AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Study of thermoelectric enhanced SERS and photocatalysis with ZnO-metal nanorod arrays

Baoqiang Du1Jibing Tan1Chang Ji1Mingrui Shao1Xiaofei Zhao1Jing Yu1Chao Zhang1Chuansong Chen1Hui Pan2( )Baoyuan Man1( )Zhen Li1( )
School of Physics and Electronics, Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250014, China
Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
Show Author Information

Graphical Abstract

Thermoelectrically induced surface-enhanced Raman scattering (E-SERS) substrates were fabricated. Enhanced SERS signal and precise control of the redox reaction were achieved by applying a controlled temperature gradient to the substrates.

Abstract

Herein, a thermoelectric induced surface-enhanced Raman scattering (SERS) substrate consisting of ZnO nanorod arrays and metal nanoparticles is proposed. The intensities of SERS signals are further enhanced by an order of magnitude and the limit of detection (LOD) for the molecules is reduced by at least one order of magnitude after the application of a thermoelectric potential. The enhancement mechanism is analyzed carefully and thoroughly based on the experimental and theoretical results, thus proving that the thermoelectric-induced enhancement of the SERS signals should be classified as a chemical contribution. Furthermore, it is proved that the electric regulation mechanism is universally applicable, and the fabricated substrate realizes enormous enhancements for various types of molecules, such as rhodamine 6G, methyl orange, crystal violet, amaranth, and biological molecules. Additionally, the proposed electric-induced SERS (E-SERS) substrate is also realized to monitor and manipulate the plasmon-activated redox reactions. We believe that this study can promote the course of the research on E-SERS and plasmon-enhanced photocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_5253_MOESM1_ESM.pdf (5.9 MB)

References

[1]

Etchegoin, P. G. Quo vadis surface-enhanced Raman scattering? Phys. Chem. Chem. Phys. 2009, 11, 7348–7349.

[2]

Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F. Can graphene be used as a substrate for Raman enhancement? Nano Lett. 2010, 10, 553–561.

[3]

Pan, X. H.; Cao, S. H.; Chen, M.; Zhai, Y. Y.; Xu, Z. Q.; Ren, B.; Li, Y. Q. In situ and sensitive monitoring of configuration-switching involved dynamic adsorption by surface plasmon-coupled directional enhanced Raman scattering. Phys. Chem. Chem. Phys 2020, 22, 12624–12629.

[4]

Zhao, Y. Y.; Ren, X. L.; Zheng, M. L.; Jin, F.; Liu, J.; Dong, X. Z.; Zhao, Z. S.; Duan, X. M. Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes. Opto-Electron. Adv. 2021, 4, 200101.

[5]

Bharati, M. S. S.; Soma, V. R. Flexible SERS substrates for hazardous materials detection: Recent advances. Opto-Electron. Adv. 2021, 4, 210048.

[6]

Ghopry, S. A.; Sadeghi, S. M.; Farhat, Y.; Berrie, C. L.; Alamri, M.; Wu, J. Z. Intermixed WS2+MoS2 nanodisks/graphene van der Waals heterostructures for surface-enhanced Raman spectroscopy sensing. ACS Appl. Nano Mater. 2021, 4, 2941–2951.

[7]

Ikeda, K.; Suzuki, S.; Uosaki, K. Crystal face dependent chemical effects in surface-enhanced Raman scattering at atomically defined gold facets. Nano Lett. 2011, 11, 1716–1722.

[8]

Li, X. H.; Choy, W. C. H.; Ren, X. G.; Zhang, D.; Lu, H. F. Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film-metal nanoparticle coupling system. Adv. Funct. Mater. 2014, 24, 3114–3122.

[9]

Ling, X.; Zhang, J. First-layer effect in graphene-enhanced Raman scattering. Small 2010, 6, 2020–2025.

[10]

Tian, Z.; Bai, H.; Chen, C.; Ye, Y. T.; Kong, Q. H.; Li, Y. H.; Fan, W. H.; Yi, W. C.; Xi, G. C. Quasi-metal for highly sensitive and stable surface-enhanced Raman scattering. iScience 2019, 19, 836–849.

