Journal Home > Volume 16 , Issue 9

Using stretchable nanogenerators to obtain disordered mechanical energy from the environment is an ideal way to realize wearable power supply equipment and self-power electronic devices, and alleviate the energy crisis. It is of great significance to integrate the stretchability into the nanogenerator, which can fit the complex shape of the target object better and is well suitable for wearable electronics. When applied to the human body, it can directly harvest human body mechanical energy to power wearable electronic devices and get rid of the trouble of charging. This paper systematically reviewed nanogenerators in stretchability, focusing on stretchable triboelectric nanogenerators, stretchable piezoelectric nanogenerators, and stretchable hybrid nanogenerators. Their physical mechanism, material selection, structure design, and output performance are discussed in detail. It is concluded that the fabrication methods of various devices can be broadly categorized into the two most important device types, namely fiber-like and planar. A detailed analysis of representative work and the latest progress in the past decade is performed. It is most important that excellent stretchability and high-power output are the key point to realize application value of stretchable nanogenerators. In addition, we discuss opportunities and challenges, as well as future development direction of stretchable nanogenerators.


menu
Abstract
Full text
Outline
About this article

Stretchable nanogenerators for scavenging mechanical energy

Show Author's information Chong Guo1,3Lan Xu1,3Yuan Su2Hongwei Li2Mei Zhang2( )Ya Yang1,3,4( )
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China

Abstract

Using stretchable nanogenerators to obtain disordered mechanical energy from the environment is an ideal way to realize wearable power supply equipment and self-power electronic devices, and alleviate the energy crisis. It is of great significance to integrate the stretchability into the nanogenerator, which can fit the complex shape of the target object better and is well suitable for wearable electronics. When applied to the human body, it can directly harvest human body mechanical energy to power wearable electronic devices and get rid of the trouble of charging. This paper systematically reviewed nanogenerators in stretchability, focusing on stretchable triboelectric nanogenerators, stretchable piezoelectric nanogenerators, and stretchable hybrid nanogenerators. Their physical mechanism, material selection, structure design, and output performance are discussed in detail. It is concluded that the fabrication methods of various devices can be broadly categorized into the two most important device types, namely fiber-like and planar. A detailed analysis of representative work and the latest progress in the past decade is performed. It is most important that excellent stretchability and high-power output are the key point to realize application value of stretchable nanogenerators. In addition, we discuss opportunities and challenges, as well as future development direction of stretchable nanogenerators.

Keywords: wearable devices, triboelectric nanogenerator, stretchable, hybrid nanogenerator, piezoelectric effect

References(106)

[1]

Zhu, J.; Hou, X. J.; Niu, X. S.; Guo, X. P.; Zhang, J.; He, J.; Guo, T.; Chou, X. J.; Xue, C. Y.; Zhang, W. D. The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self-powered vibration sensor. Sens. Actuat. A: Phys. 2017, 263, 317–325.

[2]

Ni, S. M.; Guo, F. Y.; Wang, D. B.; Liu, G.; Xu, Z. K.; Kong, L. P.; Wang, J. Z.; Jiao, S. J.; Zhang, Y.; Yu, Q. J. et al. Effect of MgO surface modification on the TiO2 nanowires electrode for self-powered UV photodetectors. ACS Sustainable Chem. Eng. 2018, 6, 7265–7272.

[3]

Liu, H. B.; Jiang, H. E.; Du, F.; Zhang, D. P.; Li, Z. J.; Zhou, H. W. Flexible and degradable paper-based strain sensor with low cost. ACS Sustainable Chem. Eng. 2017, 5, 10538–10543.

[4]

Trung, T. Q.; Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 2016, 28, 4338–4372.

[5]

Tao, Y. R.; Wu, X. C.; Wang, W.; Wang, J. N. Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film. J. Mater. Chem. C 2015, 3, 1347–1353.

[6]

Li, Y. Q.; Samad, Y. A.; Taha, T.; Cai, G. W.; Fu, S. Y.; Liao, K. Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustainable Chem. Eng. 2016, 4, 4288–4295.

