Journal Home > Volume 16 , Issue 10

Two-dimensional (2D) nanomaterials have been widely used in gas sensing due to their large specific surface area, high surface reactivity, and excellent gas adsorption properties. This paper reviews the typical synthesis methods of various types of 2D nanomaterials and summarizes the recent progress in gas sensors based on 2D materials, such as noble metal nanoparticles (NPs), metal oxides (MOS), conductive polymers, other new 2D materials. The methods of doping, modification, and photoexcitation can effectively improve the gas-sensing properties of 2D materials. The sensitive mechanisms of heterojunction, Schottky junction, and photoexcitation in 2D material sensors are discussed in detail. This paper discusses the application prospects of 2D materials in wearable gas sensors, food safety, and self-powered sensing, and provides ideas for further applications in environmental quality monitoring and disease diagnosis. In addition, the opportunities and challenges for gas sensors based on 2D materials are also discussed.


menu
Abstract
Full text
Outline
About this article

Diversiform gas sensors based on two-dimensional nanomaterials

Show Author's information Dongzhi Zhang( )Wenjing PanMingcong TangDongyue WangSujing YuQian MiQiannan PanYaqing Hu
College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Two-dimensional (2D) nanomaterials have been widely used in gas sensing due to their large specific surface area, high surface reactivity, and excellent gas adsorption properties. This paper reviews the typical synthesis methods of various types of 2D nanomaterials and summarizes the recent progress in gas sensors based on 2D materials, such as noble metal nanoparticles (NPs), metal oxides (MOS), conductive polymers, other new 2D materials. The methods of doping, modification, and photoexcitation can effectively improve the gas-sensing properties of 2D materials. The sensitive mechanisms of heterojunction, Schottky junction, and photoexcitation in 2D material sensors are discussed in detail. This paper discusses the application prospects of 2D materials in wearable gas sensors, food safety, and self-powered sensing, and provides ideas for further applications in environmental quality monitoring and disease diagnosis. In addition, the opportunities and challenges for gas sensors based on 2D materials are also discussed.

Keywords: two-dimensional materials, gas sensor, synthesis methods, doping and modification, light excitation, enhanced sensitization mechanism

References(242)

[1]

Zheng, J. Z.; Zhang, T. M.; Zeng, H. J.; Guo, W.; Zhao, B.; Sun, Y. H.; Li, Y. Y.; Jiang, L. Multishelled hollow structures of yttrium oxide for the highly selective and ultrasensitive detection of methanol. Small 2019, 15, 1804688.

[2]

Dhawale, D. S.; Gujar, T. P.; Lokhande, C. D. TiO2 nanorods decorated with Pd nanoparticles for enhanced liquefied petroleum gas sensing performance. Anal. Chem. 2017, 89, 8531–8537.

[3]

Patil, V. L.; Vanalakar, S. A.; Patil, P. S.; Kim, J. H. Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sens. Actuators B: Chem. 2017, 239, 1185–1193.

[4]

Li, B.; Li, M. Q.; Meng, F. L.; Liu, J. H. Highly sensitive ethylene sensors using Pd nanoparticles and rGO modified flower-like hierarchical porous α-Fe2O3. Sens. Actuators B: Chem. 2019, 290, 396–405.

[5]

Zhang, D. Z.; Wu, Z. L.; Zong, X. Q. Metal-organic frameworks-derived zinc oxide nanopolyhedra/S, N: Graphene quantum dots/polyaniline ternary nanohybrid for high-performance acetone sensing. Sens. Actuators B: Chem. 2019, 288, 232–242.

[6]

Kim, Y.; Choi, Y. S.; Park, S. Y.; Kim, T.; Hong, S. P.; Lee, T. H.; Moon, C. W.; Lee, J. H.; Lee, D.; Hong, B. H. et al. Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen. Nanoscale 2019, 11, 2966–2973.

[7]

Pham, T.; Li, G. H.; Bekyarova, E.; Itkis, M. E.; Mulchandani, A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196–3205.

[8]

Gao, D. Q.; Xia, B. R.; Zhu, C. R.; Du, Y. H.; Xi, P. X.; Xue, D. S.; Ding, J.; Wang, J. Activation of the MoSe2 basal plane and Se-edge by B doping for enhanced hydrogen evolution. J. Mater. Chem. A 2018, 6, 510–515.

[9]

Weber, M.; Kim, J. Y.; Lee, J. H.; Kim, J. H.; Iatsunskyi, I.; Coy, E.; Miele, P.; Bechelany, M.; Kim, S. S. Highly efficient hydrogen sensors based on Pd nanoparticles supported on boron nitride coated ZnO nanowires. J. Mater. Chem. A 2019, 7, 8107–8116.

[10]

Faye, O.; Eduok, U.; Szpunar, J. A. Boron-decorated graphitic carbon nitride (g-C3N4): An efficient sensor for H2S, SO2, and NH3 capture. J. Phys. Chem. C 2019, 123, 29513–29523.

[11]

Lee, E.; VahidMohammadi, A.; Prorok, B. C.; Yoon, Y. S.; Beidaghi, M.; Kim, D. J. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9, 37184–37190.

[12]

Kim, H. G.; Lee, H. B. R. Atomic layer deposition on 2D materials. Chem. Mater. 2017, 29, 3809–3826.

[13]

Ko, K. Y.; Park, K.; Lee, S.; Kim, Y.; Woo, W. J.; Kim, D.; Song, J. G.; Park, J.; Kim, H. Recovery improvement for large-area tungsten diselenide gas sensors. ACS Appl. Mater. Interfaces 2018, 10, 23910–23917.

[14]

Zhang, D. Z.; Wu, J. F.; Cao, Y. H. Ultrasensitive H2S gas detection at room temperature based on copper oxide/molybdenum disulfide nanocomposite with synergistic effect. Sens. Actuators B: Chem. 2019, 287, 346–355.

[15]

Lee, E.; VahidMohammadi, A.; Yoon, Y. S.; Beidaghi, M.; Kim, D. J. Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 2019, 4, 1603–1611.

[16]

Gottam, S. R.; Tsai, C. T.; Wang, L. W.; Wang, C. T.; Lin, C. C.; Chu, S. Y. Highly sensitive hydrogen gas sensor based on a MoS2-Pt nanoparticle composite. Appl. Surf. Sci. 2020, 506, 144981.

[17]

Kim, J. H.; Mirzaei, A.; Kim, H. W.; Kim, S. S. Realization of Au-decorated WS2 nanosheets as low power-consumption and selective gas sensors. Sens. Actuators B: Chem. 2019, 296, 126659.

[18]

Chen, X. W.; Wang, S.; Su, C.; Han, Y. T.; Zou, C.; Zeng, M.; Hu, N. T.; Su, Y. J.; Zhou, Z. H.; Yang, Z. Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance. Sens. Actuators B: Chem. 2020, 305, 127393.

[19]

Zhang, D. Z.; Wang, D. Y.; Pan, W. J.; Tang, M. C.; Zhang, H. Construction and DFT study of Pd decorated WSe2 nanosheets for highly sensitive CO detection at room temperature. Sens. Actuators B: Chem. 2022, 360, 131634.

[20]

Ouyang, C.; Chen, Y. X.; Qin, Z. Y.; Zeng, D. W.; Zhang, J.; Wang, H.; Xie, C. S. Two-dimensional WS2-based nanosheets modified by Pt quantum dots for enhanced room-temperature NH3 sensing properties. Appl. Surf. Sci. 2018, 455, 45–52.

[21]

Wang, J. X.; Zhou, Q.; Lu, Z. R.; Wei, Z. J.; Zeng, W. Gas sensing performances and mechanism at atomic level of Au-MoS2 microspheres. Appl. Surf. Sci. 2019, 490, 124–136.

[22]

Qin, S. W.; Tang, P. G.; Feng, Y. J.; Li, D. Q. Novel ultrathin mesoporous ZnO-SnO2 n–n heterojunction nanosheets with high sensitivity to ethanol. Sens. Actuators B: Chem. 2020, 309, 127801.

