Journal Home > Volume 16 , Issue 5

Activated carbon-supported HgCl2 catalysts have seriously impeded the development of the polyvinyl chloride (PVC) industry due to the sublimation of Hg species and environmental pollution problems. Herein, the template-free and organic solvent-free strategy was devised to synthesize non-metallic based nitrogen-doped carbon (U-NC) sphere catalyst for acetylene hydrochlorination. This green strategy via ultrasonic chemistry initiates resin crosslinking reactions between aminophenol and formaldehyde resin by free radicals, leading to the ultra-rapid formation of U-NC with remarkably high pyrrolic N content in only 5 min. This U-NC catalyst exhibited an outstanding space-time-yield (1.6 gVCM·gcat−1·h−1), even comparable to the reported metallic catalyst. By combining kinetic analysis, advanced characterizations, and density functional theory, it is found that the amount of pyrrolic N is in linear with C2H2 conversion, and pyrrolic N in U-NC can effectively improve acetylene hydrochlorination performance by mediating HCl adsorption. This work sheds new light on rationally constructing metal-free catalyst for acetylene hydrochlorination.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Free radicals induced ultra-rapid synthesis of N-doped carbon sphere catalyst with boosted pyrrolic N active sites for efficient acetylene hydrochlorination

Show Author's information Yuxiang Bao1Xiuhui Zheng1Jianlin Cao1Shuo Li4Yongxiao Tuo1Xiang Feng1( )Mingyuan Zhu4Bin Dai3Chaohe Yang1De Chen1,2( )
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
School of Chemistry and Chemical Engineering of Shihezi University, Shihezi 832000, China
College of Chemistry & Chemical Engineering of Yantai University, Yantai 264005, China

Abstract

Activated carbon-supported HgCl2 catalysts have seriously impeded the development of the polyvinyl chloride (PVC) industry due to the sublimation of Hg species and environmental pollution problems. Herein, the template-free and organic solvent-free strategy was devised to synthesize non-metallic based nitrogen-doped carbon (U-NC) sphere catalyst for acetylene hydrochlorination. This green strategy via ultrasonic chemistry initiates resin crosslinking reactions between aminophenol and formaldehyde resin by free radicals, leading to the ultra-rapid formation of U-NC with remarkably high pyrrolic N content in only 5 min. This U-NC catalyst exhibited an outstanding space-time-yield (1.6 gVCM·gcat−1·h−1), even comparable to the reported metallic catalyst. By combining kinetic analysis, advanced characterizations, and density functional theory, it is found that the amount of pyrrolic N is in linear with C2H2 conversion, and pyrrolic N in U-NC can effectively improve acetylene hydrochlorination performance by mediating HCl adsorption. This work sheds new light on rationally constructing metal-free catalyst for acetylene hydrochlorination.

Keywords: nitrogen-doped carbon, polymerization, free radical, acetylene hydrochlorination, ultrasonic chemistry

References(69)

[1]

Kaiser, S. K.; Surin, I.; Amorós-Pérez, A.; Büchele, S.; Krumeich, F.; Clark, A. H.; Román-Martínez, M. C.; Lillo-Ródenas, M. A.; Pérez-Ramírez, J. Design of carbon supports for metal-catalyzed acetylene hydrochlorination. Nat. Commun. 2021, 12, 4016.

[2]

Zhu, M. Y.; Wang, Q. Q.; Chen, K.; Wang, Y.; Huang, C. F.; Dai, H.; Yu, F.; Kang, L. H.; Dai, B. Development of a heterogeneous non-mercury catalyst for acetylene hydrochlorination. ACS Catal. 2015, 5, 5306–5316.

[3]

Malta, G.; Kondrat, S. A.; Freakley, S. J.; Davies, C. J.; Lu, L.; Dawson, S.; Thetford, A.; Gibson, E. K.; Morgan, D. J.; Jones, W. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 2017, 355, 1399–1403.

[4]

Mei, S.; Gu, J. J.; Ma, T. Z.; Li, X. Y.; Hu, Y. B.; Li, W.; Zhang, J. L.; Han, Y. N-doped activated carbon from used dyeing wastewater adsorbent as a metal-free catalyst for acetylene hydrochlorination. Chem Eng J. 2019, 371, 118–129.

[5]

Tan, P.; Xue, D. M.; Zhu, J.; Jiang, Y.; He, Q. X.; Hou, Z. F.; Liu, X. Q.; Sun, L. B. Hierarchical N-doped carbons from designed N-rich polymer: Adsorbents with a record-high capacity for desulfurization. AIChE J. 2018, 64, 3786–3793.

