AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advancements and manipulation strategies of colloidal Cs2BIBIIIX6 lead-free halide double perovskite nanocrystals

Shufang WuYongjun Liu( )
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
Show Author Information

Graphical Abstract

This review summarizes of the latest progress of Cs2BIBIIIX6 nanocrystals (NCs) in synthesis approaches, optical properties, regulation strategies and applications, with the focus on the relationships of compositional engineering and the material properties.

Abstract

Double-metallic lead-free halide perovskites, Cs2BIBIIIX6, sharing three-dimensional crystal structure, have been under the spotlight as the promising alternatives for the toxic and instable lead-based counterparts. Interest in Cs2BIBIIIX6 motivates intense research into their colloidal nanocrystals (NCs). Recently, Cs2BIBIIIX6 NCs have made great progress in the optical performance via alloying or doping, but there are still great challenges for optoelectronic applications. In this review, the latest advances of Cs2BIBIIIX6 NCs in synthesis approaches, bandgap engineering, photoluminescence (PL) optimization, and applications are summarized. The focus is put upon the composition–property relationships of Cs2BIBIIIX6 NCs, which is approached by discussing the influences of composition variation on the electronic states, carrier dynamics, and optical properties. The challenges and the corresponding improving strategies in the development of high-effective and stable Cs2BIBIIIX6 NCs for device applications are also highlighted. It is believed that this review can deepen the understanding on this burgeoning material system and shed light on their future research directions.

References

[1]

Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.

[2]

Correa-Baena, J. P.; Abate, A.; Saliba, M.; Tress, W.; Jacobsson, T. J.; Grätzel, M.; Hagfeldt, A. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 2017, 10, 710–727.

[3]

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

[4]

Walsh, A.; Scanlon, D. O.; Chen, S. Y.; Gong, X. G.; Wei, S. H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem., Int. Ed. 2015, 54, 1791–1794.

[5]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[6]

Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.

[7]

Li, Z.; Li, B.; Wu, X.; Sheppard, S. A.; Zhang, S. F.; Gao, D. P.; Long, N. J.; Zhu, Z. L. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 2022, 376, 416–420.

[8]

Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.

[9]

Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887–13892.

[10]

Liu, P. Z.; Chen, W.; Wang, W. G.; Xu, B.; Wu, D.; Hao, J. J.; Cao, W. Y.; Fang, F.; Li, Y.; Zeng, Y. Y. et al. Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance. Chem. Mater. 2017, 29, 5168–5173.

[11]

Rong, Y. G.; Hu, Y.; Mei, A. Y.; Tan, H. R.; Saidaminov, M. I.; Seok, S. I.; Mcgehee, M. D.; Sargent, E. H.; Han, H. W. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235.

[12]

Giustino, F.; Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 2016, 1, 1233–1240.

[13]

Park, B. W.; Seok, S. I. Intrinsic instability of inorganic-organic hybrid halide perovskite materials. Adv. Mater. 2019, 31, 1805337.

[14]

Ning, W. H.; Gao, F. Structural and functional diversity in lead-free halide perovskite materials. Adv. Mater. 2019, 31, 1900326.

[15]

Xiao, Z. W.; Song, Z. N.; Yan, Y. F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 2019, 31, 1803792.

[16]

Yin, W. J.; Shi, T. T.; Yan, Y. F. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658.

[17]

Chen, M.; Ju, M. G.; Garces, H. F.; Carl, A. D.; Ono, L. K.; Hawash, Z.; Zhang, Y.; Shen, T. Y.; Qi, Y. B.; Grimm, R. L. et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 2019, 10, 16.

[18]

Chung, I.; Song, J. H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587.

[19]

Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (a: Methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813.

[20]

Jiang, F. Y.; Yang, D. W.; Jiang, Y. Y.; Liu, T. F.; Zhao, X. G.; Ming, Y.; Luo, B. W.; Qin, F.; Fan, J. C.; Han, H. W. et al. Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells. J. Am. Chem. Soc. 2018, 140, 1019–1027.

[21]

Saparov, B.; Sun, J. P.; Meng, W. W.; Xiao, Z. W.; Duan, H. S.; Gunawan, O.; Shin, D.; Hill, I. G.; Yan, Y. F.; Mitzi, D. B. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chem. Mater. 2016, 28, 2315–2322.

[22]

Jun, T.; Sim, K.; Iimura, S.; Sasase, M.; Kamioka, H.; Kim, J.; Hosono, H. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 2018, 30, 1804547.

[23]

Zhao, X. G.; Yang, D. W.; Ren, J. C.; Sun, Y. H.; Xiao, Z. W.; Zhang, L. J. Rational design of halide double perovskites for optoelectronic applications. Joule 2018, 2, 1662–1673.

[24]

Yin, H.; Xian, Y. M.; Zhang, Y. L.; Li, W. Z.; Fan, J. D. Structurally stabilizing and environment friendly triggers: Double-metallic lead-free perovskites. Sol. RRL 2019, 3, 1900148.

[25]

Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 2016, 138, 2138–2141.

[26]

McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M. Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 2016, 28, 1348–1354.

[27]

Deng, Z. Y.; Wei, F. X.; Sun, S. J.; Kieslich, G.; Cheetham, A. K.; Bristowe, P. D. Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach. J. Mater. Chem. A 2016, 4, 12025–12029.

[28]

Zhou, J.; Xia, Z. G.; Molokeev, M. S.; Zhang, X. W.; Peng, D. S.; Liu, Q. L. Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6. J. Mater. Chem. A 2017, 5, 15031–15037.

[29]

Volonakis, G.; Haghighirad, A. A.; Milot, R. L.; Sio, W. H.; Filip, M. R.; Wenger, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J.; Giustino, F. Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 2017, 8, 772–778.

