Journal Home > Volume 16 , Issue 7

For decades, global warming and energy shortages have been two urgent problems in human society. The solar-driven photocatalytic conversion of carbon dioxide (CO2) into hydrocarbon fuels is expected to become a technology to solve these problems. Two-dimensional (2D) materials shine in the field of photocatalytic CO2 due to their layered structure, larger specific surface area, more active sites, and larger charge transfer efficiency. This article reviews the progress of CO2 reduction by several types of 2D materials in recent years. Generally, the reduction of CO2 is difficult in terms of kinetics and thermodynamics, but it is found through theoretical calculations and experiments that 2D materials have certain advantages in the reduction of CO2. Then the preparation methods of 2D materials are summarized and a variety of 2D materials are discussed and classified. Finally, an outlook on the development trend of 2D materials is made. This review aims to provide systematic and concise guidance for the design of 2D nanomaterials for photocatalytic CO2 reduction.


menu
Abstract
Full text
Outline
About this article

Recent advances in 2D semiconductor nanomaterials for photocatalytic CO2 reduction

Show Author's information Tong Li1Hongwei Huang1( )Shuobo Wang2( )Yan Mi3( )Yihe Zhang1
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
Goods and Material Department of CASIC Tertiary Research Institute, China Aerospace Science and Industrial Corporation, Beijing 100074, China
Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China

Abstract

For decades, global warming and energy shortages have been two urgent problems in human society. The solar-driven photocatalytic conversion of carbon dioxide (CO2) into hydrocarbon fuels is expected to become a technology to solve these problems. Two-dimensional (2D) materials shine in the field of photocatalytic CO2 due to their layered structure, larger specific surface area, more active sites, and larger charge transfer efficiency. This article reviews the progress of CO2 reduction by several types of 2D materials in recent years. Generally, the reduction of CO2 is difficult in terms of kinetics and thermodynamics, but it is found through theoretical calculations and experiments that 2D materials have certain advantages in the reduction of CO2. Then the preparation methods of 2D materials are summarized and a variety of 2D materials are discussed and classified. Finally, an outlook on the development trend of 2D materials is made. This review aims to provide systematic and concise guidance for the design of 2D nanomaterials for photocatalytic CO2 reduction.

Keywords: two-dimensional (2D) materials, photocatalysis, charge separation, CO2 reduction, reactive sites

References(194)

[1]

Almeida, R. M.; Shi, Q. R.; Gomes-Selman, J. M.; Wu, X. J.; Xue, Y. X.; Angarita, H.; Barros, N.; Forsberg, B. R.; García-Villacorta, R.; Hamilton, S. K. et al. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nat. Commun. 2019, 10, 4281.

[2]

Tyrrell, T. Chance played a role in determining whether Earth stayed habitable. Commun. Earth Environ. 2020, 1, 61.

[3]

Sorrell, S.; Gatersleben, B.; Druckman, A. The limits of energy sufficiency: A review of the evidence for rebound effects and negative spillovers from behavioural change. Energy Res. Soc. Sci. 2020, 64, 101439.

[4]

Centi, G.; Perathoner, S. Towards solar fuels from water and CO2. ChemSusChem 2010, 3, 195–208.

[5]

Fu, J. W.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; You, W.; Yu, J. G. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 2017, 13, 1603938.

[6]

Jin, J. R.; He, T. Facile synthesis of Bi2S3 nanoribbons for photocatalytic reduction of CO2 into CH3OH. Appl. Surf. Sci. 2017, 394, 364–370.

[7]

Mao, J.; Li, K.; Peng, T. Y. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal. Sci. Technol. 2013, 3, 2481–2498.

[8]

Yin, G. H.; Bi, Q. Y.; Zhao, W.; Xu, J. J.; Lin, T. Q.; Huang, F. Q. Efficient conversion of CO2 to methane photocatalyzed by conductive black titania. ChemCatChem 2017, 9, 4389–4396.

[9]

Álvarez, A.; Borges, M.; Corral-Pérez, J. J.; Olcina, J. G.; Hu, L. J.; Cornu, D.; Huang, R.; Stoian, D.; Urakawa, A. CO2 activation over catalytic surfaces. ChemPhysChem 2017, 18, 3135–3141.

[10]

White, J. L.; Baruch, M. F.; Pander, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.

[11]

Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. F. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges. Angew. Chem., Int. Ed. 2018, 57, 7610–7627.

[12]

He, J.; Wang, X. D.; Jin, S. B.; Liu, Z. Q.; Zhu, M. S. 2D metal-free heterostructure of covalent triazine framework/g-C3N4 for enhanced photocatalytic CO2 reduction with high selectivity. Chin. J. Catal. 2022, 43, 1306–1315.

[13]

Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

[14]

Xia, P. F.; Zhu, B. C.; Yu, J. G.; Cao, S. W.; Jaroniec, M. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 2017, 5, 3230–3238.

[15]

Zou, C. C.; Li, Q. Q.; Hua, Y. Y.; Zhou, B. H.; Duan, J. G.; Jin, W. Q. Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal. ACS Appl. Mater. Interfaces 2017, 9, 29093–29100.

[16]

Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

[17]

Kong, T. T.; Jiang, Y. W.; Xiong, Y. J. Photocatalytic CO2 conversion: What can we learn from conventional COx hydrogenation? Chem. Soc. Rev. 2020, 49, 6579–6591.

[18]

Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

[19]

Yue, X. Y.; Cheng, L.; Fan, J. J.; Xiang, Q. J. 2D/2D BiVO4/CsPbBr3 S-scheme heterojunction for photocatalytic CO2 reduction: Insights into structure regulation and fermi level modulation. Appl. Catal. B 2022, 304, 120979.

[20]

Xue, J. Y.; Yu, Y.; Yang, C.; Zhang, K. F.; Zhan, X. W.; Song, J. M.; Gui, J. J.; Li, Y. K.; Jin, X.; Gao, S. et al. Developing atomically thin Li1.81H0.19Ti2O5·2H2O nanosheets for selective photocatalytic CO2 reduction to CO. Langmuir 2022, 38, 523–530.

[21]

Li, L.; Han, Q. T.; Tang, L. Q.; Zhang, Y.; Li, P.; Zhou, Y.; Zou, Z. G. Flux synthesis of regular Bi4TaO8Cl square nanoplates exhibiting dominant exposure surfaces of {001} crystal facets for photocatalytic reduction of CO2 to methane. Nanoscale 2018, 10, 1905–1911.

[22]

Liu, T. Y.; Hao, L.; Bai, L. Q.; Liu, J. G.; Zhang, Y. H.; Tian, N.; Huang, H. W. Z-scheme junction Bi2O2(NO3)(OH)/g-C3N4 for promoting CO2 photoreduction. Chem. Eng. J. 2022, 429, 132268.

[23]

Yu, H. J.; Li, J. Y.; Zhang, Y. H.; Yang, S. Q.; Han, K. L.; Dong, F.; Ma, T. Y.; Huang, H. W. Three-in-one oxygen vacancies: Whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem., Int. Ed. 2019, 58, 3880–3884.