[23]

Choi, P. G.; Izu, N.; Shirahata, N.; Masuda, Y. Improvement of sensing properties for SnO2 gas sensor by tuning of exposed crystal face. Sens. Actuators B: Chem. 2019, 296, 126655.

[24]

Zhu, L.; Zeng, W.; Yang, J. D.; Li, Y. Q. One-step hydrothermal fabrication of nanosheet-assembled NiO/ZnO microflower and its ethanol sensing property. Ceram. Int. 2018, 44, 19825–19830.

[25]

Ge, W. Y.; Jiao, S. Y.; Chang, Z.; He, X. M.; Li, Y. X. Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO2 nanosheets. ACS Appl. Mater. Interfaces 2020, 12, 13200–13207.

[26]

Zhang, D. Z.; Yu, S. J.; Wang, X. W.; Huang, J. K.; Pan, W. J.; Zhang, J. H.; Meteku, B. E.; Zeng, J. B. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection. J. Hazard. Mater. 2022, 423, 127160.

[27]

Wang, D.; Zhang, D.; Yang, Y.; Mi, Q.; Zhang, J.; Yu, L. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal organic frameworks-derived CuO nanohybrid ammonia sensor. ACS Nano 2021, 15, 2911–2919.

[28]

Samsonau, S. V.; Shvarkov, S. D.; Meinerzhagen, F.; Wieck, A. D.; Zaitsev, A. M. Growth of graphene-like films for NO2 detection. Sens. Actuators B: Chem. 2013, 182, 66–70.

[29]

Kumar, R.; Goel, N.; Kumar, M. UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2017, 2, 1744–1752.

[30]

Kang, Y.; Pyo, S.; Jo, E.; Kim, J. Light-assisted recovery of reacted MoS2 for reversible NO2 sensing at room temperature. Nanotechnology 2019, 30, 355504.

[31]

Huo, N. J.; Yang, S. X.; Wei, Z. M.; Li, S. S.; Xia, J. B.; Li, J. B. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 2014, 4, 5209.

[32]

Huang, Y. F.; Jiao, W. C.; Chu, Z. M.; Ding, G. M.; Yan, M. L.; Zhong, X.; Wang, R. G. Ultrasensitive room temperature ppb-level NO2 gas sensors based on SnS2/rGO nanohybrids with P–N transition and optoelectronic visible light enhancement performance. J. Mater. Chem. C 2019, 7, 8616–8625.

[33]

Tyagi, D.; Wang, H. D.; Huang, W. C.; Hu, L. P.; Tang, Y. F.; Guo, Z. N.; Ouyang, Z. B.; Zhang, H. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 2020, 12, 3535–3559.

[34]

Liu, X. H.; Ma, T. T.; Pinna, N.; Zhang, J. Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 2017, 27, 1702168.

[35]

Park, S. H.; Xia, Y. N. Fabrication of three-dimensional macroporous membranes with assemblies of microspheres as templates. Chem. Mater. 1998, 10, 1745–1747.

[36]

Shendage, S. S.; Patil, V. L.; Vanalakar, S. A.; Patil, S. P.; Harale, N. S.; Bhosale, J. L.; Kim, J. H.; Patil, P. S. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B: Chem. 2017, 240, 426–433.

[37]

Wang, D. W.; Yang, A. J.; Lan, T. S.; Fan, C. Y.; Pan, J. B.; Liu, Z.; Chu, J. F.; Yuan, H.; Wang, X. H.; Rong, M. Z. et al. Tellurene based chemical sensor. J. Mater. Chem. A 2019, 7, 26326–26333.

[38]

He, L.; Lv, H.; Ma, L. F.; Li, W. N.; Si, J. Q.; Ikram, M.; Ullah, M.; Wu, H. Y.; Wang, R. H.; Shi, K. Y. Controllable synthesis of intercalated γ-Bi2MoO6/graphene nanosheet composites for high performance NO2 gas sensor at room temperature. Carbon 2020, 157, 22–32.

[39]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[40]

Sajid, M.; Kim, H. B.; Lim, J. H.; Choi, K. H. Liquid-assisted exfoliation of 2D hBN flakes and their dispersion in PEO to fabricate highly specific and stable linear humidity sensors. J. Mater. Chem. C 2018, 6, 1421–1432.

[41]

Palleschi, S.; D’Olimpio, G.; Benassi, P.; Nardone, M.; Alfonsetti, R.; Moccia, G.; Renzelli, M.; Cacioppo, O. A.; Hichri, A.; Jaziri, S. et al. On the role of nano-confined water at the 2D/SiO2 interface in layer number engineering of exfoliated MoS2 via thermal annealing. 2D Mater. 2020, 7, 025001.

[42]

Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974–1981.

[43]

Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093–11097.

[44]

Li, H.; Wu, J. M. A. T.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075.

[45]

Wu, E. X.; Xie, Y.; Yuan, B.; Zhang, H.; Hu, X. D.; Liu, J.; Zhang, D. H. Ultrasensitive and fully reversible NO2 gas sensing based on p-type MoTe2 under ultraviolet illumination. ACS Sens. 2018, 3, 1719–1726.

[46]

Yang, K.; Yuan, W. J.; Hua, Z. Q.; Tang, Y. T.; Yin, F. X.; Xia, D. Triazine-based two-dimensional organic polymer for selective NO2 sensing with excellent performance. ACS Appl. Mater. Interfaces 2020, 12, 3919–3927.

[47]

Hao, J. Y.; Zhang, D.; Sun, Q.; Zheng, S. L.; Sun, J. Y.; Wang, Y. Hierarchical SnS2/SnO2 nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO2 detection. Nanoscale 2018, 10, 7210–7217.

[48]

Zhang, S. H.; Wang, J. Y.; Torad, N. L.; Xia, W.; Aslam, M. A.; Kaneti, Y. V.; Hou, Z. F.; Ding, Z. J.; Da, B.; Fatehmulla, A. et al. Rational design of nanoporous MoS2/VS2 heteroarchitecture for ultrahigh performance ammonia sensors. Small 2020, 16, 1901718.

[49]

Chen, K.; Chen, Z. F.; Wan, X.; Zheng, Z. B.; Xie, F. Y.; Chen, W. J.; Gui, X. C.; Chen, H. J.; Xie, W. G.; Xu, J. B. A simple method for synthesis of high-quality millimeter-scale 1T′ transition-metal telluride and near-field nanooptical properties. Adv. Mater. 2017, 29, 1700704.

[50]

Gao, B.; Du, X. Y.; Li, Y. H.; Song, Z. X. Wettability transition of Ni3B4-doped MoS2 for hydrogen evolution reaction by magnetron sputtering. Appl. Surf. Sci. 2020, 510, 145368.

[51]

Zhuiykov, S.; Kawaguchi, T.; Hai, Z. Y.; Akbari, M. K.; Heynderickx, P. M. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition. Appl. Surf. Sci. 2017, 392, 231–243.

[52]

Chen, A. M.; Liu, R.; Peng, X.; Chen, Q. F.; Wu, J. M. 2D hybrid nanomaterials for selective detection of NO2 and SO2 using “light on and off” strategy. ACS Appl. Mater. Interfaces 2017, 9, 37191–37200.

[53]

Alhabeb, M.; Maleski, K.; Mathis, T. S.; Sarycheva, A.; Hatter, C. B.; Uzun, S.; Levitt, A.; Gogotsi, Y. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem., Int. Ed. 2018, 57, 5444–5448.

[54]

Ciesielski, A.; Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381–398.

[55]

Wei, P. P.; Shen, J.; Wu, K. B.; Yang, N. J. Defect-dependent electrochemistry of exfoliated graphene layers. Carbon 2019, 154, 125–131.

[56]

Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

[57]

Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 304, 1226419.

[58]

Ding, Y. H.; Chen, Y.; Xu, N.; Lian, X. T.; Li, L. L.; Hu, Y. X.; Peng, S. J. Facile synthesis of FePS3 nanosheets@MXene composite as a high-performance anode material for sodium storage. Nano-Micro Lett. 2020, 12, 54.

[59]

Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O’Neill, A.; Duesberg, G. S.; Grunlan, J. C.; Moriarty, G. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 2011, 23, 39443948.

