Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nasopharyngeal carcinoma (NPC) is a serious and highly invasive epithelial malignancy that is closely associated with Epstein‒Barr virus (EBV). Due to the lack of therapeutic vaccines for NPC, we selected EBV latent membrane protein 2 (LMP2) as a preferable targeting antigen to develop a lipid-based LMP2-mRNA (mLMP2) vaccine. Full-length mLMP2 expressing LMP2 was first synthesized using an in vitro transcription method and then encapsulated into (2,3-dioleacyl propyl) trimethylammonium chloride (DOTAP)-based cationic liposomes to obtain the mRNA vaccine (LPX-mLMP2). The cell assays showed that the antigen-presenting cells were capable of highly efficient uptake of LPX-mLMP2 and expression of LMP2. LMP2 could subsequently be presented to form the peptide-major histocompatibility complex (pMHC). Furthermore, LPX-mLMP2 could accumulate in the spleen, express antigens, promote the maturation of dendritic cells and stimulate antigen-specific T-cell responses in vivo. It dramatically inhibited the tumor growth of the LMP2-expressing tumor model after three doses of vaccination. Additionally, the proliferation of antigen-specific T cells in the tumor site made a good sign for the promise of mRNA vaccines in virus-induced cancer. Overall, we provided a newly developed antigen-encoding mRNA vaccine with advantages against NPC. We also demonstrated that mRNA vaccines are attractive candidates for cancer immunotherapy.
Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249.
Tyagi, R. K.; Parmar, R.; Patel, N. A generic RNA pulsed DC based approach for developing therapeutic intervention against nasopharyngeal carcinoma. Hum. Vaccin. Immunother. 2017, 13, 854–866.
Coghill, A. E.; Hildesheim, A. Epstein–Barr virus antibodies and the risk of associated malignancies: Review of the literature. Am. J. Epidemiol. 2014, 180, 687–695.
Zhu, Q. Y.; Kong, X. W.; Sun, C.; Xie, S. H.; Hildesheim, A.; Cao, S. M.; Zeng, M. S. Association between antibody responses to Epstein–Barr virus glycoproteins, neutralization of infectivity, and the risk of nasopharyngeal carcinoma. mSphere 2020, 5, e00901–20.
Khanna, R.; Moss, D.; Gandhi, M. Technology insight: Applications of emerging immunotherapeutic strategies for Epstein–Barr virus-associated malignancies. Nat. Clin. Pract. Oncol. 2005, 2, 138–149.
Dasari, V.; Sinha, D.; Neller, M. A.; Smith, C.; Khanna, R. Prophylactic and therapeutic strategies for Epstein–Barr virus-associated diseases: Emerging strategies for clinical development. Expert Rev. Vaccines 2019, 18, 457–474.
Zeng, Y.; Si, Y. F.; Lan, G. P.; Wang, Z.; Zhou, L.; Tang, M. Z.; Sj, O. B.; Lan, J.; Zhou, X. Y.; Wang, Y. L. et al. LMP2-DC vaccine elicits specific EBV-LMP2 response to effectively improve immunotherapy in patients with nasopharyngeal cancer. Biomed. Environ. Sci. 2020, 33, 849–856.
Taylor, G. S.; Jia, H.; Harrington, K.; Lee, L. W.; Turner, J.; Ladell, K.; Price, D. A.; Tanday, M.; Matthews, J.; Roberts, C. et al. A recombinant modified Vaccinia Ankara vaccine encoding Epstein–Barr virus (EBV) target antigens: A phase I trial in UK patients with EBV-positive cancer. Clin. Cancer Res. 2014, 20, 5009–5022.
Feng, C.; Li, Y. J.; Ferdows, B. E.; Patel, D. N.; Ouyang, J.; Tang, Z. M.; Kong, N.; Chen, E. G.; Tao, W. Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharm. Sin. B 2022, 12, 2206–2223.
Thompson, M. G.; Burgess, J. L.; Naleway, A. L.; Tyner, H.; Yoon, S. K.; Meece, J.; Olsho, L. E. W.; Caban-Martinez, A. J.; Fowlkes, A. L.; Lutrick, K. et al. Prevention and attenuation of COVID-19 with the BNT162b2 and mRNA-1273 vaccines. N. Engl. J. Med. 2021, 385, 320–329.
