Journal Home > Volume 16 , Issue 5

Sorbitol is a primary platform compound in the conversion of cellulose. The conversion of sorbitol to C6 hydrocarbons requires a complete cleavage of C–O bonds and meanwhile the inhibition of C–C cleavage. Here, we demonstrated an efficient selective cleavage of C–O over C–C bond on the (221) facet of supported CoGa. A selectivity of 94% to C6 hydrocarbon with conversion of 97% has been achieved. The selective C–O cleavage was demonstrated by tuning the exposed facet as (221) or (110). The supported CoGa was prepared simply by reduction of Co and Ga-containing layered double hydroxides (CoZnGaAl-LDHs), and the exposed facets of CoGa crystallites were controlled by tailoring the temperature-programmed rate in the reduction. By reducing CoZnGaAl-LDHs, CoGa (221) was exposed with a temperature-programmed rate of 5 °C/min under the induction of ZnO lattice, while CoGa (110) was exposed with a rate of 10 °C/min.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Efficient selective activation of sorbitol C–O bonds over C–C bonds on CoGa (221) generated by lattice-induction strategy

Show Author's information Ying KongYanru Zhu( )Zhe AnJian ZhangXin ShuHongyan SongQipeng YuanJing He( )
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Sorbitol is a primary platform compound in the conversion of cellulose. The conversion of sorbitol to C6 hydrocarbons requires a complete cleavage of C–O bonds and meanwhile the inhibition of C–C cleavage. Here, we demonstrated an efficient selective cleavage of C–O over C–C bond on the (221) facet of supported CoGa. A selectivity of 94% to C6 hydrocarbon with conversion of 97% has been achieved. The selective C–O cleavage was demonstrated by tuning the exposed facet as (221) or (110). The supported CoGa was prepared simply by reduction of Co and Ga-containing layered double hydroxides (CoZnGaAl-LDHs), and the exposed facets of CoGa crystallites were controlled by tailoring the temperature-programmed rate in the reduction. By reducing CoZnGaAl-LDHs, CoGa (221) was exposed with a temperature-programmed rate of 5 °C/min under the induction of ZnO lattice, while CoGa (110) was exposed with a rate of 10 °C/min.

Keywords: biomass, supported CoGa, facet exposure, preferred C–O activation, liquid hydrocarbons

References(59)

[1]

Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem., Int. Ed. 2007, 46, 7164–7183.

[2]

Chatterjee, C.; Pong, F.; Sen, A. Chemical conversion pathways for carbohydrates. Green Chem. 2015, 17, 40–71.

[3]

Pang, J. F.; Sun, J. M.; Zheng, M. Y.; Li, H. Q.; Wang, Y.; Zhang, T. Transition metal carbide catalysts for biomass conversion: A review. Appl. Catal. B: Environ. 2019, 254, 510–522.

[4]

Dutta, S. Hydro(deoxygenation) reaction network of lignocellulosic oxygenates. ChemSusChem 2020, 13, 2894–2915.

[5]

Mika, L. T.; Cséfalvay, E.; Németh, Á. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability. Chem. Rev. 2018, 118, 505–613.

[6]

Rey-Raap, N.; Ribeiro, L. S.; De Melo Órfão, J. J.; Figueiredo, J. L.; Pereira, M. F. R. Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials. Appl. Catal. B: Environ. 2019, 256, 117826.

[7]

Xu, S. G.; Wu, Y.; Li, J. M.; He, T.; Xiao, Y.; Zhou, C. Q.; Hu, C. W. Directing the simultaneous conversion of hemicellulose and cellulose in raw biomass to lactic acid. ACS Sustainable Chem. Eng. 2020, 8, 4244–4255.

[8]

Carlier, S.; Gripekoven, J.; Philippo, M.; Hermans, S. Ru on N-doped carbon supports for the direct hydrogenation of cellobiose into sorbitol. Appl. Catal. B: Environ. 2021, 282, 119515.