[60]

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol 2008, 3, 563–568.

[61]

Sun, Z. Y.; Fan, Q.; Zhang, M. L.; Liu, S. Z.; Tao, H. C.; Texter, J. Supercritical fluid-facilitated exfoliation and processing of 2D materials. Adv. Sci. 2019, 6, 1901084.

[62]

Tao, H. C.; Zhang, Y. Q.; Gao, Y. N.; Sun, Z. Y.; Yan, C.; Texter, J. Scalable exfoliation and dispersion of two-dimensional materials—An update. Phys. Chem. Chem. Phys. 2017, 19, 921–960.

[63]

Shih, C. J.; Vijayaraghavan, A.; Krishnan, R.; Sharma, R.; Han, J. H.; Ham, M. H.; Jin, Z.; Lin, S. C.; Paulus, G. L. C.; Forest Reuel, N. et al. Bi- and trilayer graphene solutions. Nat. Nanotechnol. 2011, 6, 439–445.

[64]

Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.

[65]

Yu, F. F.; Liu, Q. W.; Gan, X.; Hu, M. X.; Zhang, T. Y.; Li, C.; Kang, F. Y.; Terrones, M.; Lv, R. T. Ultrasensitive pressure detection of few-layer MoS2. Adv. Mater. 2017, 29, 1603266.

[66]

Tang, H. Y.; Li, Y. T.; Sokolovskij, R.; Sacco, L.; Zheng, H. Z.; Ye, H. Y.; Yu, H. Y.; Fan, X. J.; Tian, H.; Ren, T. L. et al. Ultra-high sensitive NO2 gas sensor based on tunable polarity transport in CVD-WS2/IGZO p–N heterojunction. ACS Appl. Mater. Interfaces 2019, 11, 40850–40859.

[67]

Marichy, C.; Bechelany, M.; Pinna, N. Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv. Mater. 2012, 24, 1017–1032.

[68]

Kim, S. M.; Kim, H. J.; Jung, H. J.; Park, J. Y.; Seok, T. J.; Choa, Y. H.; Park, T. J.; Lee, S. W. High-performance, transparent thin film hydrogen gas sensor using 2D electron gas at interface of oxide thin film heterostructure grown by atomic layer deposition. Adv. Funct. Mater. 2019, 29, 1807760.

[69]

de Villiers, M. M.; Otto, D. P.; Strydom, S. J.; Lvov, Y. M. Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv. Drug Deliv. Rev. 2011, 63, 701–715.

[70]

Zhou, J.; Zha, X. H.; Zhou, X. B.; Chen, F. Y.; Gao, G. L.; Wang, S. W.; Shen, C.; Chen, T.; Zhi, C. Y.; Eklund, P. et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 2017, 11, 3841–3850.

[71]

Zhang, D. Z.; Wu, J. F.; Li, P.; Cao, Y. H.; Yang, Z. M. Hierarchical nanoheterostructure of tungsten disulfide nanoflowers doped with zinc oxide hollow spheres: Benzene gas sensing properties and first-principles study. ACS Appl. Mater. Interfaces 2019, 11, 31245–31256.

[72]

Li, X.; Wang, J.; Xie, D.; Xu, J. L.; Xia, Y.; Xiang, L.; Komarneni, S. Reduced graphene oxide/MoS2 hybrid films for room-temperature formaldehyde detection. Mater. Lett. 2017, 189, 42–45.

[73]

Naguib, M.; Gogotsi, Y. Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 2015, 48, 128–135.

[74]

Zhu, K.; Jin, Y. M.; Du, F.; Gao, S.; Gao, Z. M.; Meng, X.; Chen, G.; Wei, Y. J.; Gao, Y. Synthesis of Ti2CTx MXene as electrode materials for symmetric supercapacitor with capable volumetric capacitance. J. Energy Chem. 2019, 31, 11–18.

[75]

Persson, I.; El Ghazaly, A.; Tao, Q. Z.; Halim, J.; Kota, S.; Darakchieva, V.; Palisaitis, J.; Barsoum, M. W.; Rosen, J.; Persson, P. O. Å. Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small 2018, 14, 1703676.

[76]

Zhou, J.; Zha, X. H.; Chen, F. Y.; Ye, Q.; Eklund, P.; Du, S. Y.; Huang, Q. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem., Int. Ed. 2016, 55, 5008–5013.

[77]

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

[78]

Joshi, N.; Hayasaka, T.; Liu, Y. M.; Liu, H. L.; Oliveira, O. N.; Lin, L. W. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 2018, 185, 213.

[79]

Kim, Y. H.; Kim, S. J.; Kim, Y. J.; Shim, Y. S.; Kim, S. Y.; Hong, B. H.; Jang, H. W. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 2015, 9, 10453–10460.

[80]

Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron. 2017, 89, 152–166.

[81]

Tsang, C. H. A.; Huang, H. B.; Xuan, J.; Wang, H. Z.; Leung, D. Y. C. Graphene materials in green energy applications: Recent development and future perspective. Renew. Sustain. Energy Rev. 2020, 120, 109656.

[82]

Deng, S. K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212.

[83]

Li, X.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Xie, J. Graphene in photocatalysis: A review. Small 2016, 12, 6640–6696.

[84]

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on grapheme. Nat. Mater. 2007, 6, 652–655.

[85]

Seekaew, Y.; Phokharatkul, D.; Wisitsoraat, A.; Wongchoosuk, C. Highly sensitive and selective room-temperature NO2 gas sensor based on bilayer transferred chemical vapor deposited graphene. Appl. Surf. Sci. 2017, 404, 357–363.

[86]

Zhang, H.; Fan, L. W.; Dong, H. L.; Zhang, P. P.; Nie, K. Q.; Zhong, J.; Li, Y. Y.; Guo, J. H.; Sun, X. H. Spectroscopic investigation of plasma-fluorinated monolayer graphene and application for gas sensing. ACS Appl. Mater. Interfaces 2016, 8, 8652–8661.

[87]

Xing, F.; Zhang, S.; Yang, Y.; Jiang, W. S.; Liu, Z. B.; Zhu, S. W.; Yuan, X. C. Chemically modified graphene films for high-performance optical NO2 sensors. Analyst 2016, 141, 4725–4732.

[88]

Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831.

[89]

Wang, T.; Huang, D.; Yang, Z.; Xu, S. S.; He, G. L.; Li, X. L.; Hu, N. T.; Yin, G. L.; He, D. N.; Zhang, L. Y. A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 2016, 8, 95–119.

[90]

Xu, Q.; Xu, H.; Chen, J. R.; Lv, Y. Z.; Dong, C. B.; Sreeprasad, T. S. Graphene and graphene oxide: Advanced membranes for gas separation and water purification. Inorg. Chem. Front. 2015, 2, 417–424.

[91]

Yang, W.; Gan, L.; Li, H. Q.; Zhai, T. Y. Two-dimensional layered nanomaterials for gas-sensing applications. Inorg. Chem. Front. 2016, 3, 433–451.

[92]

Choi, Y. R.; Yoon, Y. G.; Choi, K. S.; Kang, J. H.; Shim, Y. S.; Kim, Y. H.; Chang, H. J.; Lee, J. H.; Park, C. R.; Kim, S. Y. et al. Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon 2015, 91, 178–187.

[93]

Luan, Y. G.; Zhang, S. L.; Nguyen, T. H.; Yang, W.; Noh, J. S. Polyurethane sponges decorated with reduced graphene oxide and silver nanowires for highly stretchable gas sensors. Sens. Actuators B: Chem. 2018, 265, 609–616.

[94]

Wang, J.; Yu, M. Y.; Xia, Y.; Li, X.; Yang, C.; Komarneni, S. On-chip grown ZnO nanosheet-array with interconnected nanojunction interfaces for enhanced optoelectronic NO2 gas sensing at room temperature. J. Colloid Interface Sci. 2019, 554, 19–28.

[95]

Zhu, L.; Li, Y. Q.; Zeng, W. Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 2018, 427, 281–287.