[24]

Si, J. J.; Yu, J. Q.; Shen, Y.; Zeng, M. Q.; Fu, L. Elemental 2D materials: Progress and perspectives toward unconventional structures. Small Struct. 2020, 2, 2000101.

[25]

Cai, X. K.; Luo, Y. T.; Liu, B. L.; Cheng, H. M. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 2018, 47, 6224–6266.

[26]

Zhao, W. F.; Wu, F. R.; Wu, H.; Chen, G. H. Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling. J. Nanomater. 2010, 2010, 528235.

[27]

Xue, T. T.; Zhang, X. C.; Zhang, C. M.; Li, R.; Liu, J. X.; Wang, Y. F.; Wang, Y. W.; Fan, C. M. In-situ electrochemical-ion-exchange synthesis of novel Bi12SiO20/BiOBr composite film from Bi plate for enhanced photocatalytic CO2 reduction activity. Mater. Lett. 2020, 274, 127990.

[28]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[29]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[30]

Zhang, Y. Z.; Yao, D. Z.; Xia, B. Q.; Xu, H. L.; Tang, Y. H.; Davey, K.; Ran, J. R.; Qiao, S. Z. ReS2 nanosheets with in situ formed sulfur vacancies for efficient and highly selective photocatalytic CO2 reduction. Small Sci. 2021, 1, 2000052.

[31]

Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 118, 6189–6235.

[32]

Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O’Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

[33]

Tang, L. Q.; Chen, R. T.; Meng, X. G.; Lv, B. H.; Fan, F. T.; Ye, J. H.; Wang, X. Y.; Zhou, Y.; Li, C.; Zou, Z. G. Unique homo-heterojunction synergistic system consisting of stacked BiOCl nanoplate/Zn-Cr layered double hydroxide nanosheets promoting photocatalytic conversion of CO2 into solar fuels. Chem. Commun. 2018, 54, 5126–5129.

[34]

Duan, X. Y.; Chen, G. D.; Guo, L. A.; Zhu, Y. Z.; Ye, H. G.; Wu, Y. L. A template-free CVD route to synthesize hierarchical porous ZnO films. Superlattices Microstruct. 2015, 88, 501–507.

[35]

Meier, A. J.; Garg, A.; Sutter, B.; Kuhn, J. N.; Bhethanabotla, V. R. MoS2 nanoflowers as a gateway for solar-driven CO2 photoreduction. ACS Sustain. Chem. Eng. 2019, 7, 265–275.

[36]

Park, S.; Song, H. J.; Lee, C. W.; Hwang, S. W.; Cho, I. S. Enhanced photocatalytic activity of ultrathin Ba5Nb4O15 two-dimensional nanosheets. ACS Appl. Mater. Interfaces 2015, 7, 21860–21867.

[37]

Ali, A.; Oh, W. C. Preparation of nanowire like WSe2-graphene nanocomposite for photocatalytic reduction of CO2 into CH3OH with the presence of sacrificial agents. Sci. Rep. 2017, 7, 1867.

[38]

Zhu, X. W.; Huang, S. Q.; Yu, Q.; She, Y. B.; Yang, J. M.; Zhou, G. L.; Li, Q. D.; She, X. J.; Deng, J. J.; Li, H. M. et al. In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. Appl. Catal. B: Environ. 2020, 269, 118760.

[39]

Zheng, Y. N.; Yin, X. H.; Jiang, Y.; Bai, J. S.; Tang, Y.; Shen, Y. L.; Zhang, M. Nano Ag-decorated MoS2 nanosheets from 1T to 2H phase conversion for photocatalytically reducing CO2 to methanol. Energy Technol. 2019, 7, 1900582.

[40]

Kumar, S.; Isaacs, M. A.; Trofimovaite, R.; Durndell, L.; Parlett, C. M. A.; Douthwaite, R. E.; Coulson, B.; Cockett, M. C. R.; Wilson, K.; Lee, A. F. P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction. Appl. Catal. B: Environ. 2017, 209, 394–404.

[41]

Jiao, W. Y.; Xie, Y.; He, F.; Wang, K. Y.; Ling, Y.; Hu, Y. Y.; Wang, J. L.; Ye, H.; Wu, J.; Hou, Y. A visible light-response flower-like La-doped BiOBr nanosheets with enhanced performance for photoreducing CO2 to CH3OH. Chem. Eng. J. 2021, 418, 129286.

[42]

Hong, J. D.; Zhang, W.; Wang, Y. B.; Zhou, T. H.; Xu, R. Photocatalytic reduction of carbon dioxide over self-assembled carbon nitride and layered double hydroxide: The role of carbon dioxide enrichment. ChemCatChem 2014, 6, 2315–2321.

[43]

Kong, X. Y.; Lee, W. Q.; Mohamed, A. R.; Chai, S. P. Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity. Chem. Eng. J. 2019, 372, 1183–1193.

[44]

Wang, L.; Bahnemann, D. W.; Bian, L.; Dong, G. H.; Zhao, J.; Wang, C. Y. Two-dimensional layered zinc silicate nanosheets with excellent photocatalytic performance for organic pollutant degradation and CO2 conversion. Angew. Chem., Int. Ed. 2019, 58, 8103–8108.

[45]

Jiang, H. Y.; Katsumata, K. I.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Photocatalytic reduction of CO2 on Cu2O-loaded Zn-Cr layered double hydroxides. Appl. Catal. B: Environ. 2018, 224, 783–790.

[46]

Zhang, T.; Maihemllti, M.; Okitsu, K.; Talifur, D.; Tursun, Y.; Abulizi, A. In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO2 reduction. Appl. Surf. Sci. 2021, 556, 149828.

[47]

Hao, L.; Kang, L.; Huang, H. W.; Ye, L. Q.; Han, K. L.; Yang, S. Q.; Yu, H. J.; Batmunkh, M.; Zhang, Y. H.; Ma, T. Y. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 2019, 31, 1900546.

[48]

Kawamura, S.; Puscasu, M. C.; Yoshida, Y.; Izumi, Y.; Carja, G. Tailoring assemblies of plasmonic silver/gold and zinc-gallium layered double hydroxides for photocatalytic conversion of carbon dioxide using UV–visible light. Appl. Catal. A: Gen. 2015, 504, 238–247.

[49]

Li, K.; Liang, Y. J.; Yang, J.; Gao, Q.; Zhu, Y. L.; Liu, S. Q.; Xu, R.; Wu, X. Y. Controllable synthesis of {001} facet dependent foursquare BiOCl nanosheets: A high efficiency photocatalyst for degradation of methyl orange. J. Alloys Compd. 2017, 695, 238–249.

[50]

Jiang, J.; Zhao, K.; Xiao, X. Y.; Zhang, L. Z. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2012, 134, 4473–4476.

[51]

Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.; Wang, W. D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B: Environ. 2006, 68, 125–129.

[52]

Ma, Z. Y.; Li, P. H.; Ye, L. Q.; Zhou, Y.; Su, F. Y.; Ding, C. H.; Xie, H. Q.; Bai, Y.; Wong, P. K. Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO2 conversion. J. Mater. Chem. A 2017, 5, 24995–25004.