[11]

Tong, L. M.; Zhu, T.; Liu, Z. F. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: From self-assembled arrays to individual gold nanoparticles. Chem. Soc. Rev. 2011, 40, 1296–1304.

[12]

Tsao, C. W.; Zheng, Y. S.; Sun, Y. S.; Cheng, Y. C. Surface-enhanced Raman scattering (SERS) spectroscopy on localized silver nanoparticle-decorated porous silicon substrate. Analyst 2021, 146, 7645–7652.

[13]

Valley, N.; Greeneltch, N.; Van Duyne, R. P.; Schatz, G. C. A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): Theory and experiment. J. Phys. Chem. Lett. 2013, 4, 2599–2604.

[14]

Yang, L. T.; Lee, J. H.; Rathnam, C.; Hou, Y. N.; Choi, J. W.; Lee, K. B. Dual-enhanced Raman scattering-based characterization of stem cell differentiation using graphene-plasmonic hybrid nanoarray. Nano Lett. 2019, 19, 8138–8148.

[15]

Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.

[16]

Cao, Y.; Sun, M. T. Perspective on plexciton based on transition metal dichalcogenides. Appl. Phys. Lett. 2022, 120, 240501.

[17]

Mu, X. J.; Sun, M. T. Interfacial charge transfer exciton enhanced by plasmon in 2D in-plane lateral and van der Waals heterostructures. Appl. Phys. Lett. 2020, 117, 091601.

[18]

Lin, W. H.; Shi, Y.; Yang, X. Z.; Li, J.; Cao, E.; Xu, X. F.; Pullerits, T.; Liang, W. J.; Sun, M. T. Physical mechanism on exciton-plasmon coupling revealed by femtosecond pump-probe transient absorption spectroscopy. Mater. Today Phys. 2017, 3, 33–40.

[19]

Han, X. X.; Ji, W.; Zhao, B.; Ozaki, Y. Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale 2017, 9, 4847–4861.

[20]

Kambhampati, P.; Child, C. M.; Foster, M. C.; Campion, A. On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. J. Chem. Phys. 1998, 108, 5013–5026.

[21]

Liu, Y. W.; Ma, H.; Han, X. X.; Zhao, B. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: Synergistic contribution of plasmons and charge transfer. Mater. Horiz. 2021, 8, 370–382.

[22]

Siddhanta, S.; Thakur, V.; Narayana, C.; Shivaprasad, S. M. Universal metal-semiconductor hybrid nanostructured SERS substrate for biosensing. ACS Appl. Mater. Interfaces 2012, 4, 5807–5812.

[23]

Yang, T.; Liu, W. N.; Li, L. D.; Chen, J. H.; Hou, X. M.; Chou, K. C. Synergizing the multiple plasmon resonance coupling and quantum effects to obtain enhanced SERS and PEC performance simultaneously on a noble metal-semiconductor substrate. Nanoscale 2017, 9, 2376–2384.

[24]

Yang, X. Z.; Yu, H.; Guo, X.; Ding, Q. Q.; Pullerits, T.; Wang, R. M.; Zhang, G. Y.; Liang, W. J.; Sun, M. T. Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. Mater. Today Energy 2017, 5, 72–78.

[25]

Lin, W. H.; Cao, E.; Zhang, L. Q.; Xu, X. F.; Song, Y. Z.; Liang, W. J.; Sun, M. T. Electrically enhanced hot hole driven oxidation catalysis at the interface of a plasmon-exciton hybrid. Nanoscale 2018, 10, 5482–5488.

[26]

Cao, E.; Guo, X.; Zhang, L. Q.; Shi, Y.; Lin, W. H.; Liu, X. C.; Fang, Y. R.; Zhou, L. Y.; Sun, Y. H.; Song, Y. Z. et al. Electrooptical synergy on plasmon-exciton-codriven surface reduction reactions. Adv. Mater. Interfaces 2017, 4, 1700869.

