Journal Home > Volume 16 , Issue 4

High-entropy oxides receive significant attention owing to their “four effects”. However, they still suffer from harsh construction conditions such as high temperature and high pressure and present a block-like structure. Herein, in this work, Ni-Mn-Cu-Co-Fe-Al high-entropy layered oxides (HELOs) with a layered nanosheet structure were constructed by a simple pathway of topological transformation under relatively low temperature (300 °C) with six-membered Ni-Mn-Cu-Co-Fe-Al layered double hydroxides (LDHs) precursors, which exhibited an outstanding activity and excellent selectivity for CO2 photoelectroreduction (obtaining the highest carbon monoxide yield of 909.55 μmol·g−1·h−1 under −0.8 V vs. reversible hydrogen electrode (RHE), which is almost twice that of pure electrocatalysis). In addition, the charging voltage of a photo-assisted Zn-CO2 battery with HELOs as electrode was reduced from 2.62 to 2.40 V; the discharging voltage of the battery was increased from 0.51 to 0.59 V with the assistance of illumination. The improvement of round-trip efficiency of the battery indicates that light played a positive role in both the charging and discharging processes. This study not only lays an important foundation for the development of high-entropy oxides but also expands their application in the field of photoelectrochemistry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-entropy layered oxides nanosheets for highly efficient photoelectrocatalytic reduction of CO2 and application research

Show Author's information Xuefei Liu1Xiaoyan Wang1Beibei Yang1Junzheng Zhang1Jun Lu1,2( )
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

High-entropy oxides receive significant attention owing to their “four effects”. However, they still suffer from harsh construction conditions such as high temperature and high pressure and present a block-like structure. Herein, in this work, Ni-Mn-Cu-Co-Fe-Al high-entropy layered oxides (HELOs) with a layered nanosheet structure were constructed by a simple pathway of topological transformation under relatively low temperature (300 °C) with six-membered Ni-Mn-Cu-Co-Fe-Al layered double hydroxides (LDHs) precursors, which exhibited an outstanding activity and excellent selectivity for CO2 photoelectroreduction (obtaining the highest carbon monoxide yield of 909.55 μmol·g−1·h−1 under −0.8 V vs. reversible hydrogen electrode (RHE), which is almost twice that of pure electrocatalysis). In addition, the charging voltage of a photo-assisted Zn-CO2 battery with HELOs as electrode was reduced from 2.62 to 2.40 V; the discharging voltage of the battery was increased from 0.51 to 0.59 V with the assistance of illumination. The improvement of round-trip efficiency of the battery indicates that light played a positive role in both the charging and discharging processes. This study not only lays an important foundation for the development of high-entropy oxides but also expands their application in the field of photoelectrochemistry.

Keywords: CO2 reduction, layered double hydroxides (LDHs), high-entropy layered oxides (HELOs), photoelectrocatalytic

References(43)

[1]

Xu, S. Z.; Carter, E. A. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chem. Rev. 2019, 119, 6631–6669.

[2]

White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.

[3]

Xie, J. F.; Wang, Y. B. Recent development of CO2 electrochemistry from Li-CO2 batteries to Zn-CO2 batteries. Acc. Chem. Res. 2019, 52, 1721–1729.

[4]

Zhu, Z.; Shi, X. M.; Fan, G. L.; Li, F. J.; Chen, J. Photo-energy conversion and storage in an aprotic Li-O2 battery. Angew. Chem. 2019, 131, 19197–19202.

[5]

Zhu, D. D.; Zhao, Q. C.; Fan, G. L.; Zhao, S.; Wang, L. B.; Li, F. J.; Chen, J. Photoinduced oxygen reduction reaction boosts the output voltage of a zinc-air battery. Angew. Chem. 2019, 131, 12590–12594.

[6]

Liu, X. R.; Yuan, Y. F.; Liu, J.; Liu, B.; Chen, X.; Ding, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc-air battery. Nat. Commun. 2019, 10, 4767.

[7]

Guan, D. H.; Wang, X. X.; Li, M. L.; Li, F.; Zheng, L. J.; Huang, X. L.; Xu, J. J. Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li-CO2 battery. Angew. Chem., Int. Ed. 2020, 59, 19518–19524.