[53]

Kong, X. Y.; Lee, W. P. C.; Ong, W. J.; Chai, S. P.; Mohamed, A. R. Oxygen-deficient BiOBr as a highly stable photocatalyst for efficient CO2 reduction into renewable carbon-neutral fuels. ChemCatChem 2016, 8, 3074–3081.

[54]

Ye, L. Q.; Jin, X. L.; Ji, X. X.; Liu, C.; Su, Y. R.; Xie, H. Q.; Liu, C. Facet-dependent photocatalytic reduction of CO2 on BiOI nanosheets. Chem. Eng. J. 2016, 291, 39–46.

[55]

Jin, J. R.; Wang, Y. J.; He, T. Preparation of thickness-tunable BiOCl nanosheets with high photocatalytic activity for photoreduction of CO2. RSC Adv. 2015, 5, 100244–100250.

[56]

Wu, S. Q.; Wang, J. B.; Li, Q. C.; Huang, Z. A.; Rao, Z. Q.; Zhou, Y. Bi/BiOCl nanosheets enriched with oxygen vacancies to enhance photocatalytic CO2 reduction. Trans. Tianjin Univ. 2021, 27, 155–164.

[57]

Kong, X. Y.; Ng, B. J.; Tan, K. H.; Chen, X. F.; Wang, H. T.; Mohamed, A. R.; Chai, S. P. Simultaneous generation of oxygen vacancies on ultrathin BiOBr nanosheets during visible-light-driven CO2 photoreduction evoked superior activity and long-term stability. Catal. Today 2018, 314, 20–27.

[58]

Di, J.; Chen, C.; Zhu, C.; Song, P.; Xiong, J.; Ji, M. X.; Zhou, J. D.; Fu, Q. D.; Xu, M. Z.; Hao, W. et al. Bismuth vacancy-tuned bismuth oxybromide ultrathin nanosheets toward photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2019, 11, 30786–30792.

[59]

Wu, J.; Xie, Y.; Ling, Y.; Si, J. C.; Li, X.; Wang, J. L.; Ye, H.; Zhao, J. S.; Li, S. Q.; Zhao, Q. D. et al. One-step synthesis and Gd3+ decoration of BiOBr microspheres consisting of nanosheets toward improving photocatalytic reduction of CO2 into hydrocarbon fuel. Chem. Eng. J. 2020, 400, 125944.

[60]

Xu, Y. X.; Jin, X. L.; Ge, T.; Xie, H. Q.; Sun, R. X.; Su, F. Y.; Li, X.; Ye, L. Q. Realizing efficient CO2 photoreduction in Bi3O4Cl: Constructing van der Waals heterostructure with g-C3N4. Chem. Eng. J. 2021, 409, 128178.

[61]

Jin, X. L.; Lv, C. D.; Zhou, X.; Ye, L. Q.; Xie, H. Q.; Liu, Y.; Su, H.; Zhang, B.; Chen, G. Oxygen vacancy engineering of Bi24O31Cl10 for boosted photocatalytic CO2 conversion. ChemSusChem 2019, 12, 2740–2747.

[62]

Quan, Y.; Wang, B.; Liu, G. P.; Li, H. M.; Xia, J. X. Carbonized polymer dots modified ultrathin Bi12O17Cl2 nanosheets Z-scheme heterojunction for robust CO2 photoreduction. Chem. Eng. Sci. 2021, 232, 116338.

[63]

Bai, Y.; Yang, P.; Wang, L.; Yang, B.; Xie, H. Q.; Zhou, Y.; Ye, L. Q. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO. Chem. Eng. J. 2019, 360, 473–482.

[64]

Di, J.; Chen, C.; Yang, S. Z.; Chen, S. M.; Duan, M. L.; Xiong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z. et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 2019, 10, 2840.

[65]

Ding, C. H.; Ye, L. Q.; Zhao, Q.; Zhong, Z. G.; Liu, K. C.; Xie, H. Q.; Bao, K. Y.; Zhang, X. G.; Huang, Z. X. Synthesis of BixOyIz from molecular precursor and selective photoreduction of CO2 into CO. J. CO2 Util. 2016, 14, 135–142.

[66]

Bai, Y.; Yang, P.; Wang, P. Q.; Xie, H. Q.; Dang, H. F.; Ye, L. Q. Semimetal bismuth mediated UV–vis–IR driven photo-thermocatalysis of Bi4O5I2 for carbon dioxide to chemical energy. J. CO2 Util. 2018, 23, 51–60.

[67]

Tu, S. C.; Guo, Y. X.; Zhang, Y. H.; Hu, C.; Zhang, T. R.; Ma, T. Y.; Huang, H. W. Piezocatalysis and piezo-photocatalysis: Catalysts classification and modification strategy, reaction mechanism, and practical application. Adv. Funct. Mater. 2020, 30, 2005158.

[68]

Ribeiro, C. S.; Lansarin, M. A. Enhanced photocatalytic activity of Bi2WO6 with PVP addition for CO2 reduction into ethanol under visible light. Environ. Sci. Pollut. Res. Int. 2021, 28, 23667–23674.

[69]

Kong, X. Y.; Tong, T.; Ng, B. J.; Low, J.; Zeng, T. H.; Mohamed, A. R.; Yu, J. G.; Chai, S. P. Topotactic transformation of bismuth oxybromide into bismuth tungstate: Bandgap modulation of single-crystalline {001}-faceted nanosheets for enhanced photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 26991–27000.

[70]

Li, Q. D.; Zhu, X. W.; Yang, J. M.; Yu, Q.; Zhu, X. L.; Chu, J. Y.; Du, Y. S.; Wang, C. T.; Hua, Y. J.; Li, H. M. et al. Plasma treated Bi2WO6 ultrathin nanosheets with oxygen vacancies for improved photocatalytic CO2 reduction. Inorg. Chem. Front. 2020, 7, 597–602.

[71]

Li, H.; Zhang, J. C.; Yu, J. G.; Cao, S. W. Ultra-thin carbon-doped Bi2WO6 nanosheets for enhanced photocatalytic CO2 reduction. Trans. Tianjin Univ. 2021, 27, 338–347.

[72]

Li, Y. Y.; Fan, J. S.; Tan, R. Q.; Yao, H. C.; Peng, Y.; Liu, Q. C.; Li, Z. J. Selective photocatalytic reduction of CO2 to CH4 modulated by chloride modification on Bi2WO6 nanosheets. ACS Appl. Mater. Interfaces 2020, 12, 54507–54516.

[73]

Jiang, Y.; Chen, H. Y.; Li, J. Y.; Liao, J. F.; Zhang, H. H.; Wang, X. D.; Kuang, D. B. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2020, 30, 2004293.

[74]

Zheng, Y.; Zhou, T. F.; Zhao, X. D.; Pang, W. K.; Gao, H.; Li, S. A.; Zhou, Z.; Liu, H. K.; Guo, Z. P. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 2017, 29, 1700396.