[6]

Zhang, X. D.; Xu, Y.; Zhang, G. J.; Wu, C. L.; Liu, J.; Lv, Y. K. Nitrogen-doped porous carbons derived from sustainable biomass via a facile post-treatment nitrogen doping strategy: Efficient CO2 capture and DRM. Int. J. Hydrogen Energy 2022, 47, 24388–24397.

[7]

Han, Z. J.; Huang, C.; Meysami, S. S.; Piche, D.; Seo, D. H.; Pineda, S.; Murdock, A. T.; Bruce, P. S.; Grant, P. S.; Grobert, N. High-frequency supercapacitors based on doped carbon nanostructures. Carbon 2018, 126, 305–312.

[8]

Du, J.; Liu, L.; Yu, Y. F.; Hu, Z. P.; Zhang, Y.; Liu, B. B.; Chen, A. B. Tuning confined nanospace for preparation of N-doped hollow carbon spheres for high performance supercapacitors. ChemSusChem 2019, 12, 303–309.

[9]

Gao, Z. Y.; Liu, X.; Chang, J. L.; Wu, D. P.; Xu, F.; Zhang, L. C.; Du, W. M.; Jiang, K. Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor. J. Power Sources 2017, 337, 25–35.

[10]

Ding, G. H.; Li, Z. Q.; Wei, L. Z.; Yao, G.; Niu, H. L.; Wang, C. L.; Zheng, F. C.; Chen, Q. W. Regulating the sodium storage sites in nitrogen-doped carbon materials by sulfur-doping engineering for sodium ion batteries. Electrochim. Acta 2022, 424, 140645.

[11]

Yu, P. F.; Zhang, W. C.; Yang, Y. H.; Zheng, M. T.; Hu, H.; Xiao, Y.; Liu, Y. L.; Liang, Y. R. Facile construction of uniform ultramicropores in porous carbon for advanced sodium-ion battery. J. Colloid Interface Sci. 2021, 582, 852–858.

[12]

Sun, J. G.; Sun, Y.; Oh, J. A. S.; Gu, Q. L.; Zheng, W. D.; Goh, M.; Zeng, K. Y.; Cheng, Y.; Lu, L. Insight into the structure−capacity relationship in biomass derived carbon for high-performance sodium-ion batteries. J. Energy Chem. 2021, 62, 497–504.

[13]

Mao, S. J.; Wang, C. P.; Wang, Y. The chemical nature of N doping on N doped carbon supported noble metal catalysts. J. Catal. 2019, 375, 456–465.

[14]

Park, H. S.; Han, S. B.; Kwak, D. H.; Han, J. H.; Park, K. W. Fe nanoparticles encapsulated in doped graphitic shells as high-performance and stable catalysts for oxygen reduction reaction in an acid medium. J. Catal. 2019, 370, 130–137.

[15]

Li, X. Y.; Wang Y.; Kang L. H.; Zhu, M. Y.; Dai, B. A novel, non-metallic graphitic carbon nitride catalyst for acetylene hydrochlorination. J. Catal. 2014, 311, 288–294.

[16]

Liu, W. R.; Zhu, M. Y.; Dai, B. Nitrogen doped nanoflower porous carbon as a nonmetal catalyst for acetylene hydrochlorination. New J. Chem. 2018, 42, 20131–20136.

[17]

Li, X. Y.; Li, P.; Pan, X. L.; Ma, H.; Bao, X. H. Deactivation mechanism and regeneration of carbon nanocomposite catalyst for acetylene hydrochlorination. Appl. Catal. B: Environ. 2017, 210, 116–120.

[18]

Lin, R. H.; Kaiser, S. K.; Hauert, R.; Pérez-Ramírez, J. Descriptors for high-performance nitrogen-doped carbon catalysts in acetylene hydrochlorination. ACS Catal. 2018, 8, 1114–1121.

[19]

Zhao, J.; Wang, B. L.; Yue, Y. X.; Sheng, G. F.; Lai, H. X.; Wang, S. S.; Yu, L.; Zhang, Q. F.; Feng, F.; Hu, Z. T. et al. Nitrogen- and phosphorus-codoped carbon-based catalyst for acetylene hydrochlorination. J. Catal. 2019, 373, 240–249.

[20]
Duraisamy, V.; Venkateshwaran, S.; Thangamuthu, R.; Kumar, S. M. S. Hard template derived N, S dual heteroatom doped ordered mesoporous carbon as an efficient electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy, in press, https://doi.org/10.1016/j.ijhydene.2022.03.250.
[21]

Hu, L. F.; Zhu, Q. Z.; Wu, Q.; Li, D. S.; An, Z. X.; Xu, B. Natural biomass-derived hierarchical porous carbon synthesized by an in situ hard template coupled with NaOH activation for ultrahigh rate supercapacitors. ACS Sustainable Chem. Eng. 2018, 6, 13949–13959.

