Journal Home > Volume 16 , Issue 4

Rational construction of active components has been the biggest challenge in preparing efficient bifunctional oxygen electrocatalysts. Herein, electrospinning and chemical vapor deposition (CVD) were employed to embed active species including FeCo nanoparticles, MNx (M = Fe, Co), and FePx in porous and graphitized carbon nanotubes (CNTs)/carbon nanofiber (CNF). The as-prepared FeCo@CoNx@FePx/C exhibited a half-wave potential as high as 0.86 V in oxygen reduction reaction (ORR) and low oxygen evolution reaction (OER) overpotential of 368 mV at 10 mA·cm−2, which are superior to Pt/C (0.83 V) and IrO2 (375 mV) respectively. The assembled Zn-air battery (ZAB) showed a high energy efficiency (Edischarge/Echarge) of 65% at 20 mA·cm−2 and stabilized for 700 charge–discharge cycles. The spectroscopic and microscopic characterizations evidenced that the outstanding bifunctionality of the electrocatalyst can be ascribed to three main reasons: First, FeCo nanoparticles are rich in MOH/MOOH active sites for OER, and FePx/CNTs constructed with CVD also modulate electronic structure to improve electron transfer; second, both MNx in carbon matrix and FePx/CNTs are highly active towards ORR; third, the CNTs/CNF are highly porous and graphitized, which promotes mass transport and improves electrical conductivity and stability of the electrocatalysts. This work gives important implications on the design of bifunctional electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

CNTs/CNF-supported multi-active components as highly efficient bifunctional oxygen electrocatalysts and their applications in zinc-air batteries

Show Author's information Weiyuan Ding1,2Ali Saad1Yuchen Wu1,2Zhiwei Wang1,2Xiuting Li1( )
Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

Rational construction of active components has been the biggest challenge in preparing efficient bifunctional oxygen electrocatalysts. Herein, electrospinning and chemical vapor deposition (CVD) were employed to embed active species including FeCo nanoparticles, MNx (M = Fe, Co), and FePx in porous and graphitized carbon nanotubes (CNTs)/carbon nanofiber (CNF). The as-prepared FeCo@CoNx@FePx/C exhibited a half-wave potential as high as 0.86 V in oxygen reduction reaction (ORR) and low oxygen evolution reaction (OER) overpotential of 368 mV at 10 mA·cm−2, which are superior to Pt/C (0.83 V) and IrO2 (375 mV) respectively. The assembled Zn-air battery (ZAB) showed a high energy efficiency (Edischarge/Echarge) of 65% at 20 mA·cm−2 and stabilized for 700 charge–discharge cycles. The spectroscopic and microscopic characterizations evidenced that the outstanding bifunctionality of the electrocatalyst can be ascribed to three main reasons: First, FeCo nanoparticles are rich in MOH/MOOH active sites for OER, and FePx/CNTs constructed with CVD also modulate electronic structure to improve electron transfer; second, both MNx in carbon matrix and FePx/CNTs are highly active towards ORR; third, the CNTs/CNF are highly porous and graphitized, which promotes mass transport and improves electrical conductivity and stability of the electrocatalysts. This work gives important implications on the design of bifunctional electrocatalysts.

Keywords: oxygen reduction reaction, oxygen evolution reaction, zinc-air battery, carbon nanotubes (CNTs)/carbon nanofiber (CNF)-supported, multi-active components

References(58)

[1]

Xia, Q.; Zhai, Y. J.; Zhao, L. L.; Wang, J.; Li, D. Y.; Zhang, L. L.; Zhang, J. T. Carbon-supported single-atom catalysts for advanced rechargeable metal-air batteries. Energy Mater. 2022, 2, 200015.

[2]

Pan, L.; Chen, D. F.; Pei, P. C.; Huang, S. W.; Ren, P.; Song, X. A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries. Appl. Energy 2021, 290, 116777.

[3]

Yin, Z. Y.; He, R.; Xue, H. B.; Chen, J. J.; Wang, Y.; Ye, X. X.; Xu, N. N.; Qiao, J. L.; Huang, H. T. A bimetallic-activated MnO2 self-assembly electrode with a dual heterojunction structure for high-performance rechargeable zinc-air batteries. Energy Mater. 2022, 2, 200021.

