Journal Home > Volume 16 , Issue 4

FeNi-based phosphides are one of the most hopeful electrocatalysts, whereas the significant challenge is to achieve prominent bifunctional catalytic activity with low voltage for water splitting. The morphology and electronic structure of FeNi-based phosphides can intensively dominate effective catalysis, therefore their simultaneous regulating is extremely meaningful. Herein, a robust bifunctional catalyst of Zn-implanted FeNi-P nanosheet arrays (Zn-FeNi-P) vertically well-aligned on Ni foam is successfully fabricated by Zn implanting strategy. The Zn fulfills the role of electronic donor due to its low electronegativity to enhance the electronic density of FeNi-P for optimized water dissociation kinetics. Meanwhile, the implantation of Zn into FeNi-P can effectively regulate morphology of the catalyst from thick and irregular nanosheets to ultrathin lamellar structure, which generates enriched catalytic active sites, leading to accelerating electron/mass transport ability. Accordingly, the designed Zn-FeNi-P catalyst manifests remarkable hydrogen evolution reaction (HER) activity with low overpotentials of 55 and 225 mV at 10 and 200 mA·cm−2, which is superior to the FeNi-P (82 mV@10 mA·cm−2 and 301 mV@200 mA·cm−2), and even out-performing the Pt/C catalyst at a high current density > 200 mA·cm−2. Moreover, the oxygen evolution reaction (OER) activity of Zn-FeNi-P also has dramatically improved (207 mV@10 mA·cm−2) comparable to FeNi-P (221 mV@10 mA·cm−2) and RuO2 (239 mV@10 mA·cm−2). Noticeably, an electrolyzer based on Zn-FeNi-P electrodes requires a low cell voltage of 1.47 V to achieve 10 mA·cm−2, far beyond the catalytic activities of FeNi-P||FeNi-P (1.51 V@10 mA·cm−2) and the benchmark RuO2||Pt/C couples (1.56 V@10 mA·cm−2). This Zn-implanting strategy paves a new perspective for the development of admirable bifunctional catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synchronous regulation of morphology and electronic structure of FeNi-P nanosheet arrays by Zn implantation for robust overall water splitting

Show Author's information Li Sun1,2,3Ying Dang3Aiping Wu1Chungui Tian1( )Dongxu Wang1Haijing Yan1Yachen Gao2( )Honggang Fu1( )
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
Key Laboratory of Electronics Engineering, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China

Abstract

FeNi-based phosphides are one of the most hopeful electrocatalysts, whereas the significant challenge is to achieve prominent bifunctional catalytic activity with low voltage for water splitting. The morphology and electronic structure of FeNi-based phosphides can intensively dominate effective catalysis, therefore their simultaneous regulating is extremely meaningful. Herein, a robust bifunctional catalyst of Zn-implanted FeNi-P nanosheet arrays (Zn-FeNi-P) vertically well-aligned on Ni foam is successfully fabricated by Zn implanting strategy. The Zn fulfills the role of electronic donor due to its low electronegativity to enhance the electronic density of FeNi-P for optimized water dissociation kinetics. Meanwhile, the implantation of Zn into FeNi-P can effectively regulate morphology of the catalyst from thick and irregular nanosheets to ultrathin lamellar structure, which generates enriched catalytic active sites, leading to accelerating electron/mass transport ability. Accordingly, the designed Zn-FeNi-P catalyst manifests remarkable hydrogen evolution reaction (HER) activity with low overpotentials of 55 and 225 mV at 10 and 200 mA·cm−2, which is superior to the FeNi-P (82 mV@10 mA·cm−2 and 301 mV@200 mA·cm−2), and even out-performing the Pt/C catalyst at a high current density > 200 mA·cm−2. Moreover, the oxygen evolution reaction (OER) activity of Zn-FeNi-P also has dramatically improved (207 mV@10 mA·cm−2) comparable to FeNi-P (221 mV@10 mA·cm−2) and RuO2 (239 mV@10 mA·cm−2). Noticeably, an electrolyzer based on Zn-FeNi-P electrodes requires a low cell voltage of 1.47 V to achieve 10 mA·cm−2, far beyond the catalytic activities of FeNi-P||FeNi-P (1.51 V@10 mA·cm−2) and the benchmark RuO2||Pt/C couples (1.56 V@10 mA·cm−2). This Zn-implanting strategy paves a new perspective for the development of admirable bifunctional catalysts.