[30]

Schade, L.; Wright, A. D.; Johnson, R. D.; Dollmann, M.; Wenger, B.; Nayak, P. K.; Prabhakaran, D.; Herz, L. M.; Nicholas, R.; Snaith, H. J. et al. Structural and optical properties of Cs2AgBiBr6 double perovskite. ACS Energy Lett. 2018, 4, 299–305.

[31]

Majher, J. D.; Gray, M. B.; Strom, T. A.; Woodward, P. M. Cs2NaBiCl6: Mn2+-a new orange-red halide double perovskite phosphor. Chem. Mater. 2019, 31, 1738–1744.

[32]

Zhou, J.; Rong, X. M.; Molokeev, M. S.; Zhang, X. W.; Xia, Z. G. Exploring the transposition effects on the electronic and optical properties of Cs2AgSbCl6 via a combined computational-experimental approach. J. Mater. Chem. A 2018, 6, 2346–2352.

[33]

Wu, C. C.; Zhang, Q. H.; Liu, Y.; Luo, W.; Guo, X.; Huang, Z. R.; Ting, H.; Sun, W. H.; Zhong, X. R.; Wei, S. Y. et al. The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 2018, 5, 1700759.

[34]

Luo, J. J.; Wang, X. M.; Li, S. R.; Liu, J.; Guo, Y. M.; Niu, G. D.; Yao, L.; Fu, Y. H.; Gao, L.; Dong, Q. S. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 2018, 563, 541–545.

[35]

Yang, B.; Pan, W. C.; Wu, H. D.; Niu, G. D.; Yuan, J. H.; Xue, K. H.; Yin, L. X.; Du, X. Y.; Miao, X. S.; Yang, X. Q. et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 2019, 10, 1989.

[36]

Zhang, Z. Z.; Liang, Y. Q.; Huang, H. L.; Liu, X. Y.; Li, Q.; Chen, L. X.; Xu, D. S. Stable and highly efficient photocatalysis with lead-free double-perovskite of Cs2AgBiBr6. Angew. Chem., Int. Ed. 2019, 58, 7263–7267.

[37]

Bekenstein, Y.; Dahl, J. C.; Huang, J. M.; Osowiecki, W. T.; Swabeck, J. K.; Chan, E. M.; Yang, P. D.; Alivisatos, A. P. The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions. Nano Lett. 2018, 18, 3502–3508.

[38]

Creutz, S. E.; Crites, E. N.; De Siena, M. C.; Gamelin, D. R. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: Synthesis and anion exchange to access new materials. Nano Lett. 2018, 18, 1118–1123.

[39]

Yang, B.; Chen, J. S.; Yang, S. Q.; Hong, F.; Sun, L.; Han, P. G.; Pullerits, T.; Deng, W. Q.; Han, K. L. Lead-free silver-bismuth halide double perovskite nanocrystals. Angew. Chem., Int. Ed. 2018, 57, 5359–5363.

[40]

Hu, Q. S.; Niu, G. D.; Zheng, Z.; Li, S. R.; Zhang, Y. N.; Song, H. S.; Zhai, T. Y.; Tang, J. Tunable color temperatures and efficient white emission from Cs2Ag1-xNaxIn1-yBiyCl6 double perovskite nanocrystals. Small 2019, 15, 1903496.

[41]

Yang, B.; Mao, X.; Hong, F.; Meng, W. W.; Tang, Y. X.; Xia, X. S.; Yang, S. Q.; Deng, W. Q.; Han, K. L. Lead-free direct band gap double-perovskite nanocrystals with bright dual-color emission. J. Am. Chem. Soc. 2018, 140, 17001–17006.

[42]

Mahor, Y.; Mir, W. J.; Nag, A. Synthesis and near-infrared emission of Yb-doped Cs2AgInCl6 double perovskite microcrystals and nanocrystals. J. Phys. Chem. C 2019, 123, 15787–15793.

[43]
Infante, I.; Manna, L. Are there good alternatives to lead halide perovskite nanocrystals? Nano Lett. 2021, 21, 6–9.
[44]

Manna, D.; Kangsabanik, J.; Das, T. K.; Das, D.; Alam, A.; Yella, A. Lattice dynamics and electron-phonon coupling in lead-free Cs2AgIn1-xBixCl6 double perovskite nanocrystals. J. Phys. Chem. Lett. 2020, 11, 2113–2120.

[45]

Dahl, J. C.; Osowiecki, W. T.; Cai, Y.; Swabeck, J. K.; Bekenstein, Y.; Asta, M.; Chan, E. M.; Alivisatos, A. P. Probing the stability and band gaps of Cs2AgInCl6 and Cs2AgSbCl6 lead-free double perovskite nanocrystals. Chem. Mater. 2019, 31, 3134–3143.

[46]

Xu, J.; Liu, J. B.; Liu, B. X.; Huang, B. Intrinsic defect physics in indium-based lead-free halide double perovskites. J. Phys. Chem. Lett. 2017, 8, 4391–4396.

[47]

Ravi, V. K.; Singhal, N.; Nag, A. Initiation and future prospects of colloidal metal halide double-perovskite nanocrystals: Cs2AgBiX6 (X = Cl, Br, I). J. Mater. Chem. A 2018, 6, 21666–21675.

[48]

Khalfin, S.; Bekenstein, Y. Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability. Nanoscale 2019, 11, 8665–8679.

[49]

Tang, H. D.; Xu, Y. Q.; Hu, X. B.; Hu, Q.; Chen, T.; Jiang, W. H.; Wang, L. J.; Jiang, W. Lead-free halide double perovskite nanocrystals for light-emitting applications: Strategies for boosting efficiency and stability. Adv. Sci. 2021, 8, 2004118.