[7]

Song, W. J.; Park, J.; Kim, D. H.; Bae, S.; Kwak, M. J.; Shin, M.; Kim, S.; Choi, S.; Jang, J. H.; Shin, T. J. et al. Jabuticaba-inspired hybrid carbon filler/polymer electrode for use in highly stretchable aqueous Li-ion batteries. Adv. Energy Mater. 2018, 8, 1702478.

[8]

Zhao, Y.; Chen, S.; Hu, J.; Yu, J. L.; Feng, G. C.; Yang, B.; Li, C. H.; Zhao, N.; Zhu, C. Z.; Xu, J. Microgel-enhanced double network hydrogel electrode with high conductivity and stability for intrinsically stretchable and flexible all-gel-state supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 19323–19330.

[9]

Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

[10]

Yun, J.; Song, C.; Lee, H.; Park, H.; Jeong, Y. R.; Kim, J. W.; Jin, S. W.; Oh, S. Y.; Sun, L. F.; Zi, G. et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 2018, 49, 644–654.

[11]

Chandrasekhar, A.; Alluri, N. R.; Vivekananthan, V.; Park, J. H.; Kim, S. J. Sustainable biomechanical energy scavenger toward self-reliant kids’ interactive battery-free smart puzzle. ACS Sustainable Chem. Eng. 2017, 5, 7310–7316.

[12]

He, J.; Wen, T.; Qian, S.; Zhang, Z. X.; Tian, Z. M.; Zhu, J.; Mu, J. L.; Hou, X. J.; Geng, W. P.; Cho, J. et al. Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system. Nano Energy 2018, 43, 326–339.

[13]

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

[14]

Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315, 798–801.

[15]

Wang, Z. L. Self-powered nanotech. Sci. Am. 2008, 298, 82–87.

[16]

Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7937.

[17]

Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem., Int. Ed. 2012, 51, 11700–11721.

[18]

Rogers, J. A. Nanomesh on-skin electronics. Nat. Nanotechnol. 2017, 12, 839–840.

[19]

Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280–285.

[20]

He, X.; Zi, Y. L.; Guo, H. Y.; Zheng, H. W.; Xi, Y.; Wu, C. S.; Wang, J.; Zhang, W.; Lu, C. H.; Wang, Z. L. A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv. Funct. Mater. 2017, 27, 1604378.

[21]

Jung, W. S.; Kang, M. G.; Moon, H. G.; Baek, S. H.; Yoon, S. J.; Wang, Z. L.; Kim, S. W.; Kang, C. Y. High output piezo/triboelectric hybrid generator. Sci. Rep. 2015, 5, 9309.

[22]

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

[23]

Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.

[24]

Bowen, C. R.; Kim, H. A.; Weaver, P. M.; Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 2014, 7, 25–44.

[25]

Briscoe, J.; Dunn, S. Piezoelectric nanogenerators—A review of nanostructured piezoelectric energy harvesters. Nano Energy 2015, 14, 15–29.

[26]

Wang, X. D. Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale. Nano Energy 2012, 1, 13–24.

[27]

Chen, Y.; Au, J.; Kazlas, P.; Ritenour, A.; Gates, H.; McCreary, M. Flexible active-matrix electronic ink display. Nature 2003, 423, 136.

[28]

Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

[29]

Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336.

[30]

Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

[31]

Sun, Y.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897–1916.

[32]

Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826.

[33]

Pan, C. F.; Wu, H.; Wang, C.; Wang, B.; Zhang, L.; Cheng, Z. D.; Hu, P.; Pan, W.; Zhou, Z. Y.; Yang, X. et al. Nanowire-based high-performance “micro fuel cells”: One nanowire, one fuel cell. Adv. Mater. 2008, 20, 1644–1648.

[34]

Choi, M. C.; Kim, Y.; Ha, C. S. Polymers for flexible displays: From material selection to device applications. Prog. Polym. Sci. 2008, 33, 581–630.