[96]

Liu, X.; Sun, Y.; Yu, M.; Yin, Y. Q.; Du, B. S.; Tang, W.; Jiang, T. T.; Yang, B.; Cao, W. W.; Ashfold, M. N. R. Enhanced ethanol sensing properties of ultrathin ZnO nanosheets decorated with CuO nanoparticles. Sens. Actuators B: Chem. 2018, 255, 3384–3390.

[97]

Cao, F. F.; Li, C. P.; Li, M. J.; Li, H. J.; Huang, X.; Yang, B. H. Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application. Appl. Surf. Sci. 2018, 447, 173–181.

[98]

Wu, T.; Wang, Z. B.; Tian, M. H.; Miao, J. Y.; Zhang, H. X.; Sun, J. B. UV excitation NO2 gas sensor sensitized by ZnO quantum dots at room temperature. Sens. Actuators B: Chem. 2018, 259, 526–531.

[99]

Niu, G. Q.; Zhao, C. H.; Gong, H. M.; Yang, Z. T.; Leng, X. H.; Wang, F. NiO nanoparticle-decorated SnO2 nanosheets for ethanol sensing with enhanced moisture resistance. Microsyst. Nanoeng. 2019, 5, 21.

[100]

Miao, J. S.; Chen, C.; Lin, J. Y. S. Humidity independent hydrogen sulfide sensing response achieved with monolayer film of CuO nanosheets. Sens. Actuators B: Chem. 2020, 309, 127785.

[101]

Miao, J. S.; Chen, C.; Meng, L.; Lin, Y. S. Self-assembled monolayer of metal oxide nanosheet and structure and gas-sensing property relationship. ACS Sens. 2019, 4, 1279–1290.

[102]

Chang, X.; Li, X. F.; Qiao, X. R.; Li, K.; Xiong, Y.; Li, X.; Guo, T. C.; Zhu, L.; Xue, Q. Z. Metal-organic frameworks derived ZnO@MoS2 nanosheets core/shell heterojunctions for ppb-level acetone detection: Ultra-fast response and recovery. Sens. Actuators B: Chem. 2020, 304, 127430.

[103]

Zhao, P. D.; Kiriya, D.; Azcatl, A.; Zhang, C. X.; Tosun, M.; Liu, Y. S.; Hettick, M.; Kang, J. S.; McDonnell, S.; Santosh, K. C. et al. Air stable P-doping of WSe2 by covalent functionalization. ACS Nano 2014, 8, 10808–10814.

[104]

Wang, X. D.; Liu, C. S.; Chen, Y.; Wu, G. J.; Yan, X.; Huang, H.; Wang, P.; Tian, B. B.; Hong, Z. C.; Wang, Y. T. et al. Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels. 2D Mater. 2017, 4, 025036.

[105]

Jung, K. H.; Yun, S. J.; Choi, Y.; Cho, J. H.; Lim, J. W.; Chai, H. J.; Cho, D. H.; Chung, Y. D.; Kim, G. Metal-agglomeration-suppressed growth of MoS2 and MoSe2 films with small sulfur and selenium molecules for high mobility field effect transistor applications. Nanoscale 2018, 10, 15213–15221.

[106]

Eftekhari, A. Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl. Mater. Today 2017, 8, 1–17.

[107]

Perea-Lõpez, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S. M.; Lv, R. T.; Hayashi, T.; Lõpez-Urías, F.; Ghosh, S. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 2013, 23, 5511–5517.

[108]

Dwivedi, P.; Das, S.; Dhanekar, S. Wafer-scale synthesized MoS2/porous silicon nanostructures for efficient and selective ethanol sensing at room temperature. ACS Appl. Mater. Interfaces 2017, 9, 21017–21024.

[109]

Yang, Z. M.; Zhang, D. Z.; Chen, H. N. MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing. Sens. Actuators B: Chem. 2019, 300, 127037.

[110]

Liu, J. Y.; Hu, Z. X.; Zhang, Y. Z.; Li, H. Y.; Gao, N. B.; Tian, Z. L.; Zhou, L. C.; Zhang, B. H.; Tang, J.; Zhang, J. B. et al. MoS2 nanosheets sensitized with quantum dots for room-temperature gas sensors. Nano-Micro Lett. 2020, 12, 59.

[111]

Reddeppa, M.; Park, B. G.; Murali, G.; Choi, S. H.; Chinh, N. D.; Kim, D.; Yang, W.; Kim, M. NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity. Sens. Actuators B: Chem. 2020, 308, 127700.

[112]

Koo, W. T.; Cha, J. H.; Jung, J. W.; Choi, S. J.; Jang, J. S.; Kim, D. H.; Kim, I. D. Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: Abundant WS2 edges for highly sensitive gas sensors. Adv. Funct. Mater. 2018, 28, 1802575.

[113]

Sharma, D.; Kamboj, N.; Agarwal, K.; Mehta, B. R. Structural, optical and photoelectrochemical properties of phase pure SnS and SnS2 thin films prepared by vacuum evaporation method. J. Alloys Compd. 2020, 822, 153653.

[114]

Yang, Z.; Su, C.; Wang, S. T.; Han, Y. H.; Chen, X. W.; Xu, S. S.; Zhou, Z. H.; Hu, N. T.; Su, Y. J.; Zeng, M. Highly sensitive NO2 gas sensors based on hexagonal SnS2 nanoplates operating at room temperature. Nanotechnology 2020, 31, 075501.

[115]

Gu, D.; Wang, X. Y.; Liu, W.; Li, X. G.; Lin, S. W.; Wang, J.; Rumyantseva, M. N.; Gaskov, A. M.; Akbar, S. A. Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sens. Actuators B: Chem. 2020, 305, 127455.

[116]

Ko, K. Y.; Song, J. G.; Kim, Y.; Choi, T.; Shin, S.; Lee, C. W.; Lee, K.; Koo, J.; Lee, H.; Kim, J. et al. Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 2016, 10, 9287–9296.

[117]

Kim, S.; Maassen, J.; Lee, J.; Kim, S. M.; Han, G.; Kwon, J.; Hong, S.; Park, J.; Liu, N.; Park, Y. C. et al. Interstitial Mo-assisted photovoltaic effect in multilayer MoSe2 phototransistors. Adv. Mater. 2018, 30, 1705542.

[118]

Zhang, D. Z.; Yang, Z. M.; Li, P.; Pang, M. S.; Xue, Q. Z. Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 2019, 65, 103974.

[119]

Jha, R. K.; D’Costa, J. V.; Sakhuja, N.; Bhat, N. MoSe2 nanoflakes based chemiresistive sensors for ppb-level hydrogen sulfide gas detection. Sens. Actuators B: Chem. 2019, 297, 126687.

[120]

Guo, R. S.; Han, Y. T.; Su, C.; Chen, X. W.; Zeng, M.; Hu, N. T.; Su, Y. J.; Zhou, Z. H.; Wei, H.; Yang, Z. Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets. Sens. Actuators B: Chem. 2019, 300, 127013.

[121]

Mukhokosi, E. P.; Krupanidhi, S. B.; Nanda, K. K. Band gap engineering of hexagonal SnSe2 nanostructured thin films for infra-red photodetection. Sci. Rep. 2017, 7, 15215.

[122]

Moreira, Ó. L. C.; Cheng, W. Y.; Fuh, H. R.; Chien, W. C.; Yan, W. J.; Fei, H. F.; Xu, H. J.; Zhang, D.; Chen, Y. H.; Zhao, Y. F. et al. High selectivity gas sensing and charge transfer of SnSe2. ACS Sens. 2019, 4, 2546–2552.

[123]

Chen, M.; Li, Z. K.; Li, W. M.; Shan, C. W.; Li, W. J.; Li, K. W.; Gu, G. Q.; Feng, Y.; Zhong, G. H.; Wei, L. et al. Large-scale synthesis of single-crystalline self-standing SnSe2 nanoplate arrays for wearable gas sensors. Nanotechnology 2018, 29, 455501.