[75]

Li, S. G.; Bai, L. Q.; Ji, N.; Yu, S. X.; Lin, S.; Tian, N.; Huang, H. W. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6. J. Mater. Chem. A 2020, 8, 9268–9277.

[76]

Liu, L. Z.; Huang, H. W.; Chen, F.; Yu, H. J.; Tian, N.; Zhang, Y. H.; Zhang, T. R. Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12. Sci. Bull. 2020, 65, 934–943.

[77]

Liu, L. Z.; Huang, H. W.; Chen, Z. S.; Yu, H. J.; Wang, K. Y.; Huang, J. D.; Yu, H.; Zhang, Y. H. Synergistic polarization engineering on bulk and surface for boosting CO2 photoreduction. Angew. Chem., Int. Ed. 2021, 60, 18303–18308.

[78]

Wang, X. Y.; Wang, Y. S.; Gao, M. C.; Shen, J. N.; Pu, X. P.; Zhang, Z. Z.; Lin, H. X.; Wang, X. X. BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO. Appl. Catal. B: Environ. 2020, 270, 118876.

[79]

Huang, H. W.; Tu, S. C.; Zeng, C.; Zhang, T. R.; Reshak, A. H.; Zhang, Y. H. Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem., Int. Ed. 2017, 56, 11860–11864.

[80]

Chen, F.; Huang, H. W.; Ye, L. Q.; Zhang, T. R.; Zhang, Y. H.; Han, X. P.; Ma, T. Y. Thickness-dependent facet junction control of layered BiOIO3 single crystals for highly efficient CO2 photoreduction. Adv. Funct. Mater. 2018, 28, 1804284.

[81]

Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.

[82]

Zou, J. S.; Wu, J. Experimental study on the photocatalytic reduction of CO2 by Fe2O3/BiOIO3 composite photocatalyst. IOP Conf. Ser.: Earth Environ. Sci. 2021, 770, 012033.

[83]

Xu, Y.; You, Y.; Huang, H. W.; Guo, Y. X.; Zhang, Y. H. Bi4NbO8Cl {001} nanosheets coupled with g-C3N4 as 2D/2D heterojunction for photocatalytic degradation and CO2 reduction. J. Hazard. Mater. 2020, 381, 121159.

[84]

Guo, L. N.; You, Y.; Huang, H. W.; Tian, N.; Ma, T. Y.; Zhang, Y. H. Z-scheme g-C3N4/Bi2O2[BO2(OH)] heterojunction for enhanced photocatalytic CO2 reduction. J. Colloid Interface Sci. 2020, 568, 139–147.

[85]

Ye, L. Q.; Jin, X. L.; Liu, C.; Ding, C. H.; Xie, H. Q.; Chu, K. H.; Wong, P. K. Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels. Appl. Catal. B: Environ. 2016, 187, 281–290.

[86]

Lu, M. F.; Li, Q. Q.; Zhang, C. L.; Fan, X. X.; Li, L.; Dong, Y. M.; Chen, G. Q.; Shi, H. F. Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon 2020, 160, 342–352.

[87]

Oliveira, J. A.; Torres, J. A.; Gonçalves, R. V.; Ribeiro, C.; Nogueira, F. G. E.; Ruotolo, L. A. M. Photocatalytic CO2 reduction over Nb2O5/basic bismuth nitrate nanocomposites. Mater. Res. Bull. 2021, 133, 111073.

[88]

Xie, Z. K.; Xu, Y. Y.; Li, D.; Meng, S. C.; Chen, M.; Jiang, D. L. Covalently bonded Bi2O3 nanosheet/Bi2WO6 network heterostructures for efficient photocatalytic CO2 reduction. ACS Appl. Energy Mater. 2020, 3, 12194–12203.

[89]

Miao, Y. F.; Guo, R. T.; Gu, J. W.; Liu, Y. Z.; Wu, G. L.; Duan, C. P.; Pan, W. G. Z-scheme Bi/Bi2O2CO3/layered double-hydroxide nanosheet heterojunctions for photocatalytic CO2 reduction under visible light. ACS Appl. Nano Mater. 2021, 4, 4902–4911.

[90]

Yan, J. Y.; Wang, C. H.; Ma, H.; Li, Y. Y.; Liu, Y. C.; Suzuki, N.; Terashima, C.; Fujishima, A.; Zhang, X. T. Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction. Appl. Catal. B: Environ. 2020, 268, 118401.

[91]

Kong, X. Y.; Tan, W. L.; Ng, B. J.; Chai, S. P.; Mohamed, A. R. Harnessing Vis-NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets. Nano Res. 2017, 10, 1720–1731.

[92]

Oshima, T.; Ichibha, T.; Qin, K. S.; Muraoka, K.; Vequizo, J. J. M.; Hibino, K.; Kuriki, R.; Yamashita, S.; Hongo, K.; Uchiyama, T. et al. Undoped layered perovskite oxynitride Li2LaTa2O6N for photocatalytic CO2 reduction with visible light. Angew. Chem., Int. Ed. 2018, 57, 8154–8158.

[93]

Huang, H. H.; Liu, X. Q.; Li, F.; He, Q. Y.; Ji, H. B.; Yu, C. L. In situ construction of a 2D CoTiO3/g-C3N4 photocatalyst with an S-scheme heterojunction and its excellent performance for CO2 reduction. Sustainable Energy Fuels 2022, 6, 4903–4915.

[94]

Lin, N. S.; Lin, Y.; Qian, X. J.; Wang, X. X.; Su, W. Y. Construction of a 2D/2D WO3/LaTiO2N direct Z-scheme photocatalyst for enhanced CO2 reduction performance under visible light. ACS Sustain. Chem. Eng. 2021, 9, 13686–13694.

[95]

Tu, S. C.; Zhang, Y. H.; Reshak, A. H.; Auluck, S.; Ye, L. Q.; Han, X. P.; Ma, T. Y.; Huang, H. W. Ferroelectric polarization promoted bulk charge separation for highly efficient CO2 photoreduction of SrBi4Ti4O15. Nano Energy 2019, 56, 840–850.

[96]

Kwak, B. S.; Do, J. Y.; Park, N. K.; Kang, M. Surface modification of layered perovskite Sr2TiO4 for improved CO2 photoreduction with H2O to CH4. Sci. Rep. 2017, 7, 16370.

[97]

Wang, Y. H.; Liu, M.; Chen, W.; Mao, L. Q.; Shangguan, W. F. Ag loaded on layered perovskite H2SrTa2O7 to enhance the selectivity of photocatalytic CO2 reduction with H2O. J. Alloys Compd. 2019, 786, 149–154.

[98]

Vu, N. N.; Nguyen, C. C.; Kaliaguine, S.; Do, T. O. Reduced Cu/Pt-HCa2Ta3O10 perovskite nanosheets for sunlight-driven conversion of CO2 into valuable fuels. Adv. Sustain. Syst. 2017, 1, 1700048.