Keywords: overall water splitting, bifunctional catalyst, Zn-implanted FeNi-P nanosheet arrays, regulating morphology and electron density

References(63)

[1]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[2]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[3]

Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

[4]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[5]

Liu, Q.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Yang, Q.; Dong, K.; Fang, X. D.; Zheng, D. D.; Alshehri, A. A.; Sun, X. P. N, O-doped carbon foam as metal-free electrocatalyst for efficient hydrogen production from seawater. Nano Res. 2022, 15, 8922–8927.

[6]

Zhang, S.; Xu, L. S.; Wu, J.; Yang, Y.; Zhang, C. X.; Tao, H. Y.; Lin, J. Q.; Huang, L. C.; Fang, W. C.; Shi, K. Y. et al. Femtosecond laser micro-nano processing for boosting bubble releasing of gas evolution reactions. Nano Res. 2022, 15, 1672–1679.

[7]

Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S. H.; Shao, Z. P.; Lim, J. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 2020, 49, 9154–9196.

[8]

Yang, Q.; Liu, H. X.; Yuan, P.; Jia, Y.; Zhuang, L. Z.; Zhang, H. W.; Yan, X. C.; Liu, G. H.; Zhao, Y. F.; Liu, J. Z. et al. Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J. Am. Chem. Soc. 2022, 144, 2171–2178.

[9]

Yu, J.; He, Q. J.; Yang, G. M.; Zhou, W.; Shao, Z. P.; Ni, M. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 2019, 9, 9973–10011.

[10]

Cao, X. J.; Huo, J. J.; Li, L.; Qu, J. P.; Zhao, Y. F.; Chen, W. H.; Liu, C. T.; Liu, H.; Wang, G X. Recent advances in engineered Ru-based electrocatalysts for the hydrogen/oxygen conversion reactions. Adv. Energy Mater. 2022, 12, 2202119.

[11]

Zhang, L. J.; Cai, W. W.; Bao, N. Z. Top-level design strategy to construct an advanced high-entropy Co-Cu-Fe-Mo (oxy)hydroxide electrocatalyst for the oxygen evolution reaction. Adv. Mater. 2021, 33, 2100745.

[12]

Wang, M. H.; Lou, Z. X.; Wu, X. F.; Liu, Y. W.; Zhao, J. Y.; Sun, K. Z.; Li, W. X.; Chen, J. C.; Yuan, H. Y.; Zhu, M. H. et al. Operando high-valence Cr-modified NiFe hydroxides for water oxidation. Small 2022, 18, 2200303.

[13]

Qi, L.; Zheng, Z. Q.; Xing, C. Y.; Wang, Z. Q.; Luan, X. Y.; Xue, Y. R.; He, F.; Li, Y. L. 1D nanowire heterojunction electrocatalysts of MnCo2O4/GDY for efficient overall water splitting. Adv. Funct. Mater. 2022, 32, 2107179.

[14]

Hu, F.; Yu, D. S.; Ye, M.; Wang, H.; Hao, Y. N.; Wang, L. Q.; Li, L. L.; Han, X. P.; Peng, S. J. Lattice-matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe–O–Cu bridges. Adv. Energy Mater. 2022, 12, 2200067.

[15]

Zhang, L. C.; Wang, J. Q.; Liu, P. Y.; Liang, J.; Luo, Y. S.; Cui, G. W.; Tang, B.; Liu, Q.; Yan, X. D.; Hao, H. G. et al. Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 2022, 15, 6084–9090.

[16]

Qiu, Y. L.; Zhou, J.; Liu, Z. Q.; Zhang, X. Y.; Han, H.; Ji, X. Q.; Liu, J. Q. Solar-driven photoelectron injection effect on MgCo2O4@WO3 core–shell heterostructure for efficient overall water splitting. Appl. Surf. Sci. 2022, 578, 152049.