[50]

Han, P. G.; Han, K. L. Recent advances in all-inorganic lead-free three-dimensional halide double perovskite nanocrystals. Energy Fuels 2021, 35, 18871–18887.

[51]

Cai, Y.; Xie, W.; Teng, Y. T.; Harikesh, P. C.; Ghosh, B.; Huck, P.; Persson, K. A.; Mathews, N.; Mhaisalkar, S. G.; Sherburne, M. et al. High-throughput computational study of halide double perovskite inorganic compounds. Chem. Mater. 2019, 31, 5392–5401.

[52]

Zhang, T.; Cai, Z. H.; Chen, S. Y. Chemical trends in the thermodynamic stability and band gaps of 980 halide double perovskites: A high-throughput first-principles study. ACS Appl. Mater. Interfaces 2020, 12, 20680–20690.

[53]

Li, C.; Lu, X. G.; Ding, W. Z.; Feng, L. M.; Gao, Y. H.; Guo, Z. M. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. B 2008, 64, 702–707.

[54]

Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2016, 28, 284–292.

[55]

Usman, M.; Yan, Q. F. Recent advancements in crystalline Pb-free halide double perovskites. Crystals 2020, 10, 62.

[56]

Igbari, F.; Wang, Z. K.; Liao, L. S. Progress of lead-free halide double perovskites. Adv. Energy Mater. 2019, 9, 1803150.

[57]

Chen, Q.; De Marco, N.; Yang, Y.; Song, T. B.; Chen, C. C.; Zhao, H. X.; Hong, Z. R.; Zhou, H. P.; Yang, Y. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396.

[58]

Wu, Y.; Li, X. M.; Zeng, H. B. Lead-free halide double perovskites: Structure, luminescence, and applications. Small Struct. 2020, 2, 2000071.

[59]

Zhao, X. G.; Yang, D. W.; Sun, Y. H.; Li, T. S.; Zhang, L. J.; Yu, L. P.; Zunger, A. Cu-In halide perovskite solar absorbers. J. Am. Chem. Soc. 2017, 139, 6718–6725.

[60]

Zhao, X. G.; Yang, J. H.; Fu, Y. H.; Yang, D. W.; Xu, Q. L.; Yu, L. P.; Wei, S. H.; Zhang, L. J. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 2017, 139, 2630–2638.

[61]

Xiao, Z. W.; Du, K. Z.; Meng, W. W.; Mitzi, D. B.; Yan, Y. F. Chemical origin of the stability difference between copper(I)- and silver(I)-based halide double perovskites. Angew. Chem., Int. Ed. 2017, 56, 12107–12111.

[62]

Locardi, F.; Cirignano, M.; Baranov, D.; Dang, Z. Y.; Prato, M.; Drago, F.; Ferretti, M.; Pinchetti, V.; Fanciulli, M.; Brovelli, S. et al. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals. J. Am. Chem. Soc. 2018, 140, 12989–12995.

[63]

Wang, C.; Liu, Y.; Guo, Y. R.; Ma, L. L.; Liu, Y. L.; Zhou, C. Y.; Yu, X.; Zhao, G. J. Lead-free sodium bismuth halide Cs2NaBiX6 double perovskite nanocrystals with highly efficient photoluminesence. Chem. Eng. J. 2020, 397, 125367.

[64]

Liu, Y.; Jing, Y. Y.; Zhao, J.; Liu, Q. L.; Xia, Z. G. Design optimization of lead-free perovskite Cs2AgInCl6: Bi nanocrystals with 11. 4% photoluminescence quantum yield. Chem. Mater. 2019, 31, 3333–3339.

[65]

Lv, K. X.; Qi, S. P.; Liu, G. N.; Lou, Y. B.; Chen, J. X.; Zhao, Y. X. Lead-free silver-antimony halide double perovskite quantum dots with superior blue photoluminescence. Chem. Commun. 2019, 55, 14741–14744.

[66]

Hu, Y. Q.; Fan, L. J.; Hui, H. Y.; Wen, H. Q.; Yang, D. S.; Feng, G. D. Monodisperse bismuth-halide double perovskite nanocrystals confined in mesoporous silica templates. Inorg. Chem. 2019, 58, 8500–8505.

[67]

Kumar, S.; Hassan, I.; Regue, M.; Gonzalez-Carrero, S.; Rattner, E.; Isaacs, M. A.; Eslava, S. Mechanochemically synthesized Pb-free halide perovskite-based Cs2AgBiBr6-Cu-RGO nanocomposite for photocatalytic CO2 reduction. J. Mater. Chem. A 2021, 9, 12179–12187.

[68]

Han, P. G.; Luo, C.; Zhou, W.; Hou, J.; Li, C.; Zheng, D. Y.; Han, K. L. Band-gap engineering of lead-free iron-based halide double-perovskite single crystals and nanocrystals by an alloying or doping strategy. J. Phys. Chem. C 2021, 125, 11743–11749.

[69]

Meng, W. W.; Wang, X. M.; Xiao, Z. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. J. Phys. Chem. Lett. 2017, 8, 2999–3007.

[70]

Zu, F. S.; Shin, D.; Koch, N. Electronic properties of metal halide perovskites and their interfaces: The basics. Mater. Horiz. 2022, 9, 17–24.

[71]

Xiao, Z. W.; Du, K. Z.; Meng, W. W.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites: A combined density functional theory and experimental study. J. Am. Chem. Soc. 2017, 139, 6054–6057.

[72]

Aslam, F.; Ullah, H.; Hassan, M. Theoretical investigation of Cs2InBiX6 (X = Cl, Br, I) double perovskite halides using first-principle calculations. Mater. Sci. Eng. B 2021, 274, 115456.