[99]

Pan, L. K.; Mei, H.; Zhu, G. Q.; Li, S. P.; Xie, X. Q.; Gong, S. W.; Liu, H. X.; Jin, Z. P.; Gao, J. Z.; Cheng, L. F. et al. Bi selectively doped SrTiO3−x nanosheets enhance photocatalytic CO2 reduction under visible light. J. Colloid Interface Sci. 2022, 611, 137–148.

[100]

Ouyang, T. W.; Fan, W. Y.; Guo, J. Q.; Zheng, Y. N.; Yin, X. H.; Shen, Y. L. DFT study on Ag loaded 2H-MoS2 for understanding the mechanism of improved photocatalytic reduction of CO2. Phys. Chem. Chem. Phys. 2020, 22, 10305–10313.

[101]

Xu, F. Y.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Xu, J. 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction. Adv. Opt. Mater. 2018, 6, 1800911.

[102]

Jia, P. Y.; Guo, R. T.; Pan, W. G.; Huang, C. Y.; Tang, J. Y.; Liu, X. Y.; Qin, H.; Xu, Q. Y. The MoS2/TiO2 heterojunction composites with enhanced activity for CO2 photocatalytic reduction under visible light irradiation. Colloids Surf. A: Physicochem. Eng. Aspects 2019, 570, 306–316.

[103]

Kumari, S.; Gusain, R.; Kumar, A.; Manwar, N.; Jain, S. L.; Khatri, O. P. Direct growth of nanostructural MoS2 over the h-BN nanoplatelets: An efficient heterostructure for visible light photoreduction of CO2 to methanol. J. CO2 Util. 2020, 42, 101345.

[104]

Wang, X. D.; He, J.; Mao, L.; Cai, X. Y.; Sun, C. Z.; Zhu, M. S. CsPbBr3 perovskite nanocrystals anchoring on monolayer MoS2 nanosheets for efficient photocatalytic CO2 reduction. Chem. Eng. J. 2021, 416, 128077.

[105]

Zhao, Y. X.; Cai, W.; Shi, Y. P.; Tang, J. Y.; Gong, Y. H.; Chen, M. D.; Zhong, Q. Construction of Nano-Fe2O3-decorated flower-like MoS2 with Fe–S bonds for efficient photoreduction of CO2 under visible-light irradiation. ACS Sustain. Chem. Eng. 2020, 8, 12603–12611.

[106]

Shown, I.; Samireddi, S.; Chang, Y. C.; Putikam, R.; Chang, P. H.; Sabbah, A.; Fu, F. Y.; Chen, W. F.; Wu, C. I.; Yu, T. Y. et al. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nat. Commun. 2018, 9, 169.

[107]

She, H. D.; Zhou, H.; Li, L. S.; Zhao, Z. W.; Jiang, M.; Huang, J. W.; Wang, L.; Wang, Q. Z. Construction of a two-dimensional composite derived from TiO2 and SnS2 for enhanced photocatalytic reduction of CO2 into CH4. ACS Sustain. Chem. Eng. 2019, 7, 650–659.

[108]

Wang, X. D.; Huang, Y. H.; Liao, J. F.; Jiang, Y.; Zhou, L.; Zhang, X. Y.; Chen, H. Y.; Kuang, D. B. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 13434–13441.

[109]

Yin, S. K.; Sun, L. L.; Zhou, Y. J.; Li, X.; Li, J. Z.; Song, X. H.; Huo, P. W.; Wang, H. Q.; Yan, Y. S. Enhanced electron–hole separation in SnS2/Au/g-C3N4 embedded structure for efficient CO2 photoreduction. Chem. Eng. J. 2021, 406, 126776.

[110]

Li, G. H.; Sun, Y. Y.; Sun, S. M.; Chen, W. L.; Zheng, J. C.; Chen, F.; Sun, Z. F.; Sun, W. The effects of morphologies on photoreduction of carbon dioxide to gaseous fuel over tin disulfide under visible light irradiation. Adv. Powder Technol. 2020, 31, 2505–2512.

[111]

Sun, Y. Y.; Li, G. H.; Xu, J.; Sun, Z. F. Visible-light photocatalytic reduction of carbon dioxide over SnS2. Mater. Lett. 2016, 174, 238–241.

[112]

Qiu, C. H.; Bai, S.; Cao, W. J.; Tan, L.; Liu, J. Y.; Zhao, Y. F.; Song, Y. F. Tunable syngas synthesis from photocatalytic CO2 reduction under visible-light irradiation by interfacial engineering. Trans. Tianjin Univ. 2020, 26, 352–361.

[113]

Li, J.; Xu, X. H.; Huang, B. B.; Lou, Z. Z.; Li, B. J. Light-induced in situ formation of a nonmetallic plasmonic MoS2/MoO3−x heterostructure with efficient charge transfer for CO2 reduction and SERS detection. ACS Appl. Mater. Interfaces 2021, 13, 10047–10053.

[114]

Gao, G.; Zhu, Z.; Zheng, J.; Liu, Z.; Wang, Q.; Yan, Y. S. Ultrathin magnetic Mg-Al LDH photocatalyst for enhanced CO2 reduction: Fabrication and mechanism. J. Colloid Interface Sci. 2019, 555, 1–10.

[115]

Bai, S.; Wang, Z. L.; Tan, L.; Waterhouse, G. I. N.; Zhao, Y. F.; Song, Y. F. 600 nm irradiation-induced efficient photocatalytic CO2 reduction by ultrathin layered double hydroxide nanosheets. Ind. Eng. Chem. Res. 2020, 59, 5848–5857.

[116]

Zhang, T. T.; Shang, H. S.; Zhang, B.; Yan, D. P.; Xiang, X. Ag/ultrathin-layered double hydroxide nanosheets induced by a self-redox strategy for highly selective CO2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 16536–16544.

[117]

Wang, K. X.; Miao, C. L.; Liu, Y. N.; Cai, L. Y.; Jones, W.; Fan, J. X.; Li, D. Q.; Feng, J. T. Vacancy enriched ultrathin TiMgAl-layered double hydroxide/graphene oxides composites as highly efficient visible-light catalysts for CO2 reduction. Appl. Catal. B: Environ. 2020, 270, 118878.

[118]

Wang, X.; Wang, Z. l.; Bai, Y.; Tan, L.; Xu, Y. Q.; Hao, X. J.; Wang, J. K.; Mahadi, A. H.; Zhao, Y. F.; Zheng, L. R. et al. Tuning the selectivity of photoreduction of CO2 to syngas over Pd/layered double hydroxide nanosheets under visible light up to 600 nm. J. Energy Chem. 2020, 46, 1–7.

[119]

Tan, L.; Xu, S. M.; Wang, Z. L.; Xu, Y. Q.; Wang, X.; Hao, X. J.; Bai, S.; Ning, C. J.; Wang, Y.; Zhang, W. K. et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angew. Chem. 2019, 131, 11986–11993.

[120]

Bai, S.; Li, T.; Wang, H. J.; Tan, L.; Zhao, Y. F.; Song, Y. F. Scale-up synthesis of monolayer layered double hydroxide nanosheets via separate nucleation and aging steps method for efficient CO2 photoreduction. Chem. Eng. J. 2021, 419, 129390.