[35]

Koo, M.; Park, K. I.; Lee, S. H.; Suh, M.; Jeon, D. Y.; Choi, J. W.; Kang, K.; Lee, K. J. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 2012, 12, 4810–4816.

[36]

Xie, K. Y.; Wei, B. Q. Materials and structures for stretchable energy storage and conversion devices. Adv. Mater. 2014, 26, 3592–3617.

[37]

Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763–4782.

[38]

Nyholm, L.; Nyström, G.; Mihranyan, A.; Stromme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, 23, 3751–3769.

[39]

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

[40]

Chandrasekhar, A.; Alluri, N. R.; Saravanakumar, B.; Selvarajan, S.; Kim, S. J. Human interactive triboelectric nanogenerator as a self-powered smart seat. ACS Appl. Mater. Interfaces 2016, 8, 9692–9699.

[41]

Kanik, M.; Say, M. G.; Daglar, B.; Yavuz, A. F.; Dolas, M. H.; El-Ashry, M. M.; Bayindir, M. A motion- and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator. Adv. Mater. 2015, 27, 2367–2376.

[42]

Khan, U.; Kim, S. W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 2016, 10, 6429–6432.

[43]

Lee, S.; Bae, S. H.; Lin, L.; Yang, Y.; Park, C.; Kim, S. W.; Cha, S. N.; Kim, H.; Park, Y. J.; Wang, Z. L. Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv. Funct. Mater. 2013, 23, 2445–2449.

[44]

Rodrigues, C. R. S.; Alves, C. A. S.; Puga, J.; Pereira, A. M.; Ventura, J. O. Triboelectric driven turbine to generate electricity from the motion of water. Nano Energy 2016, 30, 379–386.

[45]

Wang, S. H.; Mu, X. J.; Yang, Y.; Sun, C. L.; Gu, A. Y.; Wang, Z. L. Flow-driven triboelectric generator for directly powering a wireless sensor node. Adv. Mater. 2015, 27, 240–248.

[46]

Wang, X. F.; Niu, S. M.; Yi, F.; Yin, Y. J.; Hao, C. L.; Dai, K. R.; Zhang, Y.; You, Z.; Wang, Z. L. Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 2017, 11, 1728–1735.

[47]

Yoon, H. J.; Kwak, S. S.; Kim, S. M.; Kim, S. W. Aim high energy conversion efficiency in triboelectric nanogenerators. Sci. Technol. Adv. Mater. 2020, 21, 683–688.

[48]

Chen, H. M.; Zhang, S. C.; Zou, Y. X.; Zhang, C.; Zheng, B.; Huang, C. L.; Zhang, B. W.; Xing, C.; Xu, Y.; Wang, J. Performance-enhanced flexible triboelectric nanogenerator based on gold chloride-doped graphene. ACS Appl. Electron. Mater. 2020, 2, 1106–1112.

[49]

Wang, X. F.; Yin, Y. J.; Yi, F.; Dai, K. R.; Niu, S. M.; Han, Y. Z.; Zhang, Y.; You, Z. Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics. Nano Energy 2017, 39, 429–436.

[50]

Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805.

[51]

Wang, Y.; Yang, Y.; Wang, Z. L. Triboelectric nanogenerators as flexible power sources. npj Flex. Electron. 2017, 1, 10.

[52]

Deng, H. T.; Zhang, X. R.; Wang, Z. Y.; Wen, D. L.; Ba, Y. Y.; Kim, B.; Han, M. D.; Zhang, H. X.; Zhang, X. S. Super-stretchable multi-sensing triboelectric nanogenerator based on liquid conductive composite. Nano Energy 2021, 83, 105823.

[53]

Liang, F.; Zhao, X. J.; Li, H. Y.; Fan, Y. J.; Cao, J. W.; Wang, Z. L.; Zhu, G. Stretchable shape-adaptive liquid–solid interface nanogenerator enabled by in-situ charged nanocomposite membrane. Nano Energy 2020, 69, 104414.