[8]

Li, Z.; Li, M. L.; Wang, X. X.; Guan, D. H.; Liu, W. Q.; Xu, J. J. In situ fabricated photo-electro-catalytic hybrid cathode for light-assisted lithium-CO2 batteries. Mater. Chem. A 2020, 8, 14799–14806.

[9]

Wang, X. Y.; Xie, J. F.; Ghausi, M. A.; Lv, J. Q.; Huang, Y. Y.; Wu, M. X.; Wang, Y. B.; Yao, J. N. Rechargeable Zn-CO2 electrochemical cells mimicking two-step photosynthesis. Adv. Mater. 2019, 31, 1807807.

[10]

Liu, X. Y.; Xiao, J. P.; Peng, H. J.; Hong, X.; Chan, K.; Nørskov, J. K. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 2017, 8, 15438.

[11]

Peterson, A. A.; Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251–258.

[12]

Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: A classification problem. ChemPhysChem 2017, 18, 3266–3273.

[13]

Hussain, J.; Jónsson, H.; Skúlason, E. Calculations of product selectivity in electrochemical CO2 reduction. ACS Catal. 2018, 8, 5240–5249.

[14]

Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020, 10, 2169–2176.

[15]

Gao, Y.; Liu, Y. Z.; Yu, H. Y.; Zou, D. L. High-entropy oxides for catalysis: Status and perspectives. Appl. Catal. A:Gen. 2022, 631, 118478.

[16]

Rost, C. M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E. C.; Hou, D.; Jones, J. L.; Curtarolo, S.; Maria, J. P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485.

[17]

Yao, Y. G.; Dong, Q.; Brozena, A.; Luo, J.; Miao, J. W.; Chi, M. F.; Wang, C.; Kevrekidis, I. G.; Ren, Z. J.; Greeley, J. et al. High-entropy nanoparticles: Synthesis–structure–property relationships and data-driven discovery. Science 2022, 376, eabn3103.

[18]

Li, T. Y.; Dong, Q.; Huang, Z. N.; Wu, L. P.; Yao, Y. G.; Gao, J. L.; Wang, X. Z.; Zhang, H. C.; Wang, D. W.; Li, T. et al. Interface engineering between multi-elemental alloy nanoparticles and a carbon support toward stable catalysts. Adv. Mater. 2022, 34, 2106436.

[19]

Cui, M. J.; Yang, C. P.; Li, B. Y.; Dong, Q.; Wu, M. L.; Hwang, S.; Xie, H.; Wang, X. Z.; Wang, G. F.; Hu, L. B. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2002887.

[20]

Wang, X. Z.; Dong, Q.; Qiao, H. Y.; Huang, Z. N.; Saray, M. T.; Zhong, G.; Lin, Z. W.; Cui, M. J.; Brozena, A.; Hong, M. et al. Continuous synthesis of hollow high-entropy nanoparticles for energy and catalysis applications. Adv. Mater. 2020, 32, 2002853.

[21]

Li, T. Y.; Yao, Y. G.; Ko, B. H.; Huang, Z. N.; Dong, Q.; Gao, J. L.; Chen, W.; Li, J. G.; Li, S. K.; Wang, X. Z. et al. Carbon-supported high-entropy oxide nanoparticles as stable electrocatalysts for oxygen reduction reactions. Adv. Funct. Mater. 2021, 31, 2010561.

[22]

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

[23]

Qiao, H. Y.; Saray, M. T.; Wang, X. Z.; Xu, S. M.; Chen, G.; Huang, Z. N.; Chen, C. J.; Zhong, G.; Dong, Q.; Hong, M. et al. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano 2021, 15, 14928–14937.

[24]

Cui, M. J.; Yang, C. P.; Hwang, S.; Yang, M. H.; Overa, S.; Dong, Q.; Yao, Y. G.; Brozena, A. H.; Cullen, D. A.; Chi, M. F. et al. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Sci. Adv. 2022, 8, eabm4322.

[25]

Yao, Y. G.; Huang, Z. N.; Hughes, L. A.; Gao, J. L.; Li, T. Y.; Morris, D.; Zeltmann, S. E.; Savitzky, B. H.; Ophus, C.; Finfrock, Y. Z. et al. Extreme mixing in nanoscale transition metal alloys. Matter 2021, 4, 2340–2353.