[73]

Slavney, A. H.; Leppert, L.; Saldivar Valdes, A.; Bartesaghi, D.; Savenije, T. J.; Neaton, J. B.; Karunadasa, H. I. Small-band-gap halide double perovskites. Angew. Chem., Int. Ed. 2018, 57, 12765–12770.

[74]

Yuan, W. N.; Niu, G. D.; Xian, Y. M.; Wu, H. D.; Wang, H. M.; Yin, H.; Liu, P.; Li, W. Z.; Fan, J. D. In situ regulating the order-disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector. Adv. Funct. Mater. 2019, 29, 1900234.

[75]

Su, J.; Huang, Y. Q.; Chen, H.; Huang, J. Solution growth and performance study of Cs2AgBiBr6 single crystal. Cryst. Res. Technol. 2020, 55, 1900222.

[76]

Luo, J. J.; Li, S. R.; Wu, H. D.; Zhou, Y.; Li, Y.; Liu, J.; Li, J. H.; Li, K. H.; Yi, F.; Niu, G. D. et al. Cs2AgInCl6 double perovskite single crystals: Parity forbidden transitions and their application for sensitive and fast UV photodetectors. ACS Photonics 2018, 5, 398–405.

[77]

Lamba, R. S.; Basera, P.; Bhattacharya, S.; Sapra, S. Band gap engineering in Cs2(NaxAg1-x)BiCl6 double perovskite nanocrystals. J. Phys. Chem. Lett. 2019, 10, 5173–5181.

[78]

Zhou, J.; Rong, X. M.; Zhang, P.; Molokeev, M. S.; Wei, P. J.; Liu, Q. L.; Zhang, X. W.; Xia, Z. G. Manipulation of Bi3+/In3+ transmutation and Mn2+-doping effect on the structure and optical properties of double perovskite Cs2NaBi1-xInxCl6. Adv. Opt. Mater. 2019, 7, 1801435.

[79]

Slavney, A. H.; Connor, B. A.; Leppert, L.; Karunadasa, H. I. A pencil-and-paper method for elucidating halide double perovskite band structures. Chem. Sci. 2019, 10, 11041–11053.

[80]

Volonakis, G.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Snaith, H. J.; Giustino, F. Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 2016, 7, 1254–1259.

[81]

Du, K. Z.; Meng, W. W.; Wang, X. M.; Yan, Y. F.; Mitzi, D. B. Bandgap engineering of lead-free double perovskite Cs2AgBiBr6 through trivalent metal alloying. Angew. Chem., Int. Ed. 2017, 56, 8158–8162.

[82]

Lamba, R. S.; Basera, P.; Singh, S.; Bhattacharya, S.; Sapra, S. Lead-free alloyed double-perovskite nanocrystals of Cs2(NaxAg1–x)BiBr6 with tunable band gap. J. Phys. Chem. C 2021, 125, 1954–1962.

[83]

Hutter, E. M.; Gélvez-Rueda, M. C.; Bartesaghi, D.; Grozema, F. C.; Savenije, T. J. Band-like charge transport in Cs2AgBiBr6 and mixed antimony-bismuth Cs2AgBi1–xSbxBr6 halide double perovskites. ACS Omega 2018, 3, 11655–11662.

[84]

Yang, H. X.; Guo, Y. M.; Liu, G. N.; Song, R. W.; Chen, J. X.; Lou, Y. B.; Zhao, Y. X. Near UV luminescent Cs2NaBi0.75Sb0. 25Cl6 perovskite colloidal nanocrystals with high stability. Chin. Chem. Lett. 2022, 33, 537–540.

[85]

Tran, T. T.; Panella, J. R.; Chamorro, J. R.; Morey, J. R.; McQueen, T. M. Designing indirect-direct bandgap transitions in double perovskites. Mater. Horiz. 2017, 4, 688–693.

[86]

Manna, D.; Das, T. K.; Yella, A. Tunable and stable white light emission in Bi3+-alloyed Cs2AgInCl6 double perovskite nanocrystals. Chem. Mater. 2019, 31, 10063–10070.

[87]

Chen, N.; Cai, T.; Li, W. H.; Hills-Kimball, K.; Yang, H. J.; Que, M. D.; Nagaoka, Y.; Liu, Z. Y.; Yang, D.; Dong, A. G. et al. Yb- and Mn-doped lead-free double perovskite Cs2AgBiX6 (X = Cl, Br) nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 16855–16863.

[88]

Zhou, W.; Han, P. G.; Zhang, X. R.; Zheng, D. Y.; Yang, S. Q.; Yang, Y.; Luo, C.; Yang, B.; Hong, F.; Wei, D. H. et al. Lead-free small-bandgap Cs2CuSbCl6 double perovskite nanocrystals. J. Phys. Chem. Lett. 2020, 11, 6463–6467.

[89]

Liao, Q. H.; Chen, J. L.; Zhou, L. Y.; Wei, T. T.; Zhang, L.; Chen, D.; Huang, F. R.; Pang, Q.; Zhang, J. Z. Bandgap engineering of lead-free double perovskite Cs2AgInCl6 nanocrystals via Cu2+-doping. J. Phys. Chem. Lett. 2020, 11, 8392–8398.

[90]

Palummo, M.; Berrios, E.; Varsano, D.; Giorgi, G. Optical properties of lead-free double perovskites by ab initio excited-state methods. ACS Energy Lett. 2020, 5, 457–463.

[91]

Wright, A. D.; Buizza, L. R. V.; Savill, K. J.; Longo, G.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Ultrafast excited-state localization in Cs2AgBiBr6 double perovskite. J. Phys. Chem. Lett. 2021, 12, 3352–3360.