[27]

Cheng, C. W.; Yan, B.; Wong, S. M.; Li, X. L.; Zhou, W. W.; Yu, T.; Shen, Z. X.; Yu, H. Y.; Fan, H. J. Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Interfaces 2010, 2, 1824–1828.

[28]

Sinha, G.; Depero, L. E.; Alessandri, I. Recyclable SERS substrates based on Au-coated ZnO nanorods. ACS Appl. Mater. Interfaces 2011, 3, 2557–2563.

[29]

Wang, X. T.; Shi, W. X.; Jin, Z.; Huang, W. F.; Lin, J.; Ma, G. S.; Li, S. Z.; Guo, L. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem., Int. Ed. 2017, 56, 9851–9855.

[30]

Kandjani, A. E.; Sabri, Y. M.; Mohammad-Taheri, M.; Bansal, V.; Bhargava, S. K. Detect, remove and reuse: A new paradigm in sensing and removal of Hg(II) from wastewater via SERS-active ZnO/Ag nanoarrays. Environ. Sci. Technol. 2015, 49, 1578–1584.

[31]

Liu, L. P.; Yang, H. T.; Ren, X.; Tang, J.; Li, Y. F.; Zhang, X. Q.; Cheng, Z. H. Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates. Nanoscale 2015, 7, 5147–5151.

[32]

Yang, L. L.; Yang, Y.; Ma, Y. F.; Li, S.; Wei, Y. Q.; Huang, Z. R.; Long, N. V. Fabrication of semiconductor ZnO nanostructures for versatile SERS application. Nanomaterials (Basel) 2017, 7, 398.

[33]

Koleva, M. E.; Nedyalkov, N. N.; Nikov, R.; Nikov, R.; Atanasova, G.; Karashanova, D.; Nuzhdin, V. I.; Valeev, V. F.; Rogov, A. M.; Stepanov, A. L. Fabrication of Ag/ZnO nanostructures for SERS applications. Appl. Surf. Sci. 2020, 508, 145227.

[34]

Sivashanmugan, K.; Liao, J. D.; Liu, B. H.; Yao, C. K.; Luo, S. C. Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green. Sens. Actuators B:Chem. 2015, 207, 430–436.

[35]

He, X.; Wang, H.; Li, Z. B.; Chen, D.; Liu, J. H.; Zhang, Q. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids. Nanoscale 2015, 7, 8619–8626.

[36]

Zhou, J.; Zhang, J. S.; Yang, H. T.; Wang, Z.; Shi, J. A.; Zhou, W.; Jiang, N.; Xian, G. Y.; Qi, Q.; Weng, Y. X. et al. Plasmon-induced hot electron transfer in Au−ZnO heterogeneous nanorods for enhanced SERS. Nanoscale 2019, 11, 11782–11788.

[37]

Liu, C. Y.; Xu, X. H.; Wang, C. D.; Qiu, G. Y.; Ye, W. C.; Li, Y. M.; Wang, D. G. ZnO/Ag nanorods as a prominent SERS substrate contributed by synergistic charge transfer effect for simultaneous detection of oral antidiabetic drugs pioglitazone and phenformin. Sens. Actuators B:Chem. 2020, 307, 127634.

[38]

Pal, A. K.; Pagal, S.; Prashanth, K.; Chandra, G. K.; Umapathy, S.; Mohan, D. B. Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection. Sens. Actuators B:Chem. 2019, 279, 157–169.

[39]

Yu, J.; Guo, Y.; Wang, H. J.; Su, S.; Zhang, C.; Man, B. Y.; Lei, F. C. Quasi optical cavity of hierarchical ZnO nanosheets@Ag nanoravines with synergy of near- and far-field effects for in situ Raman detection. J. Phys. Chem. Lett. 2019, 10, 3676–3680.

[40]

Kim, W.; Lee, S. H.; Kim, J. H.; Ahn, Y. J.; Kim, Y. H.; Yu, J. S.; Choi, S. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano 2018, 12, 7100–7108.