[4]

Shi, Q.; Liu, Q.; Ma, Y.; Fang, Z.; Liang, Z.; Shao, G.; Tang, B.; Yang, W. Y.; Qin, L.; Fang, X. S. High-performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanoparticles for zinc-air battery and self-powered overall water splitting. Adv. Energy Mater. 2020, 10, 1903854.

[5]

Jiao, L.; Li, J. K.; Richard, L. L.; Sun, Q.; Stracensky, T.; Liu, E. S.; Sougrati, M. T.; Zhao, Z. P.; Yang, F.; Zhong, S. C. et al. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat. Mater. 2021, 20, 1385–1391.

[6]

Balamurugan, J.; Nguyen, T. T.; Kim, N. H.; Kim, D. H.; Lee, J. H. Novel core-shell CuMo-oxynitride@N-doped graphene nanohybrid as multifunctional catalysts for rechargeable zinc-air batteries and water splitting. Nano Energy 2021, 85, 105987.

[7]

Wu, M. J.; Wei, Q. L.; Zhang, G. X.; Qiao, J. L.; Wu, M. X.; Zhang, J. H.; Gong, Q. J.; Sun, S. H. Fe/Co double hydroxide/oxide nanoparticles on N-doped CNTs as highly efficient electrocatalyst for rechargeable liquid and quasi-solid-state zinc-air batteries. Adv. Energy Mater. 2018, 8, 1801836.

[8]

Chen, D. F.; Pan, L.; Pei, P. C.; Song, X.; Ren, P.; Zhang, L. Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives. Nano Res. 2022, 15, 5038–5063.

[9]

Zhou, X. W.; Liu, X.; Zhang, J. H.; Zhang, C.; Yoo, S. J.; Kim, J. G.; Chu, X. Y.; Song, C.; Wang, P.; Zhao, Z. Z. et al. Highly-dispersed cobalt clusters decorated onto nitrogen-doped carbon nanotubes as multifunctional electrocatalysts for OER, HER and ORR. Carbon 2020, 166, 284–290.

[10]

Zhang, L.; Zhu, J. W.; Li, X.; Mu, S. C.; Verpoort, F.; Xue, J. M.; Kou, Z. K.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.

[11]

Fu, X. G.; Liu, Y. R.; Cao, X. P.; Jin, J. T.; Liu, Q.; Zhang, J. Y. FeCo-Nx embedded graphene as high performance catalysts for oxygen reduction reaction. Appl. Catal. B 2013, 130–131, 143–151.

[12]

Zhao, Y. X.; Lai, Q. X.; Wang, Y.; Zhu, J. J.; Liang, Y. Y. Interconnected hierarchically porous Fe, N-codoped carbon nanofibers as efficient oxygen reduction catalysts for Zn-air batteries. ACS Appl. Mater. Interfaces 2017, 9, 16178–16186.

[13]

Zhou, Q. X.; Hou, S. Y.; Cheng, Y. X.; Sun, R. X.; Shen, W. Y.; Tian, R.; Yang, J.; Pang, H.; Xu, L.; Huang, K. et al. Interfacial engineering Co and MnO within N, S co-doped carbon hierarchical branched superstructures toward high-efficiency electrocatalytic oxygen reduction for robust Zn-air batteries. Appl. Catal. B 2021, 295, 120281.

[14]

Xie, W. W.; Huang, J. H.; Huang, L. T.; Geng, S. P.; Song, S. Q.; Tsiakaras, P.; Wang, Y. Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity. Appl. Catal. B 2022, 303, 120871.

[15]

Xu, H.; Wang, D.; Yang, P. X.; Du, L.; Lu, X. Y.; Li, R. P.; Liu, L. L.; Zhang, J. Q.; An, M. Z. A hierarchically porous Fe-N-C synthesized by dual melt-salt-mediated template as advanced electrocatalyst for efficient oxygen reduction in zinc-air battery. Appl. Catal. B 2022, 305, 121040.