[26]
Zhang, Y. High-Entropy Materials: A Brief Introduction; Springer: Singapore, 2019; pp 215–232.
[27]

Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

[28]

George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.

[29]

Liu, L. Y.; Zhang, Y.; Han, J. H.; Wang, X. Y.; Jiang, W. Q.; Liu, C. T.; Zhang, Z. W.; Liaw, P. K. Nanoprecipitate-strengthened high-entropy alloys. Adv. Sci. 2021, 8, 2100870.

[30]

Dong, Q.; Hong, M.; Gao, J. L.; Li, T. Y.; Cui, M. J.; Li, S. K.; Qiao, H. Y.; Brozena, A. H.; Yao, Y. G.; Wang, X. Z. et al. Rapid synthesis of high-entropy oxide microparticles. Small 2022, 18, 2104761.

[31]

Zhao, C. L.; Ding, F. X.; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 264–269.

[32]

McCormick, C. R.; Schaak, R. E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. J. Am. Chem. Soc. 2021, 143, 1017–1023.

[33]

Cavin, J.; Ahmadiparidari, A.; Majidi, L.; Thind, A. S.; Misal, S. N.; Prajapati, A.; Hemmat, Z.; Rastegar, S.; Beukelman, A.; Singh, M. R. et al. 2D high-entropy transition metal dichalcogenides for carbon dioxide electrocatalysis. Adv. Mater. 2021, 33, 2100347.

[34]

Zhao, X. H.; Xue, Z. M.; Chen, W. J.; Wang, Y. Q.; Mu, T. C. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting. ChemSusChem 2020, 13, 2038–2042.

[35]

Lai, D. W.; Kang, Q. L.; Gao, F.; Lu, Q. Y. High-entropy effect of a metal phosphide on enhanced overall water splitting performance. J. Mater. Chem. A 2021, 9, 17913–17922.

[36]

Zhang, L. J.; Cai, W. W.; Bao, N. Z.; Yang, H. Implanting an electron donor to enlarge the d–p hybridization of high-entropy (oxy)hydroxide: A novel design to boost oxygen evolution. Adv. Mater. 2022, 34, 2110511.

[37]

Nellaiappan, S.; Katiyar, N. K.; Kumar, R.; Parui, A.; Malviya, K. D.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: Experimental realization. ACS Catal. 2020, 10, 3658–3663.

[38]

Akrami, S.; Murakami, Y.; Watanabe, M.; Ishihara, T.; Arita, M.; Fuji, M.; Edalati, K. Defective high-entropy oxide photocatalyst with high activity for CO2 conversion. Appl. Catal. B:Environ. 2022, 303, 120896.

[39]

Gu, K. Z.; Wang, D. D.; Xie, C.; Wang, T. H.; Huang, G.; Liu, Y. B.; Zou, Y. Q.; Tao, L.; Wang, S. Y. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem., Int. Ed. 2021, 60, 20253–20258.

[40]

He, S.; Somayaji, V.; Wang, M. D.; Lee, S. H.; Geng, Z. J.; Zhu, S. Y.; Novello, P.; Varanasi, C. V.; Liu, J. High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Res. 2022, 15, 4785–4791.

[41]

Guo, H. X.; Wang, W. M.; He, C. Y.; Liu, B. H.; Yu, D. M.; Liu, G.; Gao, X. H. Entropy-assisted high-entropy oxide with a spinel structure toward high-temperature infrared radiation materials. ACS Appl. Mater. Interfaces 2022, 14, 1950–1960.

[42]

Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309.

[43]

Wright, A. J.; Wang, Q. Y.; Huang, C. Y.; Nieto, A.; Chen, R. K.; Luo, J. From high-entropy ceramics to compositionally-complex ceramics: A case study of fluorite oxides. J. Eur. Ceram. Soc. 2020, 40, 2120–2129.

File
12274_2022_5259_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 July 2022
Revised: 29 October 2022
Accepted: 31 October 2022
Published: 07 February 2023
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors express special gratitude for the financial support from the National Basic Research Program of China (No. 2014CB932101), the National Natural Science Foundation of China (Nos. 21571013 and 52073023) and Program for Chang Jiang Scholars and Innovative Research Team in University (No. IRT1205).

Return