[41]

Yao, J. C.; Quan, Y. N.; Gao, M.; Gao, R. X.; Chen, L.; Liu, Y.; Lang, J. H.; Shen, H.; Zhang, Y. J.; Yang, L. L. et al. AgNPs decorated Mg-doped ZnO heterostructure with dramatic SERS activity for trace detection of food contaminants. J. Mater. Chem. C 2019, 7, 8199–8208.

[42]

Yang, S.; Yao, J. C.; Quan, Y. N.; Hu, M. Y.; Su, R.; Gao, M.; Han, D. L.; Yang, J. H. Monitoring the charge-transfer process in a Nd-doped semiconductor based on photoluminescence and SERS technology. Light Sci. Appl. 2020, 9, 117.

[43]

Barbillon, G.; Noblet, T.; Humbert, C. Highly crystalline ZnO film decorated with gold nanospheres for PIERS chemical sensing. Phys. Chem. Chem. Phys. 2020, 22, 21000–21004.

[44]

Xue, X. X.; Ruan, W. D.; Yang, L. B.; Ji, W.; Xie, Y. F.; Chen, L.; Song, W.; Zhao, B.; Lombardi, J. R. Surface-enhanced Raman scattering of molecules adsorbed on Co-doped ZnO nanoparticles. J. Raman Spectrosc. 2012, 43, 61–64.

[45]

Xu, J.; He, H. X.; Jian, X. X.; Qu, K. Z.; Xu, J. W.; Li, C. W.; Gao, Z. D.; Song, Y. Y. Wireless battery-free generation of electric fields on one-dimensional asymmetric Au/ZnO nanorods for enhanced Raman sensing. Anal. Chem. 2021, 93, 9286–9295.

[46]

Wang, Y.; Zhu, L. P.; Feng, Y. J.; Wang, Z. N.; Wang, Z. L. Comprehensive pyro-phototronic effect enhanced ultraviolet detector with ZnO/Ag schottky junction. Adv. Funct. Mater. 2019, 29, 1807111.

[47]

Feng, Y. J.; Zhang, Y. L.; Wang, Y.; Wang, Z. N. Frequency response characteristics of pyroelectric effect in p−n junction UV detectors. Nano Energy 2018, 54, 429–436.

[48]

Wu, T. F.; Wang, A. J.; Zheng, L.; Wang, G. F.; Tu, Q. Y.; Lv, B. W.; Liu, Z. L.; Wu, Z. L.; Wang, Y. S. Evolution of native defects in ZnO nanorods irradiated with hydrogen ion. Sci. Rep. 2019, 9, 17393.

[49]

Fujimori, H.; Kakihana, M.; Ioku, K.; Goto, S.; Yoshimura, M. Advantage of anti-Stokes Raman scattering for high-temperature measurements. Appl. Phys. Lett. 2001, 79, 937–939.

[50]

Koleva, M. E.; Nedyalkov, N. N.; Atanasov, P. A.; Gerlach, J. W.; Hirsch, D.; Prager, A.; Rauschenbach, B.; Fukata, N.; Jevasuwan, W. Porous plasmonic nanocomposites for SERS substrates fabricated by two-step laser method. J. Alloys Compd. 2016, 665, 282–287.

[51]

Kumar, A.; Dixit, T.; Palani, I. A.; Nakamura, D.; Higashihata, M.; Singh, V. Utilization of surface plasmon resonance of Au/Pt nanoparticles for highly photosensitive ZnO nanorods network based plasmon field effect transistor. Phys. E:Low-dimens. Syst. Nanostruct. 2017, 93, 97–104.

[52]

Lombardi, J. R.; Birke, R. L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130.

[53]

Sun, H. H.; Yao, M. G.; Song, Y. P.; Zhu, L. Y.; Dong, J. J.; Liu, R.; Li, P.; Zhao, B.; Liu, B. B. Pressure-induced SERS enhancement in a MoS2/Au/R6G system by a two-step charge transfer process. Nanoscale 2019, 11, 21493–21501.

[54]

Cong, S.; Liu, X. H.; Jiang, Y. X.; Zhang, W.; Zhao, Z. G. Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions. Innovation (Camb.) 2020, 1, 100051.