[22]

Luo, W.; Zhao, T.; Li, Y. H.; Wei, J.; Xu, P. C.; Li, X. X.; Wang, Y. W.; Zhang, W. Q.; Elzatahry, A. A.; Alghamdi, A. et al. A micelle fusion-aggregation assembly approach to mesoporous carbon materials with rich active sites for ultrasensitive ammonia sensing. J. Am. Chem. Soc. 2016, 138, 12586–12595.

[23]

Allah, A. E.; Yamauchi, Y.; Wang, J.; Bando, Y.; Tan, H. B.; Farghali, A. A.; Khedr, M. H.; Alshehri, A.; Alghamdi, Y. G.; Martin, D. et al. Soft-templated synthesis of sheet-like nanoporous nitrogen-doped carbons for electrochemical supercapacitors. ChemElectroChem 2019, 6, 1901–1907.

[24]

Li, F.; Zhang, H. Y.; Zhang, M. M.; Li, L. F.; Yao, L. S.; Peng, W. C.; Zhang, J. L. Hollow carbon nanospheres decorated with abundant pyridinic N+O for efficient acetylene hydrochlorination. ACS Sustainable Chem. Eng. 2022, 10, 194–203.

[25]

Zhou, K.; Li, B.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Jia, J. C.; Zhao, M. Q.; Luo, G. H.; Su, D. S.; Wei, F. The catalytic pathways of hydrohalogenation over metal-free nitrogen-doped carbon nanotubes. ChemSusChem 2014, 7, 723–728.

[26]

Qiao, X. L.; Liu, X. Y.; Zhou, Z. Q.; Guan, Q. X.; Li, W. Constructing green mercury-free catalysts with single pyridinic N species for acetylene hydrochlorination and mechanism investigation. Catal. Sci. Technol. 2021, 11, 2327–2339.

[27]

Wang X.; Dai B.; Wang Y., Yu F. Nitrogen-doped pitch-based spherical active carbon as a nonmetal catalyst for acetylene hydrochlorination. ChemCatChem. 2014, 6, 2339–2344.

[28]

Lu, Y. S.; Lu, F. J.; Zhu, M. Y. Nitrogen-modified metal-free carbon materials for acetylene hydrochlorination. J. Taiwan Inst. Chem. Eng. 2020, 113, 198–203.

[29]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[30]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[31]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

[32]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[33]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[34]

Ma, R. G.; Lin, G. X.; Ju, Q. J.; Tang, W.; Chen, G.; Chen, Z. H.; Liu, Q.; Yang, M. H.; Lu, Y. F.; Wang, J. C. Edge-sited Fe-N4 atomic species improve oxygen reduction activity via boosting O2 dissociation. Appl. Catal. B: Environ. 2020, 265, 118593.

[35]

Yu, G. F.; Wu, Y. Q.; Cao, H. B.; Ge, Q. F.; Dai, Q.; Sun, S. H.; Xie, Y. B. Insights into the mechanism of ozone activation and singlet oxygen generation on N-doped defective nanocarbons: A DFT and machine learning study. Environ. Sci. Technol. 2022, 56, 7853–7863.

[36]

Ai, Y. J.; Hu, Z. N.; Shao, Z. X.; Qi, L.; Liu, L.; Zhou, J. J.; Sun, H. B.; Liang, Q. L. Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor. Nano Res. 2018, 11, 287–299.

[37]

Chernykh, A.; Liu, J. P.; Ishida, H. Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer 2006, 47, 7664–7669.

[38]

Zhao, J. M.; Niu, W. X.; Zhang, L.; Cai, H. R.; Han, M. Y.; Yuan, Y. L.; Majeed, S.; Anjum, S.; Xu, G. B. A template-free and surfactant-free method for high-yield synthesis of highly monodisperse 3-aminophenol-formaldehyde resin and carbon nano/microspheres. Macromolecules 2013, 46, 140–145.

[39]

Zhao, J. M.; Gilani, M. R. H. S.; Lai, J. P.; Nsabimana, A.; Liu, Z. Y.; Luque, R.; Xu, G. B. Autocatalysis synthesis of poly (benzoxazine-co-resol)-based polymer and carbon spheres. Macromolecules 2018, 51, 5494–5500.