[121]

Hao, X. J.; Tan, L.; Xu, Y. Q.; Wang, Z. L.; Wang, X.; Bai, S.; Ning, C. J.; Zhao, J. W.; Zhao, Y. F.; Song, Y. F. Engineering active Ni sites in ternary layered double hydroxide nanosheets for a highly selective photoreduction of CO2 to CH4 under irradiation above 500 nm. Ind. Eng. Chem. Res. 2020, 59, 3008–3015.

[122]

Xiong, X. Y.; Zhao, Y. F.; Shi, R.; Yin, W. J.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, T. R. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. 2020, 65, 987–994.

[123]

Tan, L.; Peter, K.; Ren, J.; Du, B. Y.; Hao, X. J.; Zhao, Y. F.; Song, Y. F. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm. Front. Chem. Sci. Eng. 2020, 15, 99–108.

[124]

Chen, W. Y.; Han, B.; Xie, Y. L.; Liang, S. J.; Deng, H.; Lin, Z. Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem. Eng. J. 2020, 391, 123519.

[125]

Zhao, S.; Pan, D.; Liang, Q.; Zhou, M.; Yao, C.; Xu, S.; Li, Z. Y. Ultrathin NiAl-layered double hydroxides grown on 2D Ti3C2Tx MXene to construct core–shell heterostructures for enhanced photocatalytic CO2 reduction. J. Phys. Chem. C 2021, 125, 10207–10218.

[126]

Ali Khan, A.; Tahir, M. Construction of an S-scheme heterojunction with oxygen-vacancy-rich trimetallic CoAlLa-LDH anchored on titania-sandwiched Ti3C2 multilayers for boosting photocatalytic CO2 reduction under visible light. Ind. Eng. Chem. Res. 2021, 60, 16201–16223.

[127]

Xu, J.; Liu, X. W.; Zhou, Z. J.; Deng, L. D.; Liu, L.; Xu, M. H. Platinum nanoparticles with low content and high dispersion over exfoliated layered double hydroxide for photocatalytic CO2 reduction. Energy Fuels 2021, 35, 10820–10831.

[128]

Jo, W. K.; Kumar, S.; Tonda, S. N-doped C dot/CoAl-layered double hydroxide/g-C3N4 hybrid composites for efficient and selective solar-driven conversion of CO2 into CH4. Compos. Part B: Eng. 2019, 176, 107212.

[129]

Wang, K. F.; Zhang, L.; Su, Y.; Shao, D. K.; Zeng, S. W.; Wang, W. Z. Photoreduction of carbon dioxide of atmospheric concentration to methane with water over CoAl-layered double hydroxide nanosheets. J. Mater. Chem. A 2018, 6, 8366–8373.

[130]

Kipkorir, P.; Tan, L.; Ren, J.; Zhao, Y. F.; Song, Y. F. Intercalation effect in NiAl-layered double hydroxide nanosheets for CO2 reduction under visible light. Chem. Res. Chin. Univ. 2020, 36, 127–133.

[131]

Ji, X. Y.; Guo, R. T.; Tang, J. Y.; Miao, Y. F.; Lin, Z. D.; Hong, L. F.; Yuan, Y.; Li, Z. S.; Pan, W. P. Construction of full solar-spectrum-driven Cu2−xS/Ni-Al-LDH heterostructures for efficient photocatalytic CO2 reduction. ACS Appl. Energy Mater. 2022, 5, 2862–2872.

[132]

Wu, G.; Shen, H. C.; Li, J. M.; Guo, J. Q.; Yin, X. H.; Mu, M. M. Syntheses of ZnTi-LDH sensitized by tetra(4-carboxyphenyl) porphyrin for accerlating photocatalytic reduction of carbon dioxide. J. Solid State Chem. 2022, 309, 122955.

[133]

Ou, S. Y.; Zhou, M.; Chen, W.; Zhang, Y. Y.; Liu, Y. L. COF-5/CoAl-LDH nanocomposite heterojunction for enhanced visible-light-driven CO2 reduction. ChemSusChem 2022, 15, e202200184.

[134]

Zhao, X. Y.; Zhao, X. P.; Ullah, I.; Gao, L. N.; Zhang, J. Z.; Lu, J. The in-situ growth NiFe-layered double hydroxides/g-C3N4 nanocomposite 2D/2D heterojunction for enhanced photocatalytic CO2 reduction performance. Catal. Lett. 2021, 151, 1683–1692.

[135]

Hu, J. M.; Ding, J.; Zhong, Q. Ultrathin 2D Ti3C2 MXene Co-catalyst anchored on porous g-C3N4 for enhanced photocatalytic CO2 reduction under visible-light irradiation. J. Colloid Interface Sci. 2021, 582, 647–657.

[136]

Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.

[137]

Chen, L. Y.; Huang, K. L.; Xie, Q. R.; Lam, S. M.; Sin, J. C.; Su, T. M.; Ji, H. B.; Qin, Z. Z. The enhancement of photocatalytic CO2 reduction by the in situ growth of TiO2 on Ti3C2 MXene. Catal. Sci. Technol. 2021, 11, 1602–1614.

[138]

Yang, Y. L.; Zhang, D. N.; Fan, J. J.; Liao, Y. L.; Xiang, Q. J. Construction of an ultrathin S-scheme heterojunction based on few-layer g-C3N4 and monolayer Ti3C2Tx MXene for photocatalytic CO2 reduction. Sol. RRL 2021, 5, 2000351.

[139]

Yang, C.; Tan, Q. Y.; Li, Q.; Zhou, J.; Fan, J. J.; Li, B.; Sun, J.; Lv, K. L. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst:Dual effects of urea. Appl. Catal. B: Environ. 2020, 268, 118738.

[140]

Wang, H. Q.; Tang, Q. J.; Wu, Z. B. Construction of few-layer Ti3C2 MXene and boron-doped g-C3N4 for enhanced photocatalytic CO2 reduction. ACS Sustain. Chem. Eng. 2021, 9, 8425–8434.

[141]

Chen, C.; Hu, J. D.; Yang, X. G.; Yang, T. Y.; Qu, J. F.; Guo, C. X.; Li, C. M. Ambient-stable black phosphorus-based 2D/2D S-scheme heterojunction for efficient photocatalytic CO2 reduction to syngas. ACS Appl. Mater. Interfaces 2021, 13, 20162–20173.

[142]

Zhou, G. L.; Yang, J. M.; Zhu, X. W.; Li, Q. D.; Yu, Q.; El-Alami, W.; Wang, C. T.; She, Y. B.; Qian, J. C.; Xu, H. et al. Cryo-induced closely bonded heterostructure for effective CO2 conversion: The case of ultrathin BP nanosheets/ g-C3N4. J. Energy Chem. 2020, 49, 89–95.

[143]

Xu, Y. M.; Zhang, W. N.; Zhou, G. F.; Jin, M. L.; Li, X. S. In-situ growth of metal phosphide-black phosphorus heterojunction for highly selective and efficient photocatalytic carbon dioxide conversion. J. Colloid Interface Sci. 2022, 616, 641–648.