[55]

Araujo, T. P.; Quiroz, J.; Barbosa, E. C. M.; Camargo, P. H. C. Understanding plasmonic catalysis with controlled nanomaterials based on catalytic and plasmonic metals. Curr. Opin. Colloid Interface Sci. 2019, 39, 110–122.

[56]

Seemala, B.; Therrien, A. J.; Lou, M. H.; Li, K.; Finzel, J. P.; Qi, J.; Nordlander, P.; Christopher, P. Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: Hot electrons or near fields? ACS Energy Lett. 2019, 4, 1803–1809.

[57]

Fuku, K.; Hayashi, R.; Takakura, S.; Kamegawa, T.; Mori, K.; Yamashita, H. The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance. Angew. Chem., Int. Ed. 2013, 52, 7446–7450.

[58]
Cao, Y.; Cheng, Y. Q.; Sun, M. T. Graphene-based SERS for sensor and catalysis. Appl. Spectrosc. Rev., in press, https://doi.org/10.1080/05704928.2021.1910286.
[59]

Yang, R.; Cheng, Y. Q.; Song, Y. J.; Belotelov, V. I.; Sun, M. T. Plasmon and plexciton driven interfacial catalytic reactions. Chem. Rec. 2021, 21, 797–819.

[60]

Li, S. W.; Miao, P.; Zhang, Y. Y.; Wu, J.; Zhang, B.; Du, Y. C.; Han, X. J.; Sun, J. M.; Xu, P. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 2021, 33, 2000086.

[61]

Zheng, L. J.; Li, F.; Song, L. N.; Li, M. L.; Wang, X. X.; Xu, J. J. Localized surface plasmon resonance enhanced electrochemical kinetics and product selectivity in aprotic Li-O2 batteries. Energy Storage Mater. 2021, 42, 618–627.

[62]

Chou, J. A.; Chung, C. L.; Ho, P. C.; Luo, C. H.; Tsai, Y. H.; Wu, C. K.; Kuo, C. W.; Hsiao, Y. S.; Yu, H. H.; Chen, P. L. Organic electrochemical transistors/SERS-active hybrid biosensors featuring gold nanoparticles immobilized on thiol-functionalized PEDOT films. Front. Chem. 2019, 7, 281.

[63]

Zhang, K.; Liu, Y.; Wang, Y. N.; Zhang, R.; Liu, J. G.; Wei, J.; Qian, H. F.; Qian, K.; Chen, R. P.; Liu, B. H. Quantitative SERS detection of dopamine in cerebrospinal fluid by dual-recognition-induced hot spot generation. ACS Appl. Mater. Interfaces 2018, 10, 15388–15394.

[64]

Phung, V. D.; Jung, W. S.; Nguyen, T. A.; Kim, J. H.; Lee, S. W. Reliable and quantitative SERS detection of dopamine levels in human blood plasma using a plasmonic Au/Ag nanocluster substrate. Nanoscale 2018, 10, 22493–22503.

[65]

Li, L.; Lu, Y.; Qian, Z. T.; Yang, Z. Y.; Yang, K.; Zong, S. F.; Wang, Z. Y.; Cui, Y. P. Ultra-sensitive surface enhanced Raman spectroscopy sensor for in-situ monitoring of dopamine release using zipper-like ortho-nanodimers. Biosens. Bioelectron. 2021, 180, 113100.

[66]

Tang, L. J.; Li, S.; Han, F.; Liu, L. Q.; Xu, L. G.; Ma, W.; Kuang, H.; Li, A. K.; Wang, L. B.; Xu, C. L. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens. Bioelectron. 2015, 71, 7–12.

Nano Research
Pages 5427-5435
Cite this article:
Du B, Tan J, Ji C, et al. Study of thermoelectric enhanced SERS and photocatalysis with ZnO-metal nanorod arrays. Nano Research, 2023, 16(4): 5427-5435. https://doi.org/10.1007/s12274-022-5253-y
Topics:

12391

Views

12

Crossref

13

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 25 August 2022
Revised: 15 October 2022
Accepted: 27 October 2022
Published: 12 November 2022
© Tsinghua University Press 2022
Return