[40]

Allen, D. J.; Ishida, H. Polymerization of linear aliphatic diamine-based benzoxazine resins under inert and oxidative environments. Polymer 2007, 48, 6763–6772.

[41]

Feng, G. D.; Cheng, P.; Yan, W. F.; Boronat, M.; Li, X.; Su, J. H.; Wang, J. Y.; Li, Y.; Corma, A.; Xu, R. R. et al. Accelerated crystallization of zeolites via hydroxyl free radicals. Science 2016, 351, 1188–1191.

[42]

Feng, G. D.; Wang, J. Y.; Boronat, M.; Li, Y.; Su, J. H.; Huang, J.; Ma, Y. H.; Yu, J. H. Radical-facilitated green synthesis of highly ordered mesoporous silica materials. J. Am. Chem. Soc. 2018, 140, 4770–4773.

[43]

Suslick, K. S.; Price, G. J. Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 1999, 29, 295–326.

[44]

Pol, V. G.; Shrestha, L. K.; Ariga, K. Tunable, functional carbon spheres derived from rapid synthesis of resorcinol-formaldehyde resins. ACS Appl. Mater. Interfaces 2014, 6, 10649–10655.

[45]

Liu, J.; Qiao, S. Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D. Y.; Lu, G. Q. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem. 2011, 123, 6069–6073.

[46]

Friedel, B.; Greulich-Weber, S. Preparation of monodisperse, submicrometer carbon spheres by pyrolysis of melamine-formaldehyde resin. Small 2006, 2, 859–863.

[47]

Huang, G.; Xiao, Z. H.; Chen, R.; Wang, S. Y. Defect engineering of cobalt-based materials for electrocatalytic water splitting. ACS Sustainable Chem. Eng. 2018, 6, 15954–15969.

[48]

Zhao, C. Y.; Yi, Z. H. M.; Xue, Y. N.; Guan, Q. X.; Li, W. Constructing the single-site of pyridine-based organic compounds for acetylene hydrochlorination: From theory to experiment. Appl. Organomet. Chem. 2021, 35, e6318.

[49]

Qiu, Y. Y.; Ali, S.; Lan, G. J.; Tong, H. Q.; Fan, J. T.; Liu, H. Y.; Li, B.; Han, W. F.; Tang, H. D.; Liu, H. Z. et al. Defect-rich activated carbons as active and stable metal-free catalyst for acetylene hydrochlorination. Carbon 2019, 146, 406–412.

[50]

Yang, Y.; Lan, G. J.; Wang, X. L.; Li, Y. Direct synthesis of nitrogen-doped mesoporous carbons for acetylene hydrochlorination. Chin. J. Catal. 2016, 37, 1242–1248.

[51]

Wang, J.; Gong, W. Q.; Zhu, M. Y.; Dai, B. Effect of carbon defects on the nitrogen-doped carbon catalytic performance for acetylene hydrochlorination. Appl. Catal., A. 2018, 564, 72–78.

[52]

Li, X. Y.; Zhang, J. L.; Li, W. MOF-derived nitrogen-doped porous carbon as metal-free catalysts for acetylene hydrochlorination. J. Ind Eng. Chem. 2016, 44, 146–154.

[53]

Kaiser, S. K.; Fako, E.; Surin, I.; Krumeich, F.; Kondratenko, V. A.; Kondratenko, E. V.; Clark, A. H.; López, N.; Pérez-Ramírez, J. Performance descriptors of nanostructured metal catalysts for acetylene hydrochlorination. Nat. Nanotechnol. 2022, 17, 606–612.

[54]

Li, Y. W.; Wang, F. M.; Hu, J. Q.; Sun, M. S.; Wang, J. W.; Zhang, X. B. A study on the rules of ligands in highly efficient Ru-amide/AC catalysts for acetylene hydrochlorination. Catal. Sci. Technol. 2021, 11, 7347–7358.

[55]

Wang, B.; Zhang, T. T.; Liu, Y. W.; Li, W.; Zhang, H. Y.; Zhang, J. L. Phosphine-oxide organic ligand improved Cu-based catalyst for acetylene hydrochlorination. Appl. Catal. A: Gen. 2022, 630, 118461.

[56]

Dai, Y. Y.; Xu, X. L.; Zhu, R. B.; Xie, R. Y.; Zhao, C. S.; Yan, Y. Z.; Niu, Q. The effect of alkali metals on the Ru/AC catalyst for acetylene hydrochlorination. Catal. Commun. 2021, 158, 106334.