[54]

Xia, K. Q.; Tian, Y.; Fu, J. M.; Zhu, Z. Y.; Lu, J. G.; Zhao, Z. Y.; Tang, H. C.; Ye, Z. Z.; Xu, Z. W. Transparent and stretchable high-output triboelectric nanogenerator for high-efficiency self-charging energy storage systems. Nano Energy 2021, 87, 106210.

[55]

Vera Anaya, D.; Yuce, M. R. Stretchable triboelectric sensor for measurement of the forearm muscles movements and fingers motion for Parkinson’s disease assessment and assisting technologies. Med. Devices Sens. 2021, 4, e10154.

[56]

Wang, C.; Qu, X. C.; Zheng, Q.; Liu, Y.; Tan, P. C.; Shi, B. J.; Ouyang, H.; Chao, S. Y.; Zou, Y.; Zhao, C. C. et al. Stretchable, self-healing, and skin-mounted active sensor for multipoint muscle function assessment. ACS Nano 2021, 15, 10130–10140.

[57]

Gao, F. F.; Zhao, X.; Zhang, Z.; An, L. L.; Xu, L. X.; Xun, X. C.; Zhao, B.; Ouyang, T.; Zhang, Y.; Liao, Q. L. et al. A stretching-insensitive, self-powered and wearable pressure sensor. Nano Energy 2022, 91, 106695.

[58]

Tong, Y. X.; Feng, Z. A.; Kim, J.; Robertson, J. L.; Jia, X. T.; Johnson, B. N. 3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy 2020, 75, 104973.

[59]

Lungu, M. Electrical separation of plastic materials using the triboelectric effect. Miner. Eng. 2004, 17, 69–75.

[60]

Lowell, J.; Rose-Innes, A. C. Contact electrification. Adv. Phys. 1980, 29, 947–1023.

[61]

Xu, C.; Zi, Y. L.; Wang, A. C.; Zou, H. Y.; Dai, Y. J.; He, X.; Wang, P. H.; Wang, Y. C.; Feng, P. Z.; Li, D. W. et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, 1706790.

[62]

Xu, C.; Wang, A. C.; Zou, H. Y.; Zhang, B. B.; Zhang, C. L.; Zi, Y. L.; Pan, L.; Wang, P. H.; Feng, P. Z.; Lin, Z. Q. et al. Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification. Adv. Mater. 2018, 30, 1803968.

[63]

Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

[64]

Cowley, A. M.; Sze, S. M. Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 1965, 36, 3212–3220.

[65]
Gooding, D. M.; Kaufman, G. K. Tribocharging and the triboelectric series. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, 2019; pp 1–14.
DOI
[66]

Cottrell, P. E.; Troutman, R. R.; Ning, T. H. Hot-electron emission in N-channel IGFET’s. IEEE Trans. Electron Devices 1979, 26, 520–533.

[67]

Meng, B.; Tang, W.; Too, Z. H.; Zhang, X. S.; Han, M. D.; Liu, W.; Zhang, H. X. A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 2013, 6, 3235–3240.

[68]

Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

[69]

Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.

[70]

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

[71]

Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

[72]

Zhang, X. S.; Han, M. D.; Wang, R. X.; Zhu, F. Y.; Li, Z. H.; Wang, W.; Zhang, H. X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.

[73]

Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.

[74]

Chen, Y. F.; Lei, H.; Gao, Z. Q.; Liu, J. Y.; Zhang, F. J.; Wen, Z.; Sun, X. H. Energy autonomous electronic skin with direct temperature-pressure perception. Nano Energy 2022, 98, 107273.

[75]

Lei, H.; Cao, K. L.; Chen, Y. F.; Liang, Z. Q.; Wen, Z.; Jiang, L.; Sun, X. H. 3D-printed endoplasmic reticulum rGO microstructure based self-powered triboelectric pressure sensor. Chem. Eng. J. 2022, 445, 136821.

[76]

Liu, J. Y.; Wen, Z.; Lei, H.; Gao, Z. Q.; Sun, X. H. A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa−1. Nano-Micro Lett. 2022, 14, 88.