[9]

Lu, X. W.; Guo, C. M.; Zhang, M. Y.; Leng, L. P.; Horton, J. H.; Wu, W.; Li, Z. J. Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin. Nano Res. 2021, 14, 4347–4355.

[10]

Wang, D. D.; Al-Mamun, M.; Gong, W. B.; Lv, Y.; Chen, C.; Lin, Y.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Converting Co2+-impregnated g-C3N4 into N-doped CNTs-confined Co nanoparticles for efficient hydrogenation rearrangement reactions of furanic aldehydes. Nano Res. 2021, 14, 2846–2852.

[11]

Hu, L.; Lin, L.; Liu, S. J. Chemoselective hydrogenation of biomass-derived 5-hydroxymethylfurfural into the liquid biofuel 2, 5-dimethylfuran. Ind. Eng. Chem. Res. 2014, 53, 9969–9978.

[12]

Tirsoaga, A.; El Fergani, M.; Nuns, N.; Simon, P.; Granger, P.; Parvulescu, V. I.; Coman, S. M. Multifunctional nanocomposites with non-precious metals and magnetic core for 5-HMF oxidation to FDCA. Appl. Catal. B: Environ. 2020, 278, 119309.

[13]

Sun, D. L.; Yamada, Y.; Sato, S.; Ueda, W. Glycerol as a potential renewable raw material for acrylic acid production. Green Chem. 2017, 19, 3186–3213.

[14]

Zhu, Y. R.; Zhao, W. F.; Zhang, J.; An, Z.; Ma, X. D.; Zhang, Z. J.; Jiang, Y. T.; Zheng, L. R.; Shu, X.; Song, H. Y. et al. Selective activation of C–OH, C–O–C, or C=C in furfuryl alcohol by engineered Pt sites supported on layered double oxides. ACS Catal. 2020, 10, 8032–8041.

[15]

Liu, Y. T.; Wang, R.; Qi, H. F.; Liu, X. Y.; Li, G. Y.; Wang, A. Q.; Wang, X. D.; Cong, Y.; Zhang, T.; Li, N. Synthesis of bio-based methylcyclopentadiene via direct hydrodeoxygenation of 3-methylcyclopent-2-enone derived from cellulose. Nat. Commun. 2021, 12, 46.

[16]

Chen, X.; Zheng, Y. N.; Zhang, Q.; Qiu, S. B.; Meng, Q. W.; Wu, X. P.; Wang, T. J. Controlling transformation of sorbitol into 1-hexanol over Ru-MoOx/Mo2C catalyst via aqueous-phase hydrodeoxygenation. ACS Sustainable Chem. Eng. 2021, 9, 9033–9044.

[17]

Deneyer, A.; Renders, T.; Van Aelst, J.; Van Den Bosch, S.; Gabriëls, D.; Sels, B. F. Alkane production from biomass: Chemo-, bio- and integrated catalytic approaches. Curr. Opin. Chem. Biol. 2015, 29, 40–48.

[18]

Xi, J. X.; Xia, Q. N.; Shao, Y.; Ding, D. Q.; Yang, P. P.; Liu, X. H.; Lu, G. Z.; Wang, Y. Q. Production of hexane from sorbitol in aqueous medium over Pt/NbOPO4 catalyst. Appl. Catal. B: Environ. 2016, 181, 699–706.

[19]

Huber, G. W.; Cortright, R. D.; Dumesic, J. A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew. Chem., Int. Ed. 2004, 116, 1575–1577.

[20]

Jiang, T.; Wang, T. J.; Ma, L. L.; Li, Y. P.; Zhang, Q.; Zhang, X. H. Investigation on the xylitol aqueous-phase reforming performance for pentane production over Pt/HZSM-5 and Ni/HZSM-5 catalysts. Appl. Energy 2012, 90, 51–57.

[21]

Chen, K. Y.; Tamura, M.; Yuan, Z. L.; Nakagawa, Y.; Tomishige, K. One-pot conversion of sugar and sugar polyols to n-alkanes without C–C dissociation over the Ir-ReOx/SiO2 catalyst combined with H-ZSM-5. ChemSusChem 2013, 6, 613–621.