[92]

Zelewski, S. J.; Urban, J. M.; Surrente, A.; Maude, D. K.; Kuc, A.; Schade, L.; Johnson, R. D.; Dollmann, M.; Nayak, P. K.; Snaith, H. J. et al. Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs2AgBiBr6. J. Mater. Chem. C 2019, 7, 8350–8356.

[93]

Dey, A.; Richter, A. F.; Debnath, T.; Huang, H.; Polavarapu, L.; Feldmann, J. Transfer of direct to indirect bound excitons by electron intervalley scattering in Cs2AgBiBr6 double perovskite nanocrystals. ACS Nano 2020, 14, 5855–5861.

[94]

Lee, W.; Hong, S.; Kim, S. Colloidal synthesis of lead-free silver-indium double-perovskite Cs2AgInCl6 nanocrystals and their doping with lanthanide ions. J. Phys. Chem. C 2019, 123, 2665–2672.

[95]

Yao, M. M.; Wang, L.; Yao, J. S.; Wang, K. H.; Chen, C.; Zhu, B. S.; Yang, J. N.; Wang, J. J.; Xu, W. P.; Zhang, Q. et al. Improving lead-free double perovskite Cs2NaBiCl6 nanocrystal optical properties via ion doping. Adv. Opt. Mater. 2020, 8, 1901919.

[96]

Ahmad, R.; Zdražil, L.; Kalytchuk, S.; Naldoni, A.; Rogach, A. L.; Schmuki, P.; Zboril, R.; Kment, Š. Uncovering the role of trioctylphosphine on colloidal and emission stability of Sb-alloyed Cs2NaInCl6 double perovskite nanocrystals. ACS Appl. Mater. Interfaces 2021, 13, 47845–47859.

[97]

Liu, X. Y.; Xu, X.; Li, B.; Yang, L. L.; Li, Q.; Jiang, H.; Xu, D. S. Tunable dual-emission in monodispersed Sb3+/Mn2+ codoped Cs2NaInCl6 perovskite nanocrystals through an energy transfer process. Small 2020, 16, 2002547.

[98]

Zhu, D. X.; Zito, J.; Pinchetti, V.; Dang, Z. Y.; Olivati, A.; Pasquale, L.; Tang, A. W.; Zaffalon, M. L.; Meinardi, F.; Infante, I. et al. Compositional tuning of carrier dynamics in Cs2Na1–xAgxBiCl6 double-perovskite nanocrystals. ACS Energy Lett. 2020, 5, 1840–1847.

[99]

Li, S. R.; Luo, J. J.; Liu, J.; Tang, J. Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, status, and potential applications. J. Phys. Chem. Lett. 2019, 10, 1999–2007.

[100]

Fowler, W. B.; Marrone, M. J.; Kabler, M. N. Theory of self-trapped exciton luminescence in halide crystals. Phys. Rev. B 1973, 8, 5909–5919.

[101]

Cong, M. Y.; Yang, B.; Hong, F.; Zheng, T. C.; Sang, Y. B.; Guo, J. W.; Yang, S. Q.; Han, K. L. Self-trapped exciton engineering for white-light emission in colloidal lead-free double perovskite nanocrystals. Sci. Bull. 2020, 65, 1078–1084.

[102]

Locardi, F.; Sartori, E.; Buha, J.; Zito, J.; Prato, M.; Pinchetti, V.; Zaffalon, M. L.; Ferretti, M.; Brovelli, S.; Infante, I. et al. Emissive Bi-doped double perovskite Cs2Ag1−xNaxInCl6 nanocrystals. ACS Energy Lett. 2019, 4, 1976–1982.

[103]

Li, Z. X.; Sun, F. L.; Song, H. N.; Zhou, H. F.; Zhou, Y. F.; Yuan, Z. L.; Guo, P.; Zhou, G. J.; Zhuang, Q. Q.; Yu, X. Q. Warm white-light emitting silica films prepared using lead-free double perovskite QDs. Dalton. Trans. 2021, 50, 9804–9811.

[104]

Zheng, W.; Sun, R. J.; Liu, Y. Q.; Wang, X. J.; Liu, N. Q.; Ji, Y. C.; Wang, L. L.; Liu, H.; Zhang, Y. H. Excitation management of lead-free perovskite nanocrystals through doping. ACS Appl. Mater. Inter. 2021, 13, 6404–6410.

[105]

Zhang, Y. Q.; Zhang, Z. H.; Yu, W. J.; He, Y.; Chen, Z. J.; Xiao, L. X.; Shi, J. J.; Guo, X.; Wang, S. F.; Qu, B. Lead-free double perovskite Cs2AgIn0.9Bi0. 1Cl6 quantum dots for white light-emitting diodes. Adv. Sci. 2022, 9, 2102895.

[106]

Han, P. G.; Mao, X.; Yang, S. Q.; Zhang, F.; Yang, B.; Wei, D. H.; Deng, W. Q.; Han, K. L. Lead-free sodium-indium double perovskite nanocrystals through doping silver cations for bright yellow emission. Angew. Chem. Int. Ed. 2019, 58, 17231–17235.

[107]

Ahmad, R.; Zdražil, L.; Kalytchuk, S.; Naldoni, A.; Mohammadi, E.; Schmuki, P.; Zboril, R.; Kment, Š. Robust dual cationic ligand for stable and efficient warm-white light emission in lead-free double perovskite nanocrystals. Appl. Mater. Today 2022, 26, 101288.

[108]

Vashishtha, P.; Griffith, B. E.; Fang, Y. N.; Jaiswal, A.; Nutan, G. V.; Bartók, A. P.; White, T.; Hanna, J. V. Elucidation of the structural and optical properties of metal cation (Na+, K+, and Bi3+) incorporated Cs2AgInCl6 double perovskite nanocrystals. J. Mater. Chem. A 2022, 10, 3562–3578.