[124]

Fathipour, S.; Ma, N.; Hwang, W. S.; Protasenko, V.; Vishwanath, S.; Xing, H. G.; Xu, H.; Jena, D.; Appenzeller, J.; Seabaugh, A. Exfoliated multilayer MoTe2 field-effect transistors. Appl. Phys. Lett. 2014, 105, 192101.

[125]

Feng, Z. H.; Xie, Y.; Chen, J. C.; Yu, Y. Y.; Zheng, S. J.; Zhang, R.; Li, Q. N.; Chen, X. J.; Sun, C. L.; Zhang, H. et al. Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing. 2D Mater. 2017, 4, 025018.

[126]

Wu, E. X.; Xie, Y.; Yuan, B.; Hao, D. Y.; An, C. H.; Zhang, H.; Wu, S.; Hu, X. D.; Liu, J.; Zhang, D. H. Specific and highly sensitive detection of ketone compounds based on p-type MoTe2 under ultraviolet illumination. ACS Appl. Mater. Interfaces 2018, 10, 35664–35669.

[127]

Shackery, I.; Pezeshki, A.; Park, J. Y.; Palanivel, U.; Kwon, H. J.; Yoon, H. S.; Im, S.; Cho, J. S.; Jun, S. C. Few-layered α-MoTe2 Schottky junction for a high sensitivity chemical-vapour sensor. J. Mater. Chem. C 2018, 6, 10714–10722.

[128]

Ma, D. W.; Ju, W. W.; Tang, Y. N.; Chen, Y. First-principles study of the small molecule adsorption on the InSe monolayer. Appl. Surf. Sci. 2017, 426, 244–252.

[129]

Chen, D. C.; Zhang, X. X.; Cui, H.; Tang, J.; Pi, S. M.; Cui, Z. L.; Li, Y.; Zhang, Y. High selectivity n-type InSe monolayer toward decomposition products of sulfur hexafluoride: A density functional theory study. Appl. Surf. Sci. 2019, 479, 852–862.

[130]

Hu, F. F.; Tang, H. Y.; Tan, C. J.; Ye, H. Y.; Chen, X. P.; Zhang, G. Q. Nitrogen dioxide gas sensor based on monolayer SnS: A first-principle study. IEEE Electron Device Lett. 2017, 38, 983–986.

[131]

Baek, I. H.; Pyeon, J. J.; Song, Y. G.; Chung, T. M.; Kim, H. R.; Baek, S. H.; Kim, J. S.; Kang, C. Y.; Choi, J. W.; Hwang, C. S. et al. Synthesis of SnS thin films by atomic layer deposition at low temperatures. Chem. Mater. 2017, 29, 8100–8110.

[132]

Liu, J. J.; Lyu, P.; Zhang, Y.; Nachtigall, P.; Xu, Y. X. New layered triazine framework/exfoliated 2D polymer with superior sodium-storage properties. Adv. Mater. 2018, 30, 1705401.

[133]

Rodríguez-San-Miguel, D.; Amo-Ochoa, P.; Zamora, F. MasterChem: Cooking 2D-polymers. Chem. Commun. 2016, 52, 4113–4127.

[134]

Huang, H. P.; Feng, X. M.; Zhu, J. J. Synthesis, characterization and application in electrocatalysis of polyaniline/Au composite nanotubes. Nanotechnology 2008, 19, 145607.

[135]

Velev, O. D.; Lenhoff, A. M. Colloidal crystals as templates for porous materials. Curr. Opin. Colloid Interf. Sci. 2000, 5, 56–63.

[136]

Zhang, T.; Qi, H. Y.; Liao, Z. Q.; Horev, Y. D.; Panes-Ruiz, L. A.; Petkov, P. S.; Zhang, Z.; Shivhare, R.; Zhang, P. P.; Liu, K. J. et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun. 2019, 10, 4225.

[137]

Jiang, S.; Chen, J. Y.; Tang, J.; Jin, E.; Kong, L. R.; Zhang, W. J.; Wang, C. Au nanoparticles-functionalized two-dimensional patterned conducting PANI nanobowl monolayer for gas sensor. Sens. Actuators B: Chem. 2009, 140, 520–524.

[138]

Wen, Y.; Wei, F. C.; Zhang, W. Q.; Cui, A. Y.; Cui, J.; Jing, C. B.; Hu, Z. G.; He, Q. G.; Fu, J. W.; Liu, S. H. et al. Two-dimensional mesoporous sensing materials. Chin. Chem. Lett. 2020, 31, 521–524.

[139]

Cui, F. Z.; Xie, J. J.; Jiang, S. Y.; Gan, S. X.; Ma, D. L.; Liang, R. R.; Jiang, G. F.; Zhao, X. A gaseous hydrogen chloride chemosensor based on a 2D covalent organic framework. Chem. Commun. 2019, 55, 4550–4553.

[140]

Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530.

[141]

Zhang, H. P.; Kou, L. Z.; Jiao, Y.; Du, A. J.; Tang, Y. H.; Ni, Y. X. Strain engineering of selective chemical adsorption on monolayer black phosphorous. Appl. Surf. Sci. 2020, 503, 144033.

[142]

Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.

[143]

Gusain, R.; Kumar, N.; Ray, S. S. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev. 2020, 405, 213111.

[144]

Sakthivel, T.; Huang, X. Y.; Wu, Y. C.; Rtimi, S. Recent progress in black phosphorus nanostructures as environmental photocatalysts. Chem. Eng. J. 2020, 379, 122297.

[145]

Tao, W.; Zhu, X. B.; Yu, X. H.; Zeng, X. W.; Xiao, Q. L.; Zhang, X. D.; Ji, X. Y.; Wang, X. S.; Shi, J. J.; Zhang, H. et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276.

[146]

Miao, J. S.; Zhang, L.; Wang, C. Black phosphorus electronic and optoelectronic devices. 2D Mater. 2019, 6, 032003.

[147]

Donarelli, M.; Ottaviano, L.; Giancaterini, L.; Fioravanti, G.; Perrozzi, F.; Cantalini, C. Exfoliated black phosphorus gas sensing properties at room temperature. 2D Mater. 2016, 3, 025002.

[148]

Cho, S. Y.; Lee, Y.; Koh, H. J.; Jung, H.; Kim, J. S.; Yoo, H. W.; Kim, J.; Jung, H. T. Superior chemical sensing performance of black phosphorus: Comparison with MoS2 and graphene. Adv. Mater. 2016, 28, 7020–7028.

[149]

Babenko, V.; Fan, Y.; Veigang-Radulescu1, V. P.; Brennan, B.; Pollard, A. J.; Burton, O.; Alexander-Webber, J. A.; Weatherup, R. S.; Canto, B.; Otto, M. et al. Oxidising and carburising catalyst conditioning for the controlled growth and transfer of large crystal monolayer hexagonal boron nitride. 2D Mater. 2020, 7, 024005.

[150]

Zhou, C. Y.; Lai, C.; Zhang, C.; Zeng, G. M.; Huang, D. L.; Cheng, M.; Hu, L.; Xiong, W. P.; Chen, M.; Wang, J. J. et al. Semiconductor/boron nitride composites: Synthesis, properties, and photocatalysis applications. Appl. Catal. B: Environ. 2018, 238, 6–18.

[151]

Sheng, Y. Y.; Yang, J.; Wang, F.; Liu, L. C.; Liu, H.; Yan, C.; Guo, Z. H. Sol-gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity. Appl. Surf. Sci. 2019, 465, 154–163.

[152]

Falin, A.; Cai, Q. R.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S. M.; Watanabe, K.; Taniguchi, T. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 2017, 8, 15815.

[153]

Li, M.; Wang, M. J.; Hou, X.; Zhan, Z. L.; Wang, H.; Fu, H.; Lin, C. T.; Fu, L.; Jiang, N.; Yu, J. H. Highly thermal conductive and electrical insulating polymer composites with boron nitride. Compos. Part B: Eng. 2020, 184, 107746.

[154]

Lin, L. Y.; Liu, T. M.; Zhang, Y.; Sun, R.; Zeng, W.; Wang, Z. C. Synthesis of boron nitride nanosheets with a few atomic layers and their gas-sensing performance. Ceram. Int. 2016, 42, 971–975.