[17]

Wu, A. P.; Xie, Y.; Ma, H.; Tian, C. G.; Gu, Y.; Yan, H. J.; Zhang, X. M.; Yang, G. Y.; Fu, H. G. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy. 2018, 44, 353–363.

[18]

Zhou, P.; Lv, X. S.; Xing, D. N.; Ma, F. H.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Dai, Y.; Huang, B. B. High-efficient electrocatalytic overall water splitting over vanadium doped hexagonal Ni0.2Mo0.8N. Appl. Catal. B: Environ. 2020, 263, 118330.

[19]

Dong, X.; Jiao, Y. Q.; Yang, G. C.; Yan, H. J.; Wu, A. P.; Guo, D. Z.; Wang, Y.; Tian, C. G.; Fu, H. G. One-dimensional Co9S8-V3S4 heterojunctions as bifunctional electrocatalysts for highly efficient overall water splitting. Sci. China Mater. 2021, 64, 1396–1407.

[20]

Wang, G. J.; Sun, Y. Z.; Zhao, Y. D.; Zhang, Y.; Li, X. H.; Fan, L. Z.; Li, Y. C. Phosphorus-induced electronic structure reformation of hollow NiCo2Se4 nanoneedle arrays enabling highly efficient and durable hydrogen evolution in all-pH media. Nano Res. 2022, 15, 8771–8782.

[21]

Qiu, Y. L.; Liu, Z. Q.; Zhang, X. Y.; Sun, A. W.; Ji, X. Q.; Liu, J. Q. Controllable atom implantation for achieving Coulomb-force unbalance toward lattice distortion and vacancy construction for accelerated water splitting. J. Colloid Interface Sci. 2022, 610, 194–201.

[22]

Song, H. Q.; Yu, J. K.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting. Adv. Energy Mater. 2022, 12, 2102573.

[23]

Jiao, Y. Q.; Yan, H. J.; Wang, R. H.; Wang, X. W.; Zhang, X. M.; Wu, A. P.; Tian, C. G.; Jiang, B. J.; Fu, H. G. Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 49596–49606.

[24]

Wu, A. P.; Gu, Y.; Yang, B. R.; Wu, H.; Yan, H. J.; Jiao, Y. Q.; Wang, D. X.; Tian, C. G.; Fu, H. G. Porous cobalt/tungsten nitride polyhedra as efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2020, 8, 22938–22946.

[25]

Han, H.; Qiu, Y. L.; Zhang, H.; Bi, T. Y.; Yang, Q.; Liu, M. Y.; Zhou, J.; Ji, X. Q. Lattice-disorder layer generation from liquid processing at room temperature with boosted nanointerface exposure toward water splitting. Sustainable Energy Fuels 2022, 6, 3008–3013.

[26]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.

[27]

Hei, J. C.; Xu, G. C.; Wei, B.; Zhang, L.; Ding, H.; Liu, D. J. NiFeP nanosheets on N-doped carbon sponge as a hierarchically structured bifunctional electrocatalyst for efficient overall water splitting. Appl. Surf. Sci. 2021, 549, 149297.

[28]

Li, A.; Zhang, L.; Wang, F. Z.; Zhang, L.; Li, L.; Chen, H. M.; Wei, Z. D. Rational design of porous Ni-Co-Fe ternary metal phosphides nanobricks as bifunctional electrocatalysts for efficient overall water splitting. Appl. Catal. B: Environ. 2022, 310, 121353.

[29]

Sun, S. F.; Zhou, X.; Cong, B. W.; Hong, W. Z.; Chen, G. Tailoring the d-band centers endows (NixFe1−x)2P nanosheets with efficient oxygen evolution catalysis. ACS Catal. 2020, 10, 9086–9097.

[30]

Duan, Z. X.; Zhao, D. P.; Sun, Y. C.; Tan, X. J.; Wu, X. Bifunctional Fe-doped CoP@Ni2P heteroarchitectures for high-efficient water electrocatalysis. Nano Res. 2022, 15, 8865–8871.

[31]

Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411–419.

[32]

Wen, S. T.; Chen, G. L.; Chen, W.; Li, M. C.; Ouyang, B.; Wang, X. Q.; Chen, D. L.; Gong, T.; Zhang, X. H.; Huang, J. et al. Nb-doped layered FeNi phosphide nanosheets for highly efficient overall water splitting under high current densities. J. Mater. Chem. A 2021, 9, 9918–9926.