[77]

Shen, H.; Lei, H.; Gu, M. W.; Miao, S.; Gao, Z. Q.; Sun, X. H.; Sun, L. N.; Chen, G. Y.; Huang, H. B.; Chen, L. G. et al. A wearable electrowetting on dielectrics sensor for real-time human sweat monitor by triboelectric field regulation. Adv. Funct. Mater. 2022, 32, 2204525.

[78]

Lai, Y. C.; Deng, J. N.; Zhang, S. L.; Niu, S. M.; Guo, H. Y.; Wang, Z. L. Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv. Funct. Mater. 2017, 27, 1604462.

[79]

Cheng, Y.; Lu, X.; Hoe Chan, K.; Wang, R. R.; Cao, Z. R.; Sun, J.; Wei Ho, G. A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring. Nano Energy 2017, 41, 511–518.

[80]

Wu, C. X.; Kim, T. W.; Li, F. S.; Guo, T. L. Wearable electricity generators fabricated utilizing transparent electronic textiles based on polyester/Ag nanowires/graphene core–shell nanocomposites. ACS Nano 2016, 10, 6449–6457.

[81]

Kwak, S. S.; Kim, H.; Seung, W.; Kim, J.; Hinchet, R.; Kim, S. W. Fully stretchable textile triboelectric nanogenerator with knitted fabric structures. ACS Nano 2017, 11, 10733–10741.

[82]

Xie, L. J.; Chen, X. P.; Wen, Z.; Yang, Y. Q.; Shi, J. H.; Chen, C.; Peng, M. F.; Liu, Y. N.; Sun, X. H. Spiral steel wire based fiber-shaped stretchable and tailorable triboelectric nanogenerator for wearable power source and active gesture sensor. Nano-Micro Lett. 2019, 11, 39.

[83]

Fang, H. J.; Wang, X. D.; Li, Q.; Peng, D. F.; Yan, Q. F.; Pan, C. F. A stretchable nanogenerator with electric/light dual-mode energy conversion. Adv. Energy Mater. 2016, 6, 1600829.

[84]

Zhao, S. Y.; Wang, J. N.; Du, X. Y.; Wang, J.; Cao, R.; Yin, Y. Y.; Zhang, X. L.; Yuan, Z. Q.; Xing, Y.; Pui, D. Y. H. et al. All-nanofiber-based ultralight stretchable triboelectric nanogenerator for self-powered wearable electronics. ACS Appl. Energy Mater. 2018, 1, 2326–2332.

[85]

Lai, Y. C.; Deng, J. N.; Niu, S. M.; Peng, W. B.; Wu, C. S.; Liu, R. Y.; Wen, Z.; Wang, Z. L. Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications. Adv. Mater. 2016, 28, 10024–10032.

[86]

Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Zheng, H. C.; Shao, H. Y.; Xia, Y. J.; Chen, C.; Lan, H. W.; Xie, X. K. et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 2018, 12, 2027–2034.

[87]

Qin, Z.; Yin, Y. Y.; Zhang, W. Z.; Li, C. J.; Pan, K. Wearable and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes. ACS Appl. Mater. Interfaces 2019, 11, 12452–12459.

[88]

Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.

[89]

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

[90]
Waqar, S.; Wang, L.; John, S. Piezoelectric energy harvesting from intelligent textiles. In Electronic Textiles; Dias, T., Ed.; Elsevier: Amsterdam, 2015; pp 173–197.
DOI
[91]

Wang, F.; Jiang, C. M.; Tang, C. L.; Bi, S.; Wang, Q. H.; Du, D. F.; Song, J. H. High output nano-energy cell with piezoelectric nanogenerator and porous supercapacitor dual functions—A technique to provide sustaining power by harvesting intermittent mechanical energy from surroundings. Nano Energy 2016, 21, 209–216.

[92]

Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

[93]

Niu, X. S.; Jia, W.; Qian, S.; Zhu, J.; Zhang, J.; Hou, X. J.; Mu, J. L.; Geng, W. P.; Cho, J.; He, J. et al. High-performance PZT-based stretchable piezoelectric nanogenerator. ACS Sustainable Chem. Eng. 2019, 7, 979–985.