[155]

Roondhe, B.; Jha, P. K.; Ahuja, R. Haeckelite boron nitride as nano sensor for the detection of hazardous methyl mercury. Appl. Surf. Sci. 2020, 506, 144860.

[156]

Zhang, H. P.; Du, A. J.; Gandhi, N. S.; Jiao, Y.; Zhang, Y. P.; Lin, X. Y.; Lu, X.; Tang, Y. H. Metal-doped graphitic carbon nitride (g-C3N4) as selective NO2 sensors: A first-principles study. Appl. Surf. Sci. 2018, 455, 1116–1122.

[157]

Wang, Y.; Zhang, R.; Zhang, Z. Y.; Cao, J. L.; Ma, T. Y. Host-guest recognition on 2D graphitic carbon nitride for nanosensing. Adv. Mater. Interfaces 2019, 6, 1901429.

[158]

Wang, D.; Huang, S. M.; Li, H. J.; Chen, A. Y.; Wang, P.; Yang, J.; Wang, X. Y.; Yang, J. H. Ultrathin WO3 nanosheets modified by g-C3N4 for highly efficient acetone vapor detection. Sens. Actuators B: Chem. 2019, 282, 961–971.

[159]

Yu, X. F.; Li, Y. C.; Cheng, J. B.; Liu, Z. B.; Li, Q. Z.; Li, W. Z.; Yang, X.; Xiao, B. Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces 2015, 7, 13707–13713.

[160]

Kim, S. J.; Koh, H. J.; Ren, C. E.; Kwon, O.; Maleski, K.; Cho, S. Y.; Anasori, B.; Kim, C. K.; Choi, Y. K.; Kim, J. et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 2018, 12, 986–993.

[161]

Wu, M.; He, M.; Hu, Q. K.; Wu, Q. H.; Sun, G.; Xie, L. L.; Zhang, Z. Y.; Zhu, Z. G.; Zhou, A. G. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 2019, 4, 2763–2770.

[162]

Lee, S. H.; Eom, W.; Shin, H.; Ambade, R. B.; Bang, J. H.; Kim, H. W.; Han, T. H. Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl. Mater. Interfaces 2020, 12, 10434–10442.

[163]

Koh, H. J.; Kim, S. J.; Maleski, K.; Cho, S. Y.; Kim, Y. J.; Ahn, C. W.; Gogotsi, Y.; Jung, H. T. Enhanced selectivity of MXene gas sensors through metal ion intercalation: In situ X-ray diffraction study. ACS Sens. 2019, 4, 1365–1372.

[164]

Yang, Z. J.; Liu, A.; Wang, C. L.; Liu, F. M.; He, J. M.; Li, S. Q.; Wang, J.; You, R.; Yan, X.; Sun, P. et al. Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 2019, 4, 1261–1269.

[165]

Kang, G. Y.; Zhu, Z.; Tang, B. H.; Wu, C. H.; Wu, R. J. Rapid detection of ozone in the parts per billion range using a novel Ni-Al layered double hydroxide. Sens. Actuators B: Chem. 2017, 241, 1203–1209.

[166]

Qin, Y. X.; Wang, L. P.; Wang, X. F. Hierarchical layered double hydroxides with Ag nanoparticle modification for ethanol sensing. Nanotechnology 2018, 29, 275502.

[167]

Sun, Z. B.; Yu, S. H.; Zhao, L. L.; Wang, J. F.; Li, Z. F.; Li, G. A highly stable two-dimensional copper(II) organic framework for proton conduction and ammonia impedance sensing. Chem.—Eur. J. 2018, 24, 10829–10839.

[168]

Li, Y.; Zhang, X. X.; Chen, D. C.; Xiao, S.; Tang, J. Adsorption behavior of COF2 and CF4 gas on the MoS2 monolayer doped with Ni: A first-principles study. Appl. Surf. Sci. 2018, 443, 274–279.

[169]

Zhang, D. Z.; Wu, J. F.; Li, P.; Cao, Y. H. Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: An experimental and density functional theory investigation. J. Mater. Chem. A 2017, 5, 20666–20677.

[170]

Ikram, M.; Liu, L. J.; Liu, Y.; Ullah, M.; Ma, L. F.; Bakhtiar, S. U. H.; Wu, H. Y.; Yu, H. T.; Wang, R. H.; Shi, K. Y. Controllable synthesis of MoS2@MoO2 nanonetworks for enhanced NO2 room temperature sensing in air. Nanoscale 2019, 11, 8554–8564.

[171]

Tai, H. L.; Duan, Z. H.; He, Z. Z.; Li, X.; Xu, J. L.; Liu, B. H.; Jiang, Y. D. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens. Actuators B: Chem. 2019, 298, 126874.

[172]

Wang, H. T.; Bai, J. H.; Dai, M.; Liu, K. P.; Liu, Y. Y.; Zhou, L. S.; Liu, F. M.; Liu, F. M.; Gao, Y.; Yan, X. et al. Visible light activated excellent NO2 sensing based on 2D/2D ZnO/g-C3N4 heterojunction composites. Sens. Actuators B: Chem. 2020, 304, 127287.

[173]

Zhang, S. S.; Li, Y. W.; Sun, G.; Zhang, B.; Wang, Y.; Cao, J. L.; Zhang, Z. Y. Enhanced methane sensing properties of porous NiO nanaosheets by decorating with SnO2. Sens. Actuators B: Chem. 2019, 288, 373–382.

[174]

Li, Y.; Ban, H. T.; Yang, M. J. Highly sensitive NH3 gas sensors based on novel polypyrrole-coated SnO2 nanosheet nanocomposites. Sens. Actuators B: Chem. 2016, 224, 449–457.

[175]

Tanguy, N. R.; Wiltshire, B.; Arjmand, M.; Zarifi, M. H.; Yan, N. Highly sensitive and contactless ammonia detection based on nanocomposites of phosphate-functionalized reduced graphene oxide/polyaniline immobilized on microstrip resonators. ACS Appl. Mater. Interfaces 2020, 12, 9746–9754.

[176]

Liu, L. J.; Ikram, M.; Ma, L. F.; Zhang, X. Y.; Lv, H.; Ullah, M.; Khan, M.; Yu, H. T.; Shi, K. Y. Edge-exposed MoS2 nanospheres assembled with SnS2 nanosheet to boost NO2 gas sensing at room temperature. J. Hazard. Mater. 2020, 393, 122325.

[177]

Ikram, M.; Liu, L. J.; Liu, Y.; Ma, L. F.; Lv, H.; Ullah, M.; He, L.; Wu, H. Y.; Wang, R. H.; Shi, K. Y. Fabrication and characterization of a high-surface area MoS2@WS2 heterojunction for the ultra-sensitive NO2 detection at room temperature. J. Mater. Chem. A 2019, 7, 14602–14612.

[178]

Chen, W. Y.; Jiang, X. F.; Lai, S. N.; Peroulis, D.; Stanciu, L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 2020, 11, 1302.

[179]

Wang, X. Y.; Gu, D.; Li, X. G.; Lin, S. W.; Zhao, S. H.; Rumyantseva, M. N.; Gaskov, A. M. Reduced graphene oxide hybridized with WS2 nanoflakes based heterojunctions for selective ammonia sensors at room temperature. Sens. Actuators B: Chem. 2019, 282, 290–299.

[180]

Hang, N. T.; Zhang, S. L.; Yang, W. Efficient exfoliation of g-C3N4 and NO2 sensing behavior of graphene/g-C3N4 nanocomposite. Sens. Actuators B: Chem. 2017, 248, 940–948.

[181]

Jannat, A.; Haque, F.; Xu, K.; Zhou, C. H.; Zhang, B. Y.; Syed, N.; Mohiuddin, M.; Messalea, K. A.; Li, X.; Gras, S. L. et al. Exciton-driven chemical sensors based on excitation-dependent photoluminescent two-dimensional SnS. ACS Appl. Mater. Interfaces 2019, 11, 42462–42468.

