; Zhang, R.; Fan, B. B. Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 152.

[36]

Feng, J. T.; Hou, Y. H.; Wang, Y. C.; Li, L. C. Synthesis of hierarchical ZnFe2O4@SiO2@RGO core–shell microspheres for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2017, 9, 14103–14111.

[37]

Wang, Z.; Cheng, Z.; Xie, L.; Hou, X. L.; Fang, C. Q. Flexible and lightweight Ti3C2Tx MXene/Fe3O4@PANI composite films for high-performance electromagnetic interference shielding. Ceram. Int. 2021, 47, 5747–5757.

[38]

Cui, Y. H.; Yang, K.; Wang, J. Q.; Shah, T.; Zhang, Q. Y.; Zhang, B. L. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 2021, 172, 1–14.

[39]

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

[40]

Wang, L.; Huang, Y.; Sun, X.; Huang, H. J.; Liu, P. B.; Zong, M.; Wang, Y. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 2014, 6, 3157–3164.

[41]

Wang, F. Y.; Liu, Y. L.; Zhao, H. H.; Cui, L. R.; Gai, L. X.; Han, X. J.; Du, Y. C. Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics. Chem. Eng. J. 2022, 450, 138160.

[42]

Ma, W. J.; He, P.; Xu, J.; Liu, X. Y.; Lin, S. L.; Cui, Z. K.; Zuo, P. Y.; Zhuang, Q. X. Self-assembly magnetized 3D hierarchical graphite carbon-based heterogeneous yolk–shell nanoboxes with enhanced microwave absorption. J. Mater. Chem. A 2022, 10, 11405–11413.

[43]

Shen, Z. J.; Yang, H. L.; Xiong, Z. Q.; Xie, Y.; Liu, C. B. Hollow core–shell CoNi@C and CoNi@NC composites as high-performance microwave absorbers. J. Alloys Compd. 2021, 871, 159574.

[44]

Wang, Y. L.; Yang, S. H.; Wang, H. Y.; Wang, G. S.; Sun, X. B.; Yin, P. G. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 2020, 167, 485–494.

[45]

Gao, S.; Yang, S. H.; Wang, H. Y.; Wang, G. S.; Yin, P. G.; Zhang, X. J. CoNi alloy with tunable magnetism encapsulated by N-doped carbon nanosheets toward high-performance microwave attenuation. Compos. Part B: Eng. 2021, 215, 108781.

[46]

Gu, W. H.; Tan, J. W.; Chen, J. B.; Zhang, Z.; Zhao, Y.; Yu, J. W.; Ji, G. B. Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 28727–28737.

[47]

Ding, J. J.; Wang, L.; Zhao, Y. H.; Xing, L. S.; Yu, X. F.; Chen, G. Y.; Zhang, J.; Che, R. C. Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.

[48]

Wang, Y.; Gao, X.; Fu, Y. Q.; Wu, X. M.; Wang, Q. G.; Zhang, W. Z.; Luo, C. Y. Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding. Compos. Part B: Eng. 2019, 169, 221–228.

[49]

Gu, W. H.; Zheng, J.; Liang, X. H.; Cui, X. Q.; Chen, J. B.; Zhang, Z.; Ji, G. B. Excellent lightweight carbon-based microwave absorbers derived from metal-organic frameworks with tunable electromagnetic properties. Inorg. Chem. Front. 2020, 7, 1667–1675.

[50]

Guan, X. M.; Yang, Z. H.; Zhu, Y. T.; Yang, L. J.; Zhou, M.; Wu, Y.; Yang, L.; Deng, T. W.; Ji, G. B. The controllable porous structure and S-doping of hollow carbon sphere synergistically act on the microwave attenuation. Carbon 2022, 188, 1–11.

[51]

Ma, G. S.; Xia, L.; Yang, H.; Wang, X. Y.; Zhang, T.; Huang, X. X.; Xiong, L.; Qin, C. L.; Wen, G. W. Multifunctional lithium aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption. Chem. Eng. J. 2021, 418, 129429.

[52]

Lu, S. R.; Xia, L.; Xu, J. M.; Ding, C. H.; Li, T. T.; Yang, H.; Zhong, B.; Zhang, T.; Huang, L. N.; Xiong, L. et al. Permittivity-regulating strategy enabling superior electromagnetic wave absorption of lithium aluminum silicate/rGO nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 18626–18636.

[53]

Zhang, J. J.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption. J. Mater. Sci. Technol. 2022, 128, 59–70.

[54]

Mu, C. P.; Du, X.; Nie, A. M.; Wang, B. C.; Wen, F. S.; Xiang, J. Y.; Zhai, K.; Liu, Z. Y. Microwave absorption properties of heterostructure composites of two dimensional layered magnetic materials and graphene nanosheets. Appl. Phys. Lett. 2019, 115, 043103.

[55]

Xu, W.; Wang, G. S.; Yin, P. G. Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding. Carbon 2018, 139, 759–767.

[56]

Meng, F. B.; Wei, W.; Chen, X. N.; Xu, X. L.; Jiang, M.; Jun, L.; Wang, Y.; Zhou, Z. W. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Chem. Phys. 2016, 18, 2510–2516.

[57]

Mu, Z. G.; Wei, G. K.; Zhang, H.; Gao, L.; Zhao, Y.; Tang, S. L.; Ji, G. B. The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res. 2022, 15, 7731–7741.

[58]

Song, C. Q.; Yin, X. W.; Han, M. K.; Li, X. L.; Hou, Z. X.; Zhang, L. T.; Cheng, L. F. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 2017, 116, 50–58.

[59]

Xiao, S. S.; Mei, H.; Han, D. Y.; Dassios, K. G.; Cheng, L. F. Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption. Carbon 2017, 122, 718–725.

[60]

Zhang, Y.; Huang, Y.; Chen, H. H.; Huang, Z. Y.; Yang, Y.; Xiao, P. S.; Zhou, Y.; Chen, Y. S. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016, 105, 438–447.

[61]

Chen, X. T.; Wang, Z. D.; Zhou, M.; Zhao, Y.; Tang, S. L.; Ji, G. B. Multilevel structure carbon aerogels with 99.999% electromagnetic wave absorptivity at 1.8 mm and efficient thermal stealth. Chem. Eng. J. 2023, 452, 139110.

File
12274_2022_5263_MOESM1_ESM.pdf (7.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 October 2022
Revised: 27 October 2022
Accepted: 28 October 2022
Published: 06 December 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51971111 and 52273247) and the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics) (No. ILA220461A22).

Return