[57]

Tao, X.; Chen, F. Y.; Xie, Y. G.; Cheng, X. J.; Liu, X. L.; Gao, G. Microporous nitrogen-doped carbon from polyaniline as a highly efficient and stable catalyst for acetylene hydrochlorination. J. Taiwan Inst. Chem. Eng. 2021, 126, 80–87.

[58]

Li, J.; Zhang, H. Y.; Liang, H. X.; Li, L. F.; Zhang, J. L. High-efficiency catalysis of Ru-based catalysts assisted by triazine-based ligands containing different heteroatoms (N, O, S) for acetylene hydrochlorination. Mol. Catal. 2022, 519, 112142.

[59]

Jin, X.; Hao, Y. L.; Liu, C. X.; Feng, H. B.; Li, X. Y.; Zhu, Y.; Zhou, Y. X.; Song, Y. J.; Hu, J. P. Waste cigarette butt-derived nitrogen-doped porous carbon as a non-mercury catalyst for acetylene hydrochlorination. New J. Chem. 2021, 45, 19358–19363.

[60]

Zhang, M.; Wang, L.; Yan, H. J.; Lian, L. Z.; Si, J. X.; Long, Z. Q.; Cui, X. X.; Wang, J. D.; Zhao, L.; Yang, C. et al. Palladium-halloysite nanocomposites as an efficient heterogeneous catalyst for acetylene hydrochlorination. J. Mater. Res. Technol. 2021, 13, 2055–2065.

[61]

Long, Z. Q.; Wang, L.; Yan, H. J.; Si, J. X.; Zhang, M.; Wang, J. D.; Zhao, L.; Yang, C.; Wu, R. L. Design of choline chloride modified USY zeolites for palladium-catalyzed acetylene hydrochlorination. RSC Adv. 2022, 12, 9923–9932.

[62]

Liu, L.; Song, L. T.; Xu, D.; Zhu, M. Y.; Dai, B. Effect of the transforming Ag into an active species (silver chloride) for the acetylene hydrochlorination. ChemCatChem 2021, 13, 4411–4418.

[63]

Fan, Y. R.; Xu, H. M.; Liu, Z. S.; Sun, S. Y.; Huang, W. J.; Qu, Z.; Yan, N. Q. Tunable redox cycle and enhanced π-complexation in acetylene hydrochlorination over RuCu Catalysts. ACS Catal. 2022, 12, 7579–7588.

[64]

Kuang, M.; Guan, A. X.; Gu, Z. X.; Han, P.; Qian, L. P.; Zheng, G. F. Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. Nano Res. 2019, 12, 2324–2329.

[65]

Li, F.; Zhang, H. Y.; Zhang, M. M.; Peng, W. C.; Yao, L. S.; Dong, Y. Z.; Zhang, J. L. Construction of multistage porous carbon materials for the hydrochlorination of acetylene: Impact of nitrogen incorporation. Mol. Catal. 2022, 527, 112405.

[66]

Ma, H. F.; Ma, G. Y.; Qi, Y. Y.; Wang, Y. L.; Chen, Q. J.; Rout, K. R.; Fuglerud, T.; Chen, D. Nitrogen-doped carbon-assisted one-pot tandem reaction for vinyl chloride production via ethylene oxychlorination. Angew. Chem. 2020, 132, 22264–22269.

[67]

Wang, B. L.; Jiang, Z.; Wang, T.; Tang, Q.; Yu, M. D.; Feng, T.; Tian, M.; Chang, R. Q.; Yue, Y. X.; Pan, Z. Y. et al. Controllable synthesis of vacancy-defect Cu site and its catalysis for the manufacture of vinyl chloride monomer. ACS Catal. 2021, 11, 11016–11028.

[68]

Liu, X. Y.; Qiao, X. L.; Zhou, Z. Q.; Zhao, C. Y.; Guan, Q. X.; Li, W. Mechanism exploring of acetylene hydrochlorination using hexamethylenetetramine as a single active site metal-free catalyst. Catal. Commun. 2020, 147, 106147.

[69]

Ewels, C. P.; Glerup, M. Nitrogen doping in carbon nanotubes. J. Nanosci. Nanotechnol. 2005, 5, 1345–1363.

File
12274_2022_5237_MOESM1_ESM.pdf (621.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 September 2022
Revised: 22 October 2022
Accepted: 24 October 2022
Published: 07 December 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21978325), Innovation Research Projects (Nos. 20CX06072A, 20CX06095A, and 20CX06096A), the Natural Science Foundation of Shandong Province (Nos. ZR2020KB006 and ZR2020YQ17), and the Science and Technology Project of Xinjiang Bingtuan Supported by Central Government (No. 2022BC001).

Return