[182]

Chen, H. W.; Chen, Y. T.; Zhang, H.; Zhang, D. W.; Zhou, P.; Huang, J. Suspended SnS2 layers by light assistance for ultrasensitive ammonia detection at room temperature. Adv. Funct. Mater. 2018, 28, 1801035.

[183]

Yang, C. M.; Chen, T. C.; Yang, Y. C.; Meyyappan, M.; Lai, C. S. Enhanced acetone sensing properties of monolayer graphene at room temperature by electrode spacing effect and UV illumination. Sen. Actuators B: Chem. 2017, 253, 77–84.

[184]

Alenezi, M. R.; Alshammari, A. S.; Jayawardena, K. D. G. I.; Beliatis, M. J.; Henley, S. J.; Silva, S. R. P. Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J. Phys. Chem. C 2013, 117, 17850–17858.

[185]

Mun, Y.; Park, S.; An, S.; Lee, C.; Kim, H. W. NO2 gas sensing properties of Au-functionalized porous ZnO nanosheets enhanced by UV irradiation. Ceram. Int. 2013, 39, 8615–8622.

[186]

Zhou, Y.; Li, X.; Wang, Y. J.; Tai, H. L.; Guo, Y. C. UV illumination-enhanced molecular ammonia detection based on a ternary-reduced graphene oxide-titanium dioxide-Au composite film at room temperature. Anal. Chem. 2019, 91, 3311–3318.

[187]

Zhou, Y.; Gao, C.; Guo, Y. C. UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet-ZnO nanowire heterojunctions at room temperature. J. Mater. Chem. A 2018, 6, 10286–10296.

[188]

Zhao, M.; Yan, L. Q.; Zhang, X. F.; Xu, L. H.; Song, Z. W.; Chen, P. P.; Dong, F. L.; Chu, W. G. Room temperature NH3 detection of Ti/graphene devices promoted by visible light illumination. J. Mater. Chem. C 2017, 5, 1113–1120.

[189]

Herrmann, J. M. Photocatalysis fundamentals revisited to avoid several misconceptions. Appl. Catal. B: Environ. 2010, 99, 461–468.

[190]

Lu, G. Y.; Xu, J.; Sun, J. B.; Yu, Y. S.; Zhang, Y. Q.; Liu, F. M. UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sen. Actuators B: Chem. 2012, 162, 82–88.

[191]

Park, S.; An, S.; Mun, Y.; Lee, C. UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. ACS Appl. Mater. Interfaces 2013, 5, 4285–4292.

[192]

Geng, X.; Zhang, C.; Luo, Y. F.; Liao, H. L.; Debliquy, M. Light assisted room-temperature NO2 sensors with enhanced performance based on black SnO1−α@ZnO1−β@SnO2−γ nanocomposite coatings deposited by solution precursor plasma spray. Ceram. Int. 2017, 43, 5990–5998.

[193]

Thepnurat, M.; Chairuangsri, T.; Hongsith, N.; Ruankham, P.; Choopun, S. Realization of interlinked ZnO tetrapod networks for UV sensor and room-temperature gas sensor. ACS Appl. Mater. Interfaces 2015, 7, 24177–24184.

[194]

Wang, P. L.; Fu, Y. M.; Yu, B. W.; Zhao, Y. Y.; Xing, L. L.; Xue, X. Y. Realizing room-temperature self-powered ethanol sensing of ZnO nanowire arrays by combining their piezoelectric, photoelectric and gas sensing characteristics. J. Mater. Chem. A 2015, 3, 3529–3535.

[195]

Hoa, N. D.; Hung, C. M.; Van Duy, N.; Van Hieu, N. Nanoporous and crystal evolution in nickel oxide nanosheets for enhanced gas-sensing performance. Sens. Actuators B: Chem. 2018, 273, 784–793.

[196]

Jamalabadi, H.; Mani-Varnosfaderani, A.; Alizadeh, N. Detection of alkyl amine vapors using PPy-ZnO hybrid nanocomposite sensor array and artificial neural network. Sens. Actuators A: Phys. 2018, 280, 228–237.

[197]

Sun, Q.; Wang, J. X.; Hao, J. Y.; Zheng, S. L.; Wan, P.; Wang, T. T.; Fang, H. T.; Wang, Y. SnS2/SnS p–n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection. Nanoscale 2019, 11, 13741–13749.

[198]

Zhang, D. Z.; Cao, Y. H.; Wu, J. F.; Zhang, X. X. Tungsten trioxide nanoparticles decorated tungsten disulfide nanoheterojunction for highly sensitive ethanol gas sensing application. Appl. Surf. Sci. 2020, 503, 144063.

[199]

Yang, Z. M.; Zhang, D. Z.; Wang, D. Y. Carbon monoxide gas sensing properties of metal-organic frameworks-derived tin dioxide nanoparticles/molybdenum diselenide nanoflowers. Sens. Actuators B: Chem. 2020, 304, 127369.

[200]

Kim, J. H.; Mirzaei, A.; Zheng, Y. F.; Lee, J. H.; Kim, J. Y.; Kim, H. W.; Kim, S. S. Enhancement of H2S sensing performance of p-CuO nanofibers by loading p-reduced graphene oxide nanosheets. Sens. Actuators B: Chem. 2019, 281, 453–461.

[201]

Kim, Y.; Kang, S. K.; Oh, N. C.; Lee, H. D.; Lee, S. M.; Park, J.; Kim, H. Improved sensitivity in Schottky contacted two-dimensional MoS2 gas sensor. ACS Appl. Mater. Interfaces 2019, 11, 38902–38909.

[202]

Wang, Y.; Meng, X. N.; Cao, J. L. Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. J. Hazard. Mater. 2020, 381, 120944.

[203]

Li, T. T.; Shen, Y. B.; Zhong, X. X.; Zhao, S. K.; Li, G. D.; Cui, B. Y.; Wei, D. Z.; Wei, K. F. Effect of noble metal element on microstructure and NO2 sensing properties of WO3 nanoplates prepared from a low-grade scheelite concentrate. J. Alloys Compd. 2020, 818, 152927.

[204]

Zeng, Y. M.; Lin, S. W.; Gu, D.; Li, X. G. Two-dimensional nanomaterials for gas sensing applications: The role of theoretical calculations. Nanomaterials 2018, 8, 851.

[205]

Gao, X.; Zhou, Q.; Wang, J. X.; Xu, L. N.; Zeng, W. Performance of intrinsic and modified graphene for the adsorption of H2S and CH4: A DFT study. Nanomaterials 2020, 10, 299.

[206]

Leenaerts, O.; Partoens, B.; Peeters, F. M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416.

[207]

Zhang, K. N.; Ding, C. C.; She, Y. H.; Wu, Z.; Zhao, C. H.; Pan, B. J.; Zhang, L. J.; Zhou, W.; Fan, Q. C. CuFe2O4/MoS2 mixed-dimensional heterostructures with improved gas sensing response. Nanoscale Res. Lett. 2020, 15, 32.

[208]

Panigrahi, P.; Hussain, T.; Karton, A.; Ahuja, R. Elemental substitution of two-dimensional transition metal dichalcogenides (MoSe2 and MoTe2): Implications for enhanced gas sensing. ACS Sens. 2019, 4, 2646–2653.

[209]

Zhou, C. J.; Yang, W. H.; Zhu, H. L. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2. J. Chem. Phys. 2015, 142, 214704.

[210]

Li, X. G.; Li, X. X.; Li, Z.; Wang, J.; Zhang, J. W. WS2 nanoflakes based selective ammonia sensors at room temperature. Sens. Actuators B: Chem. 2017, 240, 273–277.

[211]

Li, X. H.; Li, S. S.; Yong, Y. L.; Zhang, Z. R. Adsorption of NH3 onto vacancy-defected Ti2CO2 monolayer by first-principles calculations. Appl. Surf. Sci. 2020, 504, 144325.

[212]

Xiao, B.; Li, Y. C.; Yu, X. F.; Cheng, J. B. MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection. Sen. Actuators B: Chem. 2016, 235, 103–109.

[213]

Junkaew, A.; Arróyave, R. Enhancement of the selectivity of MXenes (M2C, M = Ti, V, Nb, Mo) via oxygen-functionalization: Promising materials for gas-sensing and -separation. Phys. Chem. Chem. Phys. 2018, 20, 6073–6082.