[144]

Liu, W. B.; Li, X. K.; Wang, C. M.; Pan, H. H.; Liu, W. P.; Wang, K.; Zeng, Q. D.; Wang, R. M.; Jiang, J. Z. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440.

[145]

Yang, S. Z.; Hu, W. H.; Zhang, X.; He, P. L.; Pattengale, B.; Liu, C. M.; Cendejas, M.; Hermans, I.; Zhang, X. Y.; Zhang, J. R. et al. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J. Am. Chem. Soc. 2018, 140, 14614–14618.

[146]

Qamar, S.; Lei, F. C.; Liang, L.; Gao, S.; Liu, K. T.; Sun, Y. F.; Ni, W. X.; Xie, Y. Ultrathin TiO2 flakes optimizing solar light driven CO2 reduction. Nano Energy 2016, 26, 692–698.

[147]

Shi, W. N.; Guo, X. W.; Cui, C. X.; Jiang, K.; Li, Z. J.; Qu, L. B.; Wang, J. C. Controllable synthesis of Cu2O decorated WO3 nanosheets with dominant (001) facets for photocatalytic CO2 reduction under visible-light irradiation. Appl. Catal. B: Environ. 2019, 243, 236–242.

[148]

Chen, W. Y.; Han, B.; Tian, C.; Liu, X. M.; Liang, S. J.; Deng, H.; Lin, Z. MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction. Appl. Catal. B: Environ. 2019, 244, 996–1003.

[149]

Xin, C. Y.; Hu, M. C.; Wang, K.; Wang, X. T. Significant enhancement of photocatalytic reduction of CO2 with H2O over ZnO by the formation of basic zinc carbonate. Langmuir 2017, 33, 6667–6676.

[150]

J Jana, P.; de la Peña O’Shea, V. A.; Montero, C. M.; Gálvez, P.; Pizarro, P.; Coronado, J. M.; Serrano, D. P. Mixed NaNbxTa1−xO3 perovskites as photocatalysts for H2 production. Green Chem. 2015, 17, 1735–1743.

[151]

You, H. L.; Wu, Z.; Wang, L.; Jia, Y. M.; Li, S.; Zou, J. Highly efficient pyrocatalysis of pyroelectric NaNbO3 shape-controllable nanoparticles for room-temperature dye decomposition. Chemosphere 2018, 199, 531–537.

[152]

Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. Recent progress in photocatalytic CO2 reduction over perovskite oxides. Sol. RRL 2017, 1, 1700126.

[153]

Xu, X. X.; Wang, X. Perovskite nano-heterojunctions: Synthesis, structures, properties, challenges, and prospects. Small Struct. 2020, 1, 2000009.

[154]

Shao, X.; Xin, W. Y.; Yin, X. H. Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol. Beilstein J. Nanotechnol. 2017, 8, 2264–2270.

[155]

Kumar, D. P.; Rangappa, A. P.; Do, K. H.; Hong, Y.; Gopannagari, M.; Reddy, K. A. J.; Bhavani, P.; Reddy, D. A.; Kim, T. K. Noble metal free few-layered perovskite-based Ba2NbFeO6 nanostructures on exfoliated g-C3N4 layers as highly efficient catalysts for enhanced solar fuel production. Appl. Surf. Sci. 2022, 572, 151406.

[156]

Mao, L. L.; Ke, W. J.; Pedesseau, L.; Wu, Y. L.; Katan, C.; Even, J.; Wasielewski, M. R.; Stoumpos, C. C.; Kanatzidis, M. G. Hybrid dion-jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 2018, 140, 3775–3783.

[157]

Chen, W.; Wang, Y. H.; Shangguan, W. Metal (oxide) modified (M = Pd, Ag, Au and Cu) H2SrTa2O7 for photocatalytic CO2 reduction with H2O: The effect of cocatalysts on promoting activity toward CO and H2 evolution. Int. J. Hydrogen Energy 2019, 44, 4123–4132.

[158]

Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863–20868.

[159]

Wang, Z.; Teramura, K.; Hosokawa, S.; Tanaka, T. Photocatalytic conversion of CO2 in water over Ag-modified La2Ti2O7. Appl. Catal. B: Environ. 2015, 163, 241–247.

[160]

Qu, Y. J.; Kwok, C. T.; Shao, Y. F.; Shi, X. Q.; Kawazoe, Y.; Pan, H. Pentagonal transition-metal (group X) chalcogenide monolayers: Intrinsic semiconductors for photocatalysis. Int. J. Hydrogen Energy 2021, 46, 9371–9379.

[161]

Lin, J. H.; Zhang, Y. Y.; Zhou, W.; Pantelides, S. T. Structural flexibility and alloying in ultrathin transition-metal chalcogenide nanowires. ACS Nano 2016, 10, 2782–2790.

[162]

Choudhary, N.; Islam, A.; Kim, J. H.; Ko, T. J.; Schropp, A.; Hurtado, L.; Weitzman, D.; Zhai, L.; Jung, Y. Two-dimensional transition metal dichalcogenide hybrid materials for energy applications. Nano Today 2018, 19, 16–40.

[163]
Wu, J. J.; Lee, G. J. Advanced nanomaterials for water splitting and hydrogen generation. In Nanomaterials for Green Energy; Bhanvase, B. A.; Pawade, V. B.; Dhoble, S. J.; Sonawane, S. H.; Ashokkumar, M., Eds.; Elsevier: Amsterdam, 2018; pp 145–167.
DOI
[164]

Hasani, A.; Tekalgne, M.; Van Le, Q.; Jang, H. W.; Kim, S. Y. Two-dimensional materials as catalysts for solar fuels: Hydrogen evolution reaction and CO2 reduction. J. Mater. Chem. A 2019, 7, 430–454.

[165]

Liu, R.; Wang, F. K.; Liu, L. X.; He, X. Y.; Chen, J. Z.; Li, Y.; Zhai, T. Y. Band alignment engineering in two-dimensional transition metal dichalcogenide-based heterostructures for photodetectors. Small Struct. 2021, 2, 2000136.

[166]

Zhang, Z. F.; Qian, Q. K.; Li, B. K.; Chen, K. J. Interface engineering of monolayer MoS2/GaN hybrid heterostructure: Modified band alignment for photocatalytic water splitting application by nitridation treatment. ACS Appl. Mater. Interfaces 2018, 10, 17419–17426.

[167]

Chu, H. P.; Lei, W. Y.; Liu, X. J.; Li, J. L.; Zheng, W.; Zhu, G.; Li, C.; Pan, L. K.; Sun, C. Q. Synergetic effect of TiO2 as co-catalyst for enhanced visible light photocatalytic reduction of Cr(VI) on MoSe2. Appl. Catal. A: Gen. 2016, 521, 19–25.

[168]

Sun, S. M.; Li, X. M.; Wang, W. Z.; Zhang, L.; Sun, X. Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2. Appl. Catal. B 2017, 200, 323–329.