[22]

Liu, S. B.; Tamura, M.; Nakagawa, Y.; Tomishige, K. One-pot conversion of cellulose into n-hexane over the Ir-ReOx/SiO2 catalyst combined with HZSM-5. ACS Sustainable Chem. Eng. 2014, 2, 1819–1827.

[23]

Zhang, Q.; Jiang, T.; Li, B.; Wang, T. J.; Zhang, X. H.; Zhang, Q.; Ma, L. L. Highly selective sorbitol hydrogenolysis to liquid alkanes over Ni/HZSM-5 catalysts modified with pure silica MCM-41. ChemCatChem 2012, 4, 1084–1087.

[24]

Yang, X. K.; Jenkins, R. W.; Leal, J. H.; Moore, C. M.; Judge, E. J.; Semelsberger, T. A.; Sutton, A. D. Hydrodeoxygenation (HDO) of biomass derived ketones using supported transition metals in a continuous reactor. ACS Sustainable Chem. Eng. 2019, 7, 14521–14530.

[25]

Zhang, Q.; Wang, T. J.; Xu, Y.; Zhang, Q.; Ma, L. L. Production of liquid alkanes by controlling reactivity of sorbitol hydrogenation with a Ni/HZSM-5 catalyst in water. Energy Convers. Manage. 2014, 77, 262–268.

[26]

Vilcocq, L.; Koerin, R.; Cabiac, A.; Especel, C.; Lacombe, S.; Duprez, D. New bifunctional catalytic systems for sorbitol transformation into biofuels. Appl. Catal. B: Environ. 2014, 148–149, 499–508.

[27]

Vilcocq, L.; Cabiac, A.; Especel, C.; Lacombe, S.; Duprez, D. Hydrocarbon fuel synthesis from sorbitol over bifunctional catalysts: Association of tungstated titania with platinum, palladium or iridium. Catal. Today 2015, 242, 91–100.

[28]

Xing, S. Y.; Liu, Y.; Liu, X. C.; Li, M.; Fu, J. Y.; Liu, P. F.; Lv, P. M.; Wang, Z. M. Solvent-free hydrodeoxygenation of bio-lipids into renewable alkanes over NiW bimetallic catalyst under mild conditions. Appl. Catal. B: Environ. 2020, 269, 118718.

[29]

De Beeck, B. O.; Dusselier, M.; Geboers, J.; Holsbeek, J.; Morré, E.; Oswald, S.; Giebeler, L.; Sels, B. F. Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy Environ. Sci. 2015, 8, 230–240.

[30]

Godina, L. I.; Kirilin, A. V.; Tokarev, A. V.; Murzin, D. Y. Aqueous phase reforming of industrially relevant sugar alcohols with different chiralities. ACS Catal. 2015, 5, 2989–3005.

[31]

Jin, Z.; Yi, X. F.; Wang, L.; Xu, S. D.; Wang, C. T.; Wu, Q. M.; Wang, L. X.; Zheng, A. M.; Xiao, F. S. Metal–acid interfaces enveloped in zeolite crystals for cascade biomass hydrodeoxygenation. Appl. Catal. B: Environ. 2019, 254, 560–568.

[32]

Samikannu, A.; Konwar, L. J.; Rajendran, K.; Lee, C. C.; Shchukarev, A.; Virtanen, P.; Mikkola, J. P. Highly dispersed NbOPO4/SBA-15 as a versatile acid catalyst upon production of renewable jet-fuel from bio-based furanics via hydroxyalkylation-alkylation (HAA) and hydrodeoxygenation (HDO) reactions. Appl. Catal. B: Environ. 2020, 272, 118987.

[33]

Yan, P. H.; Mensah, J.; Drewery, M.; Kennedy, E.; Maschmeyer, T.; Stockenhuber, M. Role of metal support during Ru-catalysed hydrodeoxygenation of biocrude oil. Appl. Catal. B: Environ. 2021, 281, 119470.