[109]

Yang, B.; Hong, F.; Chen, J. S.; Tang, Y. X.; Yang, L.; Sang, Y. B.; Xia, X. S.; Guo, J. W.; He, H. X.; Yang, S. Q. et al. Colloidal synthesis and charge-carrier dynamics of Cs2AgSb1−yBiyX6 (X: Br, Cl; 0 ≤ y ≤ 1) double perovskite nanocrystals. Angew. Chem. Int. Ed. 2019, 58, 2278–2283.

[110]

Zhu, D. X.; Zaffalon, M. L.; Zito, J.; Cova, F.; Meinardi, F.; De Trizio, L.; Infante, I.; Brovelli, S.; Manna, L. Sb-doped metal halide nanocrystals: A 0D versus 3D comparison. ACS Energy Lett. 2021, 6, 2283–2292.

[111]

Cong, M. Y.; Zhang, Q. K.; Yang, B.; Chen, J. S.; Xiao, J.; Zheng, D. Y.; Zheng, T. C.; Zhang, R. L.; Qing, G.; Zhang, C. F. et al. Bright triplet self-trapped excitons to dopant energy transfer in halide double-perovskite nanocrystals. Nano Lett. 2021, 21, 8671–8678.

[112]

Lee, W.; Choi, D.; Kim, S. Colloidal synthesis of shape-controlled Cs2NaBiX6 (X = Cl, Br) double perovskite nanocrystals: Discrete optical transition by non-bonding characters and energy transfer to Mn dopants. Chem. Mater. 2020, 32, 6864–6874.

[113]

Su, X. M.; Lian, L. Y.; Zhang, C.; Zhang, J. B.; Liu, S. S.; Zhu, S.; Gao, Y. L.; Luo, W.; Li, H. L.; Zhang, D. L. Enhanced photoluminescence of colloidal lead-free double perovskite Cs2Ag1–xNaxInCl6 nanocrystals doped with manganese. Adv. Opt. Mater. 2021, 9, 2001866.

[114]

Han, P. G.; Zhang, X.; Luo, C.; Zhou, W.; Yang, S. Q.; Zhao, J. Z.; Deng, W. Q.; Han, K. L. Manganese-doped, lead-free double perovskite nanocrystals for bright orange-red emission. ACS Cent. Sci. 2020, 6, 566–572.

[115]

Zhang, A. R.; Liu, Y.; Liu, G. C.; Xia, Z. G. Dopant and compositional modulation triggered broadband and tunable near-infrared emission in Cs2Ag1–xNaxInCl6: Cr3+ nanocrystals. Chem. Mater. 2022, 34, 3006–3012.

[116]

Liu, Y.; Rong, X. M.; Li, M. Z.; Molokeev, M. S.; Zhao, J.; Xia, Z. G. Incorporating rare-earth terbium(III) ions into Cs2AgInCl6: Bi nanocrystals toward tunable photoluminescence. Angew. Chem., Int. Ed. 2020, 59, 11634–11640.

[117]

Liu, Y.; Molokeev, M. S.; Xia, Z. G. Lattice doping of lanthanide ions in Cs2AgInCl6 nanocrystals enabling tunable photoluminescence. Energy Mater. Adv. 2021, 2021, 1–9.

[118]

Zeng, Z. C.; Huang, B. L.; Wang, X.; Lu, L.; Lu, Q. Y.; Sun, M. Z.; Wu, T.; Ma, T. F.; Xu, J.; Xu, Y. S. et al. Multimodal luminescent Yb3+/Er3+/Bi3+-doped perovskite single crystals for X-ray detection and anti-counterfeiting. Adv. Mater. 2020, 32, 2004506.

[119]

Arfin, H.; Kaur, J.; Sheikh, T.; Chakraborty, S.; Nag, A. Bi3+-Er3+ and Bi3+-Yb3+ codoped Cs2AgInCl6 double perovskite near-infrared emitters. Angew. Chem., Int. Ed. 2020, 59, 11307–11311.

[120]

Wang, S. X.; Qi, J. S.; Kershaw, S. V.; Rogach, A. L. Co-doping of cerium and bismuth into lead-free double perovskite Cs2AgInCl6 nanocrystals results in improved photoluminescence efficiency. ACS Nanosci. Au 2022, 2, 93–101.

[121]

Yin, H.; Kong, Q. K.; Zhang, R. L.; Zheng, D. Y.; Yang, B.; Han, K. L. Lead-free rare-earth double perovskite Cs2AgIn1-γ-xBixLaγCl6 nanocrystals with highly efficient warm-white emission. Sci. China Mater. 2021, 64, 2667–2674.

[122]

Levy, S.; Khalfin, S.; Pavlopoulos, N. G.; Kauffmann, Y.; Atiya, G.; Shaek, S.; Dror, S.; Shechter, R.; Bekenstein, Y. The role silver nanoparticles plays in silver-based double-perovskite nanocrystals. Chem. Mater. 2021, 33, 2370–2377.

[123]

Liu, Z. Y.; Yang, H. J.; Wang, J. Y.; Yuan, Y. C.; Hills-Kimball, K.; Cai, T.; Wang, P.; Tang, A. W.; Chen, O. Synthesis of lead-free Cs2AgBiX6 (X = Cl, Br, I) double perovskite nanoplatelets and their application in CO2 photocatalytic reduction. Nano Lett. 2021, 21, 1620–1627.

[124]

Huang, J. M.; Zou, S. W.; Lin, J.; Liu, Z. W.; Qi, M. J. Ultrathin lead-free double perovskite cesium silver bismuth bromide nanosheets. Nano Res. 2021, 14, 4079–4086.