Islam, M. A.; Rice, J.; Reesor, E.; Zope, H.; Tao, W.; Lim, M.; Ding, J. X.; Chen, Y. H.; Aduluso, D.; Zetter, B. R. et al. Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials 2021, 266, 120431.
Kong, N.; Zhang, R. N.; Wu, G. W.; Sui, X. B.; Wang, J. Q.; Kim, N. Y.; Blake, S.; De, D.; Xie, T.; Cao, Y. H. et al. Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc. Natl. Acad. Sci. USA 2022, 119, e2112696119.
Xiong, Q. Q.; Lee, G. Y.; Ding, J. X.; Li, W. L.; Shi, J. J. Biomedical applications of mRNA nanomedicine. Nano Res. 2018, 11, 5281–5309.
Lin, Y. X.; Wang, Y.; Ding, J. X.; Jiang, A. P.; Wang, J.; Yu, M.; Blake, S.; Liu, S. S.; Bieberich, C. J.; Farokhzad, O. C. et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Sci. Transl. Med. 2021, 13, eaba9772.
Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279.
Coolen, A. L.; Lacroix, C.; Mercier-Gouy, P.; Delaune, E.; Monge, C.; Exposito, J. Y.; Verrier, B. Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation. Biomaterials 2019, 195, 23–37.
Uchida, S.; Kinoh, H.; Ishii, T.; Matsui, A.; Tockary, T. A.; Takeda, K. M.; Uchida, H.; Osada, K.; Itaka, K.; Kataoka, K. Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials 2016, 82, 221–228.
Kranz, L. M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K. C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401.
Vik-Mo, E. O.; Nyakas, M.; Mikkelsen, B. V.; Moe, M. C.; Due-Tonnesen, P.; Suso, E. M. I.; Sæbøe-Larssen, S.; Sandberg, C.; Brinchmann, J. E.; Helseth, E. et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol. Immunother. 2013, 62, 1499–1509.
Kubler, H.; Scheel, B.; Gnad-Vogt, U.; Miller, K.; Schultze-Seemann, W.; Vom Dorp, F.; Parmiani, G.; Hampel, C.; Wedel, S.; Trojan, L. et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: A first-in-man phase I/IIa study. J. Immunother. Cancer 2015, 3, 26.
Li, Z. M.; Xu, W. G.; Yang, J. Z.; Wang, J.; Wang, J. L.; Zhu, G.; Li, D.; Ding, J. X.; Sun, T. M. A tumor microenvironments-adapted polypeptide hydrogel/nanogel composite boosts antitumor molecularly targeted inhibition and immunoactivation. Adv. Mater. 2022, 34, 2200449.
Feng, X. R.; Xu, W. G.; Li, Z. M.; Song, W. T.; Ding, J. X.; Chen, X. S. Immunomodulatory nanosystems. Adv. Sci. 2019, 6, 1900101.
Fogg, M. H.; Wirth, L. J.; Posner, M.; Wang, F. Decreased EBNA-1-specific CD8+ T cells in patients with Epstein–Barr virus-associated nasopharyngeal carcinoma. Proc. Natl. Acad. Sci. USA 2009, 106, 3318–3323.
Dawson, C. W.; Port, R. J.; Young, L. S. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin. Cancer Biol. 2012, 22, 144–153.
Zhu, S. L.; Chen, J.; Xiong, Y. R.; Kamara, S.; Gu, M. P.; Tang, W. L.; Chen, S.; Dong, H. Y.; Xue, X. Y.; Zheng, Z. M. et al. Novel EBV LMP-2-affibody and affitoxin in molecular imaging and targeted therapy of nasopharyngeal carcinoma. PLoS Pathog. 2020, 16, e1008223.
Taylor, G. S.; Steven, N. M. Therapeutic vaccination strategies to treat nasopharyngeal carcinoma. Chin. Clin. Oncol. 2016, 5, 23.
Meij, P.; Leen, A.; Rickinson, A. B.; Verkoeijen, S.; Vervoort, M. B. H. J.; Bloemena, E.; Middeldorp, J. M. Identification and prevalence of CD8+ T-cell responses directed against Epstein–Barr virus-encoded latent membrane protein 1 and latent membrane protein 2. Int. J. Cancer 2002, 99, 93–99.
Lei, L.; Li, J. H.; Liu, M. Q.; Hu, X. M.; Zhou, Y.; Yang, S. M. CD40L-adjuvanted DNA vaccine carrying EBV-LMP2 antigen enhances anti-tumor effect in NPC transplantation tumor animal. Cent. Eur. J. Immunol. 2018, 43, 117–122.