[16]

Lv, X. W.; Xu, W. S.; Tian, W. W.; Wang, H. Y.; Yuan, Z. Y. Activity promotion of core and shell in multifunctional core-shell Co2P@NC electrocatalyst by secondary metal doping for water electrolysis and Zn-air batteries. Small 2021, 17, 2101856.

[17]

Jin, H. H.; Zhou, H.; He, D. P.; Wang, Z. H.; Wu, Q. L.; Liang, Q. R.; Liu, S. L.; Mu, S. C. MOF-derived 3D Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl. Catal. B 2019, 250, 143–149.

[18]

Yang, X. K.; Yi, Q. F.; Sheng, K.; Wang, T. CoNi loaded C–N tubular nanocomposites as excellent cathodic catalysts of alkaline Zn-air batteries. Catal. Lett. 2020, 150, 2886–2899.

[19]

Wan, W. J.; Liu, X. J.; Li, H. Y.; Peng, X. Y.; Xi, D. S.; Luo, J. 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B 2019, 240, 193–200.

[20]

Cui, J.; Leng, Y. M.; Xiang, Z. H. FeNi co-doped electrocatalyst synthesized via binary ligand strategy as a bifunctional catalyst for Zn-air flow battery. Chem. Eng. Sci. 2022, 247, 117038.

[21]

Shi, X. J.; He, B. B.; Zhao, L.; Gong, Y. S.; Wang, R.; Wang, H. W. FeS2-CoS2 incorporated into nitrogen-doped carbon nanofibers to boost oxygen electrocatalysis for durable rechargeable Zn-air batteries. J. Power Sources 2021, 482, 228955.

[22]

Zhang, C. L.; Liu, J. T.; Li, H.; Qin, L.; Cao, F. H.; Zhang, W. The controlled synthesis of Fe3C/Co/N-doped hierarchically structured carbon nanotubes for enhanced electrocatalysis. Appl. Catal. B 2020, 261, 118224.

[23]

Gao, L.; Chang, S. M.; Zhang, Z. Y. High-Quality CoFeP Nanocrystal/N, P dual-doped carbon composite as a novel bifunctional electrocatalyst for rechargeable Zn-air battery. ACS Appl. Mater. Interfaces 2021, 13, 22282–22291.

[24]

Zhang, X. L.; Yang, Z. X.; Lu, Z. S.; Wang, W. C. Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation. Carbon 2018, 130, 112–119.

[25]

Zhang, Y. Y.; Sun, H. H.; Qiu, Y. F.; Ji, X. Y.; Ma, T. G.; Gao, F.; Ma, Z.; Zhang, B. X.; Hu, P. A. Multiwall carbon nanotube encapsulated Co grown on vertically oriented graphene modified carbon cloth as bifunctional electrocatalysts for solid-state Zn-air battery. Carbon 2019, 144, 370–381.

[26]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[27]

Ibraheem, S.; Li, X. T.; Shah, S. S. A.; Najam, T.; Yasin, G.; Iqbal, R.; Hussain, S.; Ding, W. Y.; Shahzad, F. Tellurium triggered formation of Te/Fe-NiOOH nanocubes as an efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 10972–10978.

[28]

Chen, D. F.; Pan, L.; Pei, P. C.; Huang, S. W.; Ren, P.; Song, X. Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy 2021, 224, 120142.

[29]

Yan, L.; Xu, Z. Y.; Hu, W. K.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Formation of sandwiched leaf-like CNTs-Co/ZnCo2O4@NC-CNTs nanohybrids for high-power-density rechargeable Zn-air batteries. Nano Energy 2021, 82, 105710.

[30]

Shi, Q.; Liu, Q.; Zheng, Y. P.; Dong, Y. Q.; Wang, L.; Liu, H. T.; Yang, W. Y. Controllable construction of bifunctional CoxP@N,P-doped carbon electrocatalysts for rechargeable zinc-air batteries. Energy Environ. Mater. 2022, 5, 515–523.

[31]

Liu, Y. F.; Li, Y.; Wu, Q.; Su, Z.; Wang, B.; Chen, Y. F.; Wang, S. F. Hollow CoP/FeP4 heterostructural nanorods interwoven by CNT as a highly efficient electrocatalyst for oxygen evolution reactions. Nanomaterials 2021, 11, 1450.