[33]

Wu, Y. Q.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C. H.; Liu, M.; Lu, X. H. Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. 2019, 31, 1900178.

[34]

Ye, C.; Zhang, L. C.; Yue, L. C.; Deng, B.; Cao, Y.; Liu, Q.; Luo, Y. L.; Lu, S. Y.; Zheng, B. Z.; Sun, X. P. A NiCo LDH nanosheet array on graphite felt: An efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorg. Chem. Front. 2021, 8, 3162–3166.

[35]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

[36]

Li, R. Q.; Wang, B. L.; Gao, T.; Zhang, R.; Xu, C. Y.; Jiang, X. F.; Zeng, J. J.; Bando, Y.; Hu, P. F.; Li, Y. L. et al. Monolithic electrode integrated of ultrathin NiFeP on 3D strutted graphene for bifunctionally efficient overall water splitting. Nano Energy 2019, 58, 870–876.

[37]

Zhao, T. W.; Shen, X. J.; Wang, Y.; Hocking, R. K.; Li, Y. B.; Rong, C. L.; Dastafkan, K.; Su, Z.; Zhao, C. In situ reconstruction of V-doped Ni2P pre-catalysts with tunable electronic structures for water oxidation. Adv. Funct. Mater. 2021, 31, 2100614.

[38]

Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 2017, 7, 1700020.

[39]

Wang, X. Y.; Xie, Y.; Zhou, W.; Wang, X. W.; Cai, Z. C.; Xing, Z. P.; Li, M. X.; Pan, K. The self-supported Zn-doped CoNiP microsphere/thorn hierarchical structures as efficient bifunctional catalysts for water splitting. Electrochim. Acta 2020, 339, 135933.

[40]

Chen, B.; Kim, D.; Zhang, Z.; Lee, M.; Yong, K. MOF-derived NiCoZnP nanoclusters anchored on hierarchical N-doped carbon nanosheets array as bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2021, 422, 130533.

[41]

Cai, Z. C.; Wu, A. P.; Yan, H. J.; Tian, C. G.; Guo, D. Z.; Fu, H. G. Zn-doped porous CoNiP nanosheet arrays as efficient and stable bifunctional electrocatalysts for overall water splitting. Energy Technol. 2020, 8, 1901079.

[42]

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

[43]

Qu, M. J.; Jiang, Y. M.; Yang, M.; Liu, S.; Guo, Q. F.; Shen, W.; Li, M.; He, R. X. Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting. Appl. Catal. B: Environ. 2020, 263, 118324.

[44]

Qian, M. M.; Cui, S. S.; Jiang, D. C.; Zhang, L.; Du, P. W. Highly efficient and stable water-oxidation electrocatalysis with a very low overpotential using FeNiP substitutional-solid-solution nanoplate arrays. Adv. Mater. 2017, 29, 1704075.

[45]

Lin, Y.; Zhang, M. L.; Zhao, L. X.; Wang, L. M.; Cao, D. L.; Gong, Y. Q. Ru doped bimetallic phosphide derived from 2D metal organic framework as active and robust electrocatalyst for water splitting. Appl. Surf. Sci. 2021, 536, 147952.

[46]

Du, X. C.; Huang, J. W.; Zhang, J. J.; Yan, Y. C.; Wu, C. Y.; Hu, Y.; Yan, C. Y.; Lei, T. Y.; Chen, W.; Fan, C. et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 4484–4502.

[47]

Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

[48]

Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.

[49]

Ma, F. X.; Xu, C. Y.; Lyu, F. C.; Song, B.; Sun, S. C.; Li, Y. Y.; Lu, J.; Zhen, L. Construction of FeP hollow nanoparticles densely encapsulated in carbon nanosheet frameworks for efficient and durable electrocatalytic hydrogen production. Adv. Sci. 2019, 6, 1801490.