[34]

Kunkes, E. L.; Simonetti, D. A.; West, R. M.; Serrano-Ruiz, J. C.; Gärtner, C. A.; Dumesic, J. A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 2008, 322, 417–421.

[35]

Luo, J.; Arroyo-Ramírez, L.; Gorte, R. J.; Tzoulaki, D.; Vlachos, D. G. Hydrodeoxygenation of HMF over Pt/C in a continuous flow reactor. AIChE J. 2015, 61, 590–597.

[36]

Sun, F.; Chen, L. G.; Weng, Y. J.; Wang, T. J.; Qiu, S. B.; Li, Q. X.; Wang, C. G.; Zhang, Q.; Ma, L. L. Transformation of biomass polyol into hydrocarbon fuels in aqueous medium over Ru-Mo/CNT catalyst. Catal. Commun. 2017, 99, 30–33.

[37]

Kim, Y. T.; Dumesic, J. A.; Huber, G. W. Aqueous-phase hydrodeoxygenation of sorbitol: A comparative study of Pt/Zr phosphate and Pt-ReOx/C. J. Catal. 2013, 304, 72–85.

[38]

Fu, T. J.; Li, Z. H. Review of recent development in Co-based catalysts supported on carbon materials for Fischer–Tropsch synthesis. Chem. Eng. Sci. 2015, 135, 3–20.

[39]

Park, J. C.; Kang, S. W.; Kim, J. C.; Kwon, J. I.; Jang, S.; Rhim, G. B.; Kim, M.; Chun, D. H.; Lee, H. T.; Jung, H. et al. Synthesis of Co/SiO2 hybrid nanocatalyst via twisted Co3Si2O5(OH)4 nanosheets for high-temperature Fischer–Tropsch reaction. Nano Res. 2017, 10, 1044–1055.

[40]

Yang, H. Y.; Zhang, C.; Gao, P.; Wang, H.; Li, X. P.; Zhong, L. S.; Wei, W.; Sun, Y. H. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal. Sci. Technol. 2017, 7, 4580–4598.

[41]

Gong, Y. N.; Shao, B. Z.; Mei, J. H.; Yang, W.; Zhong, D. C.; Lu, T. B. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Res. 2022, 15, 551–556.

[42]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[43]

Li, Z. J.; Chen, Y. Y.; Lu, X. W.; Li, H. H.; Leng, L. P.; Zhang, T. L.; Horton, J. H. Synthesis of cobalt single atom catalyst by a solid-state transformation strategy for direct C–C cross-coupling of primary and secondary alcohols. Nano Res. 2022, 15, 4023–4031.

[44]

Xu, C. Y.; Wu, H. H.; Zhang, Z. R.; Zheng, B. X.; Zhai, J. X.; Zhang, K. L.; Wu, W.; Mei, X. L.; He, M. Y.; Han, B. X. Highly effective and chemoselective hydrodeoxygenation of aromatic alcohols. Chem. Sci. 2022, 13, 1629–1635.

[45]

Luo, J.; Arroyo-Ramírez, L.; Wei, J. F.; Yun, H.; Murray, C. B.; Gorte, R. J. Comparison of HMF hydrodeoxygenation over different metal catalysts in a continuous flow reactor. Appl. Catal. A: Gen. 2015, 508, 86–93.

[46]

Eagan, N. M.; Chada, J. P.; Wittrig, A. M.; Buchanan, J. S.; Dumesic, J. A.; Huber, G. W. Hydrodeoxygenation of sorbitol to monofunctional fuel precursors over Co/TiO2. Joule 2017, 1, 178–199.

[47]

Luo, J.; Yun, H.; Mironenko, A. V.; Goulas, K.; Lee, J. D.; Monai, M.; Wang, C.; Vorotnikov, V.; Murray, C. B.; Vlachos, D. G. et al. Mechanisms for high selectivity in the hydrodeoxygenation of 5-hydroxymethylfurfural over PtCo Nanocrystals. ACS Catal. 2016, 6, 4095–4104.