[125]

Wang, X. C.; Bai, T. X.; Yang, B.; Zhang, R. L.; Zheng, D. Y.; Jiang, J. K.; Tao, S. X.; Liu, F.; Han, K. L. Germanium halides serving as ideal precursors: Designing a more effective and less toxic route to high-optoelectronic-quality metal halide perovskite nanocrystals. Nano Lett. 2022, 22, 636–643.

[126]

Li, Q.; Wang, Y. G.; Pan, W. C.; Yang, W. G.; Zou, B.; Tang, J.; Quan, Z. W. High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite. Angew. Chem., Int. Ed. 2017, 56, 15969–15973.

[127]

Zhang, L.; Fang, Y. Y.; Sui, L.; Yan, J. J.; Wang, K.; Yuan, K. J.; Mao, W. L.; Zou, B. Tuning emission and electron-phonon coupling in lead-free halide double perovskite Cs2AgBiCl6 under pressure. ACS Energy Lett. 2019, 4, 2975–2982.

[128]

Fu, R. J.; Chen, Y. P.; Yong, X.; Ma, Z. W.; Wang, L. R.; Lv, P. F.; Lu, S. Y.; Xiao, G. J.; Zou, B. Pressure-induced structural transition and band gap evolution of double perovskite Cs2AgBiBr6 nanocrystals. Nanoscale 2019, 11, 17004–17009.

[129]

Han, P. G.; Zhang, X.; Mao, X.; Yang, B.; Yang, S. Q.; Feng, Z. C.; Wei, D. H.; Deng, W. Q.; Pullerits, T.; Han, K. L. Size effect of lead-free halide double perovskite on luminescence property. Sci. China Chem. 2019, 62, 1405–1413.

[130]

Zhang, B. W.; Wang, M. J.; Ghini, M.; Melcherts, A. E. M.; Zito, J.; Goldoni, L.; Infante, I.; Guizzardi, M.; Scotognella, F.; Kriegel, I. et al. Colloidal Bi-doped Cs2Ag1–xNaxInCl6 nanocrystals: Undercoordinated surface Cl ions limit their light emission efficiency. ACS Mater. Lett. 2020, 2, 1442–1449.

[131]

Zhang, Y. N.; Shah, T.; Deepak, F. L.; Korgel, B. A. Surface science and colloidal stability of double-perovskite Cs2AgBiBr6 nanocrystals and their superlattices. Chem. Mater. 2019, 31, 7962–7969.

[132]

Zhou, L.; Xu, Y. F.; Chen, B. X.; Kuang, D. B.; Su, C. Y. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small 2018, 14, 1703762.

[133]

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

[134]

Khalfin, S.; Veber, N.; Dror, S.; Shechter, R.; Shaek, S.; Levy, S.; Kauffmann, Y.; Klinger, L.; Rabkin, E.; Bekenstein, Y. Self-healing of crystal voids in double perovskite nanocrystals is related to surface passivation. Adv. Funct. Mater. 2022, 32, 2110421.

[135]

Greul, E.; Petrus, M. L.; Binek, A.; Docampo, P.; Bein, T. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 2017, 5, 19972–19981.

[136]

Wang, M.; Zeng, P.; Bai, S.; Gu, J. W.; Li, F. M.; Yang, Z.; Liu, M. Z. High-quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells. Sol. RRL 2018, 2, 1800217.

[137]

Wu, H.; Wang, Y. F.; Liu, A. J.; Wang, J. X.; Kim, B. J.; Liu, Y. W.; Fang, Y.; Zhang, X. L.; Boschloo, G.; Johansson, E. M. J. Methylammonium bromide assisted crystallization for enhanced lead-free double perovskite photovoltaic performance. Adv. Funct. Mater. 2022, 32, 2109402.

[138]

Li, Z. X.; Wang, P.; Ma, C.; Igbari, F.; Kang, Y. K.; Wang, K. L.; Song, W. Y.; Dong, C.; Li, Y. J.; Yao, J. S. et al. Single-layered MXene nanosheets doping TiO2 for efficient and stable double perovskite solar cells. J. Am. Chem. Soc. 2021, 143, 2593–2600.

[139]

Wang, B. N.; Li, N.; Yang, L.; Dall'Agnese, C.; Jena, A. K.; Miyasaka, T.; Wang, X. F. Organic dye/Cs2AgBiBr6 double perovskite heterojunction solar cells. J. Am. Chem. Soc. 2021, 143, 14877–14883.

[140]

Yang, L.; Hou, P. F.; Wang, B. N.; Dall'Agnese, C.; Dall'Agnese, Y.; Chen, G.; Gogotsi, Y.; Meng, X.; Wang, X. F. Performance improvement of dye-sensitized double perovskite solar cells by adding Ti3C2Tx MXene. Chem. Eng. J. 2022, 446, 136963.

[141]

Zhang, Z.; Sun, Q.; Lu, Y.; Lu, F.; Mu, X.; W, S. H.; Sui, M. Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nat. Commun. 2022, 13, 3397.

[142]

Ahmad, R.; Nutan, G. V.; Singh, D.; Gupta, G.; Soni, U.; Sapra, S.; Srivastava, R. Colloidal lead-free Cs2AgBiBr6 double perovskite nanocrystals: Synthesis, uniform thin-film fabrication, and application in solution-processed solar cells. Nano Res. 2021, 14, 1126–1134.

[143]

Kumar, A.; Swami, S. K.; Rawat, S. S.; Singh, V. N.; Sinha, O. P.; Srivastava, R. Mixed bismuth-antimony-based double perovskite nanocrystals for solar cell application. Int. J. Energy Res. 2021, 45, 16769–16780.