[50]

Cai, Z. C.; Wu, A. P.; Yan, H. J.; Xiao, Y. L.; Chen, C. F.; Tian, C. G.; Wang, L.; Wang, R. H.; Fu, H. G. Hierarchical whisker-on-sheet NiCoP with adjustable surface structure for efficient hydrogen evolution reaction. Nanoscale 2018, 10, 7619–7629.

[51]

Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

[52]

Sun, L.; Xie, Z. B.; Wu, A. P.; Tian, C. G.; Wang, D. X.; Gu, Y.; Gao, Y. C.; Fu, H. G. Hollow CoP spheres assembled from porous nanosheets as high-rate and ultra-stable electrodes for advanced supercapacitors. J. Mater. Chem. A 2021, 9, 26226–26235.

[53]

Lin, T. C.; Seshadri, G.; Kelber, J. A. A consistent method for quantitative XPS peak analysis of thin oxide films on clean polycrystalline iron surfaces. Appl. Surf. Sci. 1997, 119, 83–92.

[54]

He, W. J.; Liu, H.; Cheng, J. N.; Mao, J.; Chen, C.; Hao, Q. Y.; Zhao, J. L.; Liu, C. C.; Li, Y.; Liang, L. M. Designing Zn-doped nickel sulfide catalysts with an optimized electronic structure for enhanced hydrogen evolution reaction. Nanoscale 2021, 13, 10127–10132.

[55]

Lee, Y. J.; Park, S. K. Metal-organic framework-derived hollow CoSx nanoarray coupled with NiFe layered double hydroxides as efficient bifunctional electrocatalyst for overall water splitting. Small 2022, 18, 2200586.

[56]

Feng, H. P.; Tang, L.; Zeng, G. M.; Yu, J. F.; Deng, Y. C.; Zhou, Y. Y.; Wang, J. J.; Feng, C. Y.; Luo, T.; Shao, B. B. Electron density modulation of Fe1−xCoxP nanosheet arrays by iron incorporation for highly efficient water splitting. Nano Energy 2020, 67, 104174.

[57]

Ding, L.; Li, K.; Xie, Z. Q.; Yang, G. Q.; Yu, S. L.; Wang, W. T.; Yu, H. R.; Baxter, J.; Meyer, H. M.; Cullen, D. A. et al. Constructing ultrathin W-doped NiFe nanosheets via facile electrosynthesis as bifunctional electrocatalysts for efficient water splitting. ACS Appl. Mater. Interfaces 2021, 13, 20070–20080.

[58]

Geng, B.; Yan, F.; Zhang, X.; He, Y. Q.; Zhu, C. L.; Chou, S. L.; Zhang, X. L.; Chen, Y. J. Conductive CuCo-based bimetal organic framework for efficient hydrogen evolution. Adv. Mater. 2021, 33, 2106781.

[59]

Yan, H. J.; Xie, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 2019, 31, 1901174.

[60]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[61]

Liu, B.; Zhao, Y. F.; Peng, H. Q.; Zhang, Z. Y.; Sit, C. K.; Yuen, M. F.; Zhang, T. R.; Lee, C. S.; Zhang, W. J. Nickel-cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: An all-pH highly efficient integrated electrocatalyst for hydrogen evolution. Adv. Mater. 2017, 29, 1606521.

[62]

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

[63]

Ryu, J.; Jung, N.; Jang, J. H.; Kim, H. J.; Yoo, S. J. In situ transformation of hydrogen-evolving CoP nanoparticles: Toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units. ACS Catal. 2015, 5, 4066–4074.

Video
12274_2022_5245_MOESM2_ESM.mp4
File
12274_2022_5245_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 September 2022
Revised: 21 October 2022
Accepted: 25 October 2022
Published: 15 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We gratefully acknowledge the support of this research by the National Key Research and Development (R&D) Program of China (No. 2018YFE0201704), the National Natural Science Foundation of China (Nos. 91961111 and 21901064), the Natural Science Foundation of Heilongjiang Province (No. ZD2021B003), Postdo ctoral Science Foundation of Heilongjiang Province (No. LBH-Z18231), the Fundamental Research Project for Universities in Heilongjiang Province (No. YSTSXK 135409211), and University Nursing Program for YoungScholars with Creative Talents in Heilongjiang Province (No. UNPYSCT20200 04).

Return