[169]

Wang, J. J.; Lin, S.; Tian, N.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. Nanostructured metal sulfides: Classification, modification strategy, and solar-driven CO2 reduction application. Adv. Funct. Mater. 2021, 31, 2008008.

[170]

Khan, B.; Raziq, F.; Faheem, M. B.; Farooq, M. U.; Hussain, S.; Ali, F.; Ullah, A.; Mavlonov, A.; Zhao, Y.; Liu, Z. R. et al. Electronic and nanostructure engineering of bifunctional MoS2 towards exceptional visible-light photocatalytic CO2 reduction and pollutant degradation. J. Hazard. Mater. 2020, 381, 120972.

[171]

Tu, W. G.; Li, Y. C.; Kuai, L. B.; Zhou, Y.; Xu, Q. F.; Li, H. J.; Wang, X. Y.; Xiao, M.; Zou, Z. G. Construction of unique two-dimensional MoS2-TiO2 hybrid nanojunctions: MoS2 as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO2 to methanol. Nanoscale 2017, 9, 9065–9070.

[172]

Zhang, R.; Jian, W.; Yang, Z. D.; Bai, F. Q. Insights into the photocatalytic mechanism of the C4N/MoS2 heterostructure: A first-principle study. Chin. Chem. Lett. 2020, 31, 2319–2324.

[173]

Dai, W. L.; Yu, J. J.; Luo, S. L.; Hu, X.; Yang, L. X.; Zhang, S. Q.; Li, B.; Luo, X. B.; Zou, J. P. WS2 quantum dots seeding in Bi2S3 nanotubes:A novel Vis-NIR light sensitive photocatalyst with low-resistance junction interface for CO2 reduction. Chem. Eng. J. 2020, 389, 123430.

[174]

Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

[175]

Arif, M.; Yasin, G.; Luo, L.; Ye, W.; Mushtaq, M. A.; Fang, X. Y.; Xiang, X.; Ji, S. F.; Yan, D. P. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Appl. Catal. B: Environ. 2020, 265, 118559.

[176]

Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X. Y.; Ji, S. F.; Yan, D. P. Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting. Mater. Chem. Front. 2019, 3, 520–531.

[177]

Mohapatra, L.; Parida, K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. J. Mater. Chem. A 2016, 4, 10744–10766.

[178]

Zhao, Y. F.; Jia, X. D.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. 2016, 6, 1501974.

[179]

Cui, X. F.; Wang, J.; Liu, B.; Ling, S.; Long, R.; Xiong, Y. J. Turning Au nanoclusters catalytically active for visible-light-driven CO2 reduction through bridging ligands. J. Am. Chem. Soc. 2018, 140, 16514–16520.

[180]

Zhong, Q.; Li, Y.; Zhang, G. K. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chem. Eng. J. 2021, 409, 128099.

[181]

Huang, P. F.; Zhang, S. L.; Ying, H. J.; Zhang, Z.; Han, W. Q. Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior Sodium-ion batteries. Chem. Eng. J. 2021, 417, 129161.

[182]

Cai, C. Y.; Zhou, W. B.; Fu, Y. Bioinspired MXene nacre with mechanical robustness for highly flexible all-solid-state photothermo-supercapacitor. Chem. Eng. J. 2021, 418, 129275.

[183]

Li, X. L.; Zhu, J. F.; Liang, W. Y.; Zhitomirsky, I. MXene (Ti3C2Tx) anodes for asymmetric supercapacitors with high active mass loading. Mater. Chem. Phys. 2021, 268, 124748.

[184]

Shi, Q. R.; Zhang, X. Y.; Yang, Y.; Huang, J. J.; Fu, X. L.; Wang, T. Y.; Liu, X. D.; Sun, A. W.; Ge, J. H.; Shen, J. Y. et al. 3D hierarchical architecture collaborating with 2D/2D interface interaction in NiAl-LDH/Ti3C2 nanocomposite for efficient and selective photoconversion of CO2. J. Energy Chem. 2021, 59, 9–18.

[185]

Que, M. D.; Cai, W. H.; Zhao, Y.; Yang, Y. W.; Zhang, B. Y.; Yun, S.; Chen, J.; Zhu, G. 2D/2D schottky heterojunction of in-situ growth FAPbBr3/Ti3C2 composites for enhancing photocatalytic CO2 reduction. J. Colloid. Interface Sci. 2022, 610, 538–545.

[186]

Zhang, J. Z.; Shi, J. J.; Tao, S.; Wu, L.; Lu, J. Cu2O/Ti3C2 MXene heterojunction photocatalysts for improved CO2 photocatalytic reduction performance. Appl. Surf. Sci. 2021, 542, 148685.

[187]

Baboukani, A. R.; Khakpour, I.; Drozd, V.; Wang, C. L. Liquid-based exfoliation of black phosphorus into phosphorene and its application for energy storage devices. Small Struct. 2021, 2, 2000148.

[188]
He, Z. Z.; Goulas, J.; Parker, E.; Sun, Y. Q.; Zhou, X. D.; Fei, L. Review on covalent organic frameworks and derivatives for electrochemical and photocatalytic CO2 reduction. Catal. Today, in press, https://doi.org/10.1016/j.cattod.2022.04.021.
DOI
[189]

Xu, N. F.; Diao, Y. X.; Qin, X. H.; Xu, Z. T.; Ke, H. Z.; Zhu, X. J. Donor–acceptor covalent organic frameworks of nickel(II) porphyrin for selective and efficient CO2 reduction into CO. Dalton Trans. 2020, 49, 15587–15591.

[190]

Wang, S. Z.; Xu, X. Y.; Yue, Y.; Yu, K. S.; Shui, Q. J.; Huang, N.; Chen, H. Z. Semiconductive covalent organic frameworks: Structural design, synthesis, and application. Small Struct. 2020, 1, 2000021.

[191]

Wang, S. B.; Han, X.; Zhang, Y. H.; Tian, N.; Ma, T. Y.; Huang, H. W. Inside-and-out semiconductor engineering for CO2 photoreduction: From recent advances to new trends. Small Struct. 2021, 2, 2000061.

[192]

Zhao, Y. X.; Zhang, S.; Shi, R.; Waterhouse, G. I. N.; Tang, J. W.; Zhang, T. R. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today 2020, 34, 78–91.

[193]

Chen, S. C.; Wang, H.; Kang, Z. X.; Jin, S.; Zhang, X. D.; Zheng, X. S.; Qi, Z. M.; Zhu, J. F.; Pan, B. C.; Xie, Y. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nat. Commun. 2019, 10, 788.

[194]

Yu, H. J.; Chen, F.; Li, X. W.; Huang, H. W.; Zhang, Q. Y.; Su, S. Q.; Wang, K. Y.; Mao, E. Y.; Mei, B.; Mul, G. et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nat. Commun. 2021, 12, 4594.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 August 2022
Revised: 16 October 2022
Accepted: 22 October 2022
Published: 06 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was jointly supported by the National Natural Science Foundations of China (Nos. 52272244 and 51972288) and the Fundamental Research Funds for the Central Universities (No. 2652022202).

Return