[32]

Hu, Q.; Wang, Z. Y.; Huang, X. W.; Qin, Y. J.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He, C. X. A unique space confined strategy to construct defective metal oxides within porous nanofibers for electrocatalysis. Energy Environ. Sci. 2020, 13, 5097–5103.

[33]

Wang, Y. Y.; Li, Z. G.; Zhang, P.; Pan, Y.; Zhang, Y.; Cai, Q.; Silva, S. R. P.; Liu, J.; Zhang, G. X.; Sun, X. M. et al. F. Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries. Nano Energy 2021, 87, 106147.

[34]

Li, C. L.; Zhang, Z. J.; Wu, M. C.; Liu, R. FeCoNi ternary alloy embedded mesoporous carbon nanofiber: An efficient oxygen evolution catalyst for rechargeable zinc-air battery. Mater. Lett. 2019, 238, 138–142.

[35]

Yu, H.; Zhang, D. D.; Hou, H. L.; Ma, Y.; Fang, Z.; Lu, X. L.; Xu, S.; Hou, P.; Shao, G.; Yang, W. Y. et al. Embedded FeCo alloy nanoparticles in N-doped mesoporous carbon nanofibers as efficient bi-functional electrocatalysts for long-term rechargeable Zn-air batteries. Appl. Surf. Sci. 2022, 571, 151292.

[36]

Yazici, M. S.; Azder, M. A.; Salihoglu, O. CVD grown graphene as catalyst for acid electrolytes. Int. J. Hydrogen Energy 2018, 43, 10710–10716.

[37]

Konar, R.; Das, S.; Teblum, E.; Modak, A.; Perelshtein, I.; Richter, J. J.; Schechter, A.; Nessim, G. D. Facile and scalable ambient pressure chemical vapor deposition-assisted synthesis of layered silver selenide (β-Ag2Se) on Ag foil as a possible oxygen reduction catalyst in alkaline medium. Electrochim. Acta 2021, 370, 137709.

[38]

Wu, Y. C.; Wang, Y. J.; Wang, Z. W.; Li, X. T. Highly dispersed CoP on three-dimensional ordered mesoporous FeP for efficient electrocatalytic hydrogen production. J. Mater. Chem. A. 2021, 9, 23574–23581.

[39]

Chen, S. H.; Huang, Y. Q.; Li, M.; Sun, P. P.; Lv, X. W.; Li, B.; Fang, L.; Sun, X. H. MnOx anchored on N and O Co-doped carbon nanotubes encapsulated with FeCo alloy as highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. J. Electroanal. Chem. 2021, 895, 115513.

[40]

Wang, Z.; Ang, J. M.; Zhang, B. W.; Zhang, Y. F.; Ma, X. Y. D.; Yan, T.; Liu, J.; Che, B. Y.; Huang, Y. Z.; Lu, X. H. FeCo/FeCoNi/N-doped carbon nanotubes grafted polyhedron-derived hybrid fibers as bifunctional oxygen electrocatalysts for durable rechargeable zinc-air battery. Appl. Catal. B 2019, 254, 26–36.

[41]

Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 2019, 31, 1808043.

[42]

Yang, X. D.; Zheng, Y. P.; Yang, J.; Shi, W.; Zhong, J. H.; Zhang, C. K.; Zhang, X.; Hong, Y. H.; Peng, X. X.; Zhou, Z. Y. et al. Modeling Fe/N/C catalysts in monolayer graphene. ACS Catal. 2017, 7, 139–145.

[43]

Liang, Z. Z.; Kong, N. N.; Yang, C. X.; Zhang, W.; Zheng, H. Q.; Lin, H. P.; Cao, R. Highly curved nanostructure-coated Co, N-doped carbon materials for oxygen electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12759–12764.

[44]

Yu, N. F.; Chen, H.; Kuang, J. B.; Bao, K. L.; Yan, W.; Ye, J. L.; Yang, Z. T.; Huang, Q. H.; Wu, Y. P.; Sun, S. G. Efficient oxygen electrocatalysts with highly-exposed Co-N4 active sites on N-doped graphene-like hierarchically porous carbon nanosheets enhancing the performance of rechargeable Zn-air batteries. Nano Res. 2022, 15, 7209–7219.