Si, Y. F.; Deng, Z. X.; Lan, G. P.; Du, H. J.; Wang, Y. L.; Si, J. Y.; Wei, J. Z.; Weng, J. J.; Qin, Y. D.; Huang, B. et al. The safety and immunological effects of rAd5-EBV-LMP2 vaccine in nasopharyngeal carcinoma patients: A phase I clinical trial and two-year follow-up. Chem. Pharm. Bull. 2016, 64, 1118–1123.
Lao, T. D.; Le, T. A. H. Association between LMP-1, LMP-2, and miR-155 expression as potential biomarker in nasopharyngeal carcinoma patients: A case/control study in Vietnam. Genet. Test. Mol. Biomarkers 2019, 23, 815–822.
Xu, X. Y.; Xie, K.; Zhang, X. Q.; Pridgen, E. M.; Park, G. Y.; Cui, D. S.; Shi, J. J.; Wu, J.; Kantoff, P. W.; Lippard, S. J. et al. Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc. Natl. Acad. Sci. USA 2013, 110, 18638–18643.
Pollard, C.; Rejman, J.; De Haes, W.; Verrier, B.; Van Gulck, E.; Naessens, T.; De Smedt, S.; Bogaert, P.; Grooten, J.; Vanham, G. et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol. Ther. 2013, 21, 251–259.
Frappier, L. Role of EBNA1 in NPC tumourigenesis. Semin. Cancer Biol. 2012, 22, 154–161.
Brooks, L.; Yao, Q. Y.; Rickinson, A. B.; Young, L. S. Epstein–Barr virus latent gene transcription in nasopharyngeal carcinoma cells: Coexpression of EBNA1, LMP1, and LMP2 transcripts. J. Virol. 1992, 66, 2689–2697.
Wang, F. Z.; Xiao, W.; Elbahnasawy, M. A.; Bao, X. T.; Zheng, Q.; Gong, L. H.; Zhou, Y.; Yang, S. P.; Fang, A. P.; Farag, M. M. S. et al. Optimization of the linker length of mannose-cholesterol conjugates for enhanced mRNA delivery to dendritic cells by liposomes. Front. Pharmacol. 2018, 9, 980.
Siepi, E.; Lutz, S.; Meyer, S.; Panzner, S. An ion switch regulates fusion of charged membranes. Biophys. J. 2011, 100, 2412–2421.
Ruso, J. M.; Besada, L.; Martínez-Landeira, P.; Seoane, L.; Prieto, G.; Sarmiento, F. Interactions between liposomes and cations in aqueous solution. J. Liposome Res. 2003, 13, 131–145.
Huang, S. C. M.; Tsao, S. W.; Tsang, C. M. Interplay of viral infection, host cell factors and tumor microenvironment in the pathogenesis of nasopharyngeal carcinoma. Cancers 2018, 10, 106.
Feng, X. R.; Xu, W. G.; Liu, J. H.; Li, D.; Li, G.; Ding, J. X.; Chen, X. S. Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy. Sci. Bull. 2021, 66, 362–373.
Zheng, P.; Ding, B. B.; Jiang, Z. Y.; Xu, W. G.; Li, G.; Ding, J. X.; Chen, X. S. Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell death. Nano Lett. 2021, 21, 2088–2093.
Zhao, Y. S.; Deng, J.; Rao, S. F.; Guo, S. P.; Shen, J.; Du, F. K.; Wu, X.; Chen, Y.; Li, M. X.; Chen, M. J. et al. Tumor infiltrating lymphocyte (TIL) therapy for solid tumor treatment: Progressions and challenges. Cancers 2022, 14, 4160.
Ono, T.; Azuma, K.; Kawahara, A.; Sasada, T.; Matsuo, N.; Kakuma, T.; Kamimura, H.; Maeda, R.; Hattori, C.; On, K. et al. Prognostic stratification of patients with nasopharyngeal carcinoma based on tumor immune microenvironment. Head Neck 2018, 40, 2007–2019.
Jin, S. Z.; Li, R. Y.; Chen, M. Y.; Yu, C.; Tang, L. Q.; Liu, Y. M.; Li, J. P.; Liu, Y. N.; Luo, Y. L.; Zhao, Y. F. et al. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma. Cell Res. 2020, 30, 950–965.