[214]

Linsebigler, L. A.; Lu, G. Q.; Yates, T. J. Jr. Photocatalysis on TiO2 surfaces:Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.

[215]

Tang, S. S.; Zhang, F. Y.; Zhao, J.; Talaat, W.; Soto, F.; Karshalev, E.; Chen, C. R.; Hu, Z. H.; Lu, X. L.; Li, J. X. et al. Structure-dependent optical modulation of propulsion and collective behavior of acoustic/light-driven hybrid microbowls. Adv. Funct. Mater. 2019, 29, 1809003.

[216]

Liu, L. P.; Li, X. G.; Dutta, P. K.; Wang, J. Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination. Sens. Actuators B: Chem. 2013, 185, 1–9.

[217]

Comini, E.; Faglia, G.; Sberveglieri, G. UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Sens. Actuators B: Chem. 2001, 78, 73–77.

[218]

Zou, H. Y.; Li, X. G.; Peng, W. B.; Wu, W. Z.; Yu, R. M.; Wu, C. S.; Ding, W. B.; Hu, F.; Liu, R. Y.; Zi, Y. H. et al. Piezo-phototronic effect on selective electron or hole transport through depletion region of Vis–NIR broadband photodiode. Adv. Mater. 2017, 29, 1701412.

[219]

Prades, J. D.; Jimenez-Diaz, R.; Hernandez-Ramirez, F.; Barth, S.; Cirera, A.; Romano-Rodríguez, A.; Mathur, S.; Morante, J. R. Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sens. Actuators B: Chem. 2009, 140, 337–341.

[220]

Gu, D.; Li, X. G.; Wang, H. S.; Li, M. Z.; Xi, Y.; Chen, Y. P.; Wang, J.; Rumyntseva, M. N.; Gaskov, A. M. Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangenerators. Sens. Actuators B: Chem. 2018, 256, 992–1000.

[221]

Kulyuk, L.; Dumcehnko, D.; Bucher, E.; Friemelt, K.; Schenker, O.; Charron, L.; Fortin, E.; Dumouchel, T. Excitonic luminescence of the Br2-intercalated layered semiconductors 2H-WS2. Phys. Rev. B 2005, 72, 075336.

[222]

Braga, D.; Gutiérrez Lezama, I.; Berger, H.; Morpurgo, A. F. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 2012, 12, 5218–5223.

[223]

Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.

[224]

Jia, Q. Q.; Ji, H. M.; Wang, D. H.; Bai, X.; Sun, X. H.; Jin, Z. G. Exposed facets induced enhanced acetone selective sensing property of nanostructured tungsten oxide. J. Mater. Chem. A 2014, 2, 13602–13611.

[225]

Zhou, T. T.; Liu, X. P.; Zhang, R.; Wang, Y. B.; Zhang, T. NiO/NiCo2O4 truncated nanocages with PdO catalyst functionalization as sensing layers for acetone detection. ACS Appl. Mater. Interfaces 2018, 10, 37242–37250.

[226]

Haija, M. A.; Abu-Hani, A. F. S.; Hamdan, N.; Stephen, S.; Ayesh, A. I. Characterization of H2S gas sensor based on CuFe2O4 nanoparticles. J. Alloys Compd. 2017, 690, 461–468.

[227]

Liu, C. H.; Tai, H. L.; Zhang, P.; Yuan, Z.; Du, X. S.; Xie, G. Z.; Jiang, Y. D. A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B: Chem. 2018, 261, 587–597.

[228]

Zhang, W. Y.; Zhang, X. P.; Wu, Z. F.; Abdurahman, K.; Cao, Y. L.; Duan, H. M.; Jia, D. Z. Mechanical, electromagnetic shielding and gas sensing properties of flexible cotton fiber/polyaniline composites. Compos. Sci. Technol. 2020, 188, 107966.

[229]

Wang, S.; Jiang, Y. D.; Tai, H. L.; Liu, B. H.; Duan, Z. H.; Yuan, Z.; Pan, H.; Xie, G. Z.; Du, X. S.; Su, Y. J. An integrated flexible self-powered wearable respiration sensor. Nano Energy 2019, 63, 103829.

[230]

Wu, J.; Wu, Z. X.; Ding, H. J.; Wei, Y. M.; Huang, W. X.; Yang, X.; Li, Z. Y.; Qiu, L.; Wang, X. T. Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor. Sens. Actuators B: Chem. 2020, 305, 127445.

[231]

Park, H. J.; Kim, W. J.; Lee, H. K.; Lee, D. S.; Shin, J. H.; Jun, Y.; Yun, Y. J. Highly flexible, mechanically stable, and sensitive NO2 gas sensors based on reduced graphene oxide nanofibrous mesh fabric for flexible electronics. Sens. Actuators B: Chem. 2018, 257, 846–852.

[232]

Li, W. W.; Chen, R. S.; Qi, W. Z.; Cai, L.; Sun, Y. L.; Sun, M. X.; Li, C.; Yang, X. K.; Xiang, L.; Xie, D. et al. Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO2 E-textile gas sensor. ACS Sens. 2019, 4, 2809–2818.

[233]

Shen, S. K.; Zhang, X. F.; Cheng, X. L.; Xu, Y. M.; Gao, S.; Zhao, H.; Zhou, X.; Huo, L. H. Oxygen-vacancy-enriched porous α-MoO3 nanosheets for trimethylamine sensing. ACS Appl. Nano Mater. 2019, 2, 8016–8026.

[234]

Li, Z. H.; Zhou, X. C.; Shi, J. Y.; Zou, X. B.; Huang, X. W.; Tahir, H. E. Preparation of conducting polyaniline/protoporphyrin composites and their application for sensing VOCs. Food Chem. 2019, 276, 291–297.

[235]

Chen, W.; Deng, F. F.; Xu, M.; Wang, J.; Wei, Z. B.; Wang, Y. W. GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations. Sens. Actuators B: Chem. 2018, 273, 498–504.

[236]

Yang, X. H.; Wang, W. W.; Wang, C. L.; Xie, H.; Fu, H. T.; An, X. Z.; Jiang, X. C.; Yu, A. B. Synthesis of Au decorated V2O5 microflowers with enhanced sensing properties towards amines. Powder Technol. 2018, 339, 408–418.

[237]

Xu, S.; Hansen, B. J.; Wang, Z. L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 2010, 1, 93.

[238]

Qu, Z.; Fu, Y. M.; Yu, B. W.; Deng, P.; Xing, L. L.; Xue, X. Y. High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor. Sens. Actuators B: Chem. 2016, 222, 78–86.

[239]

Cui, S. W.; Zheng, Y. B.; Zhang, T. T.; Wang, D. A.; Zhou, F.; Liu, W. M. Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator. Nano Energy 2018, 49, 31–39.

[240]

Wang, S.; Xie, G. Z.; Tai, H. L.; Su, Y. J.; Yang, B. X.; Zhang, Q. P.; Du, X. S.; Jiang, Y. D. Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature. Nano Energy 2018, 51, 231–240.

[241]

Zhao, K.; Gu, G. Q.; Zhang, Y. N.; Zhang, B.; Yang, F.; Zhao, L.; Zheng, M. L.; Cheng, G.; Du, Z. L. The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator. Nano Energy 2018, 53, 898–905.

[242]

Chang, J. Y.; Meng, H.; Li, C. S.; Gao, J. M.; Chen, S. Q.; Hu, Q.; Li, H.; Feng, L. A wearable toxic gas-monitoring device based on triboelectric nanogenerator for self-powered aniline early warning. Adv. Mater. Technol. 2020, 5, 1901087.

Publication history
Copyright
Acknowledgements

Publication history

Received: 11 July 2022
Revised: 27 September 2022
Accepted: 24 October 2022
Published: 04 April 2023
Issue date: October 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51777215), the Original Innovation Special Project of Science and Technology Plan of Qingdao West Coast New Area (No. 2020-85), and the Special Foundation of the Taishan Scholar Project.

Return