[45]

Tang, C.; Wang, B.; Wang, H. F.; Zhang, Q. Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries. Adv. Mater. 2017, 29, 1703185.

[46]

Han, M. N.; Shi, M. J.; Wang, J.; Zhang, M. L.; Yan, C.; Jiang, J. T.; Guo, S. H.; Sun, Z. Y.; Guo, Z. H. Efficient bifunctional Co/N dual-doped carbon electrocatalysts for oxygen reduction and evolution reaction. Carbon 2019, 153, 575–584.

[47]

Zhang, J. T.; Zhang, T.; Ma, J.; Wang, Z.; Liu, J. H.; Gong, X. Z. ORR and OER of Co-N codoped carbon-based electrocatalysts enhanced by boundary layer oxygen molecules transfer. Carbon 2021, 172, 556–568.

[48]

Kim, N. I.; Sa, Y. J.; Yoo, T. S.; Choi, S. R.; Afzal, R. A.; Choi, T.; Seo, Y. S.; Lee, K. S.; Hwang, J. Y.; Choi, W. S. et al. Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions. Sci Adv. 2018, 4, eaap9360.

[49]

Li, M. X.; Zhu, Y.; Wang, H. Y.; Wang, C.; Pinna, N.; Lu, X. F. Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting. Adv. Energy Mater. 2019, 9, 1803185.

[50]

Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Gyu Kim, M.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.

[51]

Li, H. X.; Wen, Y. L.; Jiang, M.; Yao, Y.; Zhou, H. H.; Huang, Z. Y.; Li, J. W.; Jiao, S. Q.; Kuang, Y. F.; Luo, S. L. Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2011289.

[52]

Zhou, K. L.; Wang, Z. L.; Han, C. B.; Ke, X. X.; Wang, C. H.; Jin, Y. H.; Zhang, Q. Q.; Liu, J. B.; Wang, H.; Yan, H. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat. Commun. 2021, 12, 3783.

[53]

Li, J. J.; Jiang, Y. F.; Wang, Q.; Xu, C. Q.; Wu, D. J.; Banis, M. N.; Adair, K. R.; Doyle-Davis, K.; Meira, D. M.; Finfrock, Y. Z. et al. A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms. Nat. Commun. 2021, 12, 6806.

[54]

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Dong Kim, N.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

[55]

Tiwari, J. N.; Sultan, S.; Myung, C. W.; Yoon, T.; Li, N. N.; Ha, M. R.; Harzandi, A. M.; Park, H. J.; Kim, D. Y.; Chandrasekaran, S. S. et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat. Energy 2018, 3, 773–782.

[56]

Yan, J. H.; Wang, Y.; Zhang, Y. Y.; Xia, S. H.; Yu, J. Y.; Ding, B. Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts. Adv. Mater. 2021, 33, 2007525.

[57]

Wang, T. T.; Liu, M.; Chaemchuen, S.; Wang, J. C.; Yuan, Y.; Chen, C.; Qiao, A.; Verpoort, F.; Kou, Z. K. Constructing a stable cobalt-nitrogen-carbon air cathode from coordinatively unsaturated zeolitic-imidazole frameworks for rechargeable zinc-air batteries. Nano Res. 2022, 15, 5895–5901.

[58]

Yang, G. G.; Zhu, J. W.; Yuan, P. F.; Hu, Y. F.; Qu, G.; Lu, B. A.; Xue, X. Y.; Yin, H. B.; Cheng, W. Z.; Cheng, J. Q. et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.

File
12274_2022_5261_MOESM1_ESM.pdf (5.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 September 2022
Revised: 26 October 2022
Accepted: 30 October 2022
Published: 06 February 2023
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors acknowledge the grants from the National Natural Science Foundation of China (No. 22004085) and Regional Joint Fund of Guangdong Province (No. 2019A1515111054). The authors also thank the Instrumental Analysis Center of Shenzhen University for the scanning electron microscopy (SEM) and TEM characterizations. The authors would like to thank Yaping Li for Shiyanjia Lab (www.shiyanjia.com) for the XAS analysis.

Return