[94]

Jeong, C. K.; Kim, I.; Park, K. I.; Oh, M. H.; Paik, H.; Hwang, G. T.; No, K.; Nam, Y. S.; Lee, K. J. Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 2013, 7, 11016–11025.

[95]

Dahiya, A. S.; Morini, F.; Boubenia, S.; Justeau, C.; Nadaud, K.; Rajeev, K. P.; Alquier, D.; Poulin-Vittrant, G. Zinc oxide nanowire-parylene nanocomposite based stretchable piezoelectric nanogenerators for self-powered wearable electronics. J. Phys. Conf. Ser. 2018, 1052, 012028.

[96]

Bajaj, B.; Hong, S.; Jo, S. M.; Lee, S.; Kim, H. J. Flexible carbon nanofiber electrodes for a lead zirconate titanate nanogenerator. RSC Adv. 2016, 6, 64441–64445.

[97]

Sim, H. J.; Choi, C.; Lee, C. J.; Kim, Y. T.; Spinks, G. M.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Flexible, stretchable and weavable piezoelectric fiber. Adv. Eng. Mater. 2015, 17, 1270–1275.

[98]

Park, K. I.; Jeong, C. K.; Kim, N. K.; Lee, K. J. Stretchable piezoelectric nanocomposite generator. Nano Converg. 2016, 3, 12.

[99]

Jeong, C. K.; Lee, J.; Han, S.; Ryu, J.; Hwang, G. T.; Park, D. Y.; Park, J. H.; Lee, S. S.; Byun, M.; Ko, S. H. et al. A hyper-stretchable elastic-composite energy harvester. Adv. Mater. 2015, 27, 2866–2875.

[100]

Duan, Y. Q.; Ding, Y. J.; Bian, J.; Xu, Z. L.; Yin, Z. P.; Huang, Y. A. Ultra-stretchable piezoelectric nanogenerators via large-scale aligned fractal inspired micro/nanofibers. Polymers 2017, 9, 714.

[101]

Dahiya, A. S.; Morini, F.; Boubenia, S.; Nadaud, K.; Alquier, D.; Poulin-Vittrant, G. Organic/inorganic hybrid stretchable piezoelectric nanogenerators for self-powered wearable electronics. Adv. Mater. Technol. 2018, 3, 1700249.

[102]

Chen, X. L.; Parida, K.; Wang, J. X.; Xiong, J. Q.; Lin, M. F.; Shao, J. Y.; Lee, P. S. A stretchable and transparent nanocomposite nanogenerator for self-powered physiological monitoring. ACS Appl. Mater. Interfaces 2017, 9, 42200–42209.

[103]

Li, X. H.; Lin, Z. H.; Cheng, G.; Wen, X. N.; Liu, Y.; Niu, S. M.; Wang, Z. L. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 2014, 8, 10674–10681.

[104]

Zhang, Q.; Liang, Q. J.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Ding, Y.; Ma, M. Y.; Gao, F. F.; Zhao, X.; Zhang, Y. Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 2018, 28, 1703801.

[105]

Zhang, K. W.; Wang, Z. L.; Yang, Y. Conductive fabric-based stretchable hybridized nanogenerator for scavenging biomechanical energy. ACS Nano 2016, 10, 4728–4734.

[106]

Chen, H. T.; Song, Y.; Cheng, X. L.; Zhang, H. X. Self-powered electronic skin based on the triboelectric generator. Nano Energy 2019, 56, 252–268.

Publication history
Copyright
Acknowledgements

Publication history

Received: 19 September 2022
Revised: 20 October 2022
Accepted: 24 October 2022
Published: 29 November 2022
Issue date: September 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Rsearch and Development Program of China (No. 2021YFA1201604), the National Natural Science Foundation of China (No. 52072041), the Beijing Natural Science Foundation (No. JQ21007), “Practical Training Program” Project of Cross-training High-level Talents in Beijing Universities (No. NHFZ20210022/018), and the University of Chinese Academy of Sciences (No. Y8540XX2D2).

Return