[48]

Jiang, Z. F.; Wan, W. M.; Lin, Z. X.; Xie, J. M.; Chen, J. G. Understanding the role of M/Pt(111) (M = Fe, Co, Ni, Cu) bimetallic surfaces for selective hydrodeoxygenation of furfural. ACS Catal. 2017, 7, 5758–5765.

[49]

Zhu, Y. R.; Guo, H.; Zhang, J.; An, Z.; Shu, X.; Song, H. Y.; Xiang, X.; He, J. CoGa particles stabilized by the combination of alloyed Ga0 and lattice GaIII Species. Ind. Eng. Chem. Res. 2020, 59, 8649–8660.

[50]

Zhang, Q.; Wang, T. J.; Li, B.; Jiang, T.; Ma, L. L.; Zhang, X. H.; Liu, Q. Y. Aqueous phase reforming of sorbitol to bio-gasoline over Ni/HZSM-5 catalysts. Appl. Energy 2012, 97, 509–513.

[51]

Li, M. S.; Van Veen, A. C. Coupled reforming of methane to syngas (2H2-CO) over Mg-Al oxide supported Ni catalyst. Appl. Catal. A: Gen. 2018, 550, 176–183.

[52]

Sharma, U.; Tyagi, B.; Jasra, R. V. Synthesis and characterization of Mg-Al-CO3 layered double hydroxide for CO2 adsorption. Ind. Eng. Chem. Res. 2008, 47, 9588–9595.

[53]

Onuma, T.; Fujioka, S.; Yamaguchi, T.; Itoh, Y.; Higashiwaki, M.; Sasaki, K.; Masui, T.; Honda, T. Polarized Raman spectra in β-Ga2O3 single crystals. J. Cryst. Growth 2014, 401, 330–333.

[54]

Farhadi, S.; Pourzare, K. Simple and low-temperature preparation of Co3O4 sphere-like nanoparticles via solid-state thermolysis of the [Co(NH3)6](NO3)3 complex. Mater. Res. Bull. 2012, 47, 1550–1556.

[55]

Yee, A.; Morrison, S. J.; Idriss, H. A study of the reactions of ethanol on CeO2 and Pd/CeO2 by steady state reactions, temperature programmed desorption, and in situ FT-IR. J. Catal. 1999, 186, 279–295.

[56]

Ochoa, J. V.; Trevisanut, C.; Millet, J. M. M.; Busca, G.; Cavani, F. In situ DRIFTS-MS study of the anaerobic oxidation of ethanol over spinel mixed oxides. J. Phys. Chem. C 2013, 117, 23908–23918.

[57]

Jiang, Q.; Lu, H. M. Size dependent interface energy and its applications. Surf. Sci. Rep. 2008, 63, 427–464.

[58]

Zhao, B. R.; Liu, P.; Li, S.; Shi, H. F.; Jia, X. Z.; Wang, Q. Q.; Yang, F.; Song, Z. W.; Guo, C.; Hu, J. et al. Bimetallic Ni-Co nanoparticles on SiO2 as robust catalyst for CO methanation: Effect of homogeneity of Ni-Co alloy. Appl. Catal. B: Environ. 2020, 278, 119307.

[59]

Cossu, G.; Ingo, G. M.; Mattogno, G.; Padeletti, G.; Proietti, G. M. XPS investigation on vacuum thermal desorption of UV/ozone treated GaAs (100) surfaces. Appl. Surf. Sci. 1992, 56–58, 81–88.

Video
12274_2022_5249_MOESM2_ESM.mp4
File
12274_2022_5249_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 June 2022
Revised: 19 October 2022
Accepted: 26 October 2022
Published: 17 December 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

Financial supports from the National Natural Science Foundation of China (No. 22108009) and the National Key R&D Program of China (No. 2017YFA0206804) are gratefully acknowledged. We also thank Prof. J. L. and Dr. W. X. in Tianjin University of Technology for their help in the in situ HRTEM measurements and discussion.

Return