[144]

Zhang, Z. H.; Zhang, Y. Q.; Guo, X.; Wang, D.; Lao, Y. N.; Qu, B.; Xiao, L. X.; Chen, Z. J. Realizing high-efficiency and stable perovskite solar cells via double-perovskite nanocrystal passivation. ACS Appl. Energy Mater. 2022, 5, 1169–1174.

[145]

Li, L. F.; Shao, H.; Wu, X. F.; Chen, W. D.; Zhu, J. Y.; Dong, B.; Xu, L.; Xu, W.; Hu, J. H.; Zhou, M. et al. Aluminum-doped lead-free double perovskite Cs2AgBiCl6 nanocrystals with ultrahigh stability towards white light emitting diodes. Mater. Res. Bull. 2022, 147, 111645.

[146]

Wu, D. F.; Zhao, X. S.; Huang, Y. Y.; Lai, J. N.; Li, H. Y.; Yang, J. Y.; Tian, C. Q.; He, P.; Huang, Q.; Tang, X. S. Lead-free perovskite Cs2AgBiX6 nanocrystals with a band gap funnel structure for photocatalytic CO2 reduction under visible light. Chem. Mater. 2021, 33, 4971–4976.

[147]

Zhang, Z. P.; Wang, B. Z.; Zhao, H. B.; Liao, J. F.; Zhou, Z. C.; Liu, T. H.; He, B. C.; Wei, Q.; Chen, S.; Chen, H. Y. et al. Self-assembled lead-free double perovskite-MXene heterostructure with efficient charge separation for photocatalytic CO2 reduction. Appl. Catal. B Environ. 2022, 312, 121358.

[148]

Wu, D. F.; Tao, Y.; Huang, Y. Y.; Huo, B. J.; Zhao, X. S.; Yang, J. Y.; Jiang, X. F.; Huang, Q.; Dong, F.; Tang, X. S. High visible-light photocatalytic performance of stable lead-free Cs2AgBiBr6 double perovskite nanocrystals. J. Catal. 2021, 397, 27–35.

[149]

Guo, Y. M.; Lou, Y. B.; Chen, J. X.; Zhao, Y. X. Lead-free Cs2AgSbCl6 double perovskite nanocrystals for effective visible-light photocatalytic C-C coupling reactions. Chem. Sus. Chem. 2022, 15, e202102334.

[150]

Lin, W. K.; Chen, G. X.; Li, E. L.; He, L. H.; Yu, W. J.; Peng, G.; Chen, H. P.; Guo, T. L. Nonvolatile multilevel photomemory based on lead-free double perovskite Cs2AgBiBr6 nanocrystals wrapped within SiO2 as a charge trapping layer. ACS Appl. Mater. Interfaces 2020, 12, 43967–43975.

[151]

Li, X.; Xu, S. H.; Liu, F.; Qu, J. F.; Shao, H. B.; Wang, Z. Y.; Cui, Y. P.; Ban, D. Y.; Wang, C. L. Bi and Sb codoped Cs2Ag0.1Na0. 9InCl6 double perovskite with excitation-wavelength-dependent dual-emission for anti-counterfeiting application. ACS Appl. Mater. Interfaces 2021, 13, 31031–31037.

[152]

Ghosh, S.; Kar, P. Aqueous precursor driven Cs2AgInCl6 double perovskite nanocrystals used as a fluorescent keypad lock. ACS Appl. Electron. Mater. 2022, 4, 2753–2759.

[153]

Zheng, W.; Li, X. L.; Liu, N. Q.; Yan, S.; Wang, X. J.; Zhang, X. Z.; Liu, Y. Q.; Liang, Y. J.; Zhang, Y. H.; Liu, H. Solution-grown chloride perovskite crystal of red afterglow. Angew. Chem., Int. Ed. 2021, 60, 24450–24455.

[154]

Li, X. L.; Zheng, W.; Zhang, Y. H. The making and breaking of perovskite photochromism through doping. Nanoscale 2022, 14, 12574–12580.

[155]

Liu, N. Q.; Zheng, W.; Sun, R. J.; Li, X. L.; Xie, X. Y.; Wang, L. L.; Zhang, Y. H. Near-infrared afterglow and related photochromism from solution-grown perovskite crystal. Adv. Funct. Mater. 2021, 32, 2110663.

[156]

Wang, X. J.; Zhang, X. Z.; Yan, S.; Liu, H.; Zhang, Y. H. Nearly-unity quantum yield and 12-hour afterglow from a transparent perovskite of Cs2NaScCl6: Tb. Angew. Chem., Int. Ed. 2022, 61, e202210853.

[157]

Connor, B. A.; Leppert, L.; Smith, M. D.; Neaton, J. B.; Karunadasa, H. I. Layered halide double perovskites: Dimensional reduction of Cs2AgBiBr6. J. Am. Chem. Soc. 2018, 140, 5235–5240.

[158]

Li, Y. B.; Yang, T.; Xu, Z. Y.; Liu, X. T.; Huang, X. Y.; Han, S. G.; Liu, Y.; Li, M. F.; Luo, J. H.; Sun, Z. H. Dimensional reduction of Cs2AgBiBr6: A 2D hybrid double perovskite with strong polarization sensitivity. Angew. Chem., Int. Ed. 2020, 59, 3429–3433.

[159]

Zhang, W. C.; Hong, M. C.; Luo, J. H. Halide double perovskite ferroelectrics. Angew. Chem., Int. Ed. 2020, 59, 9305–9308.

[160]

Ning, W. H.; Zhao, X. G.; Klarbring, J.; Bai, S.; Ji, F. X.; Wang, F.; Simak, S. I.; Tao, Y. T.; Ren, X. M.; Zhang, L. J. et al. Thermochromic lead-free halide double perovskites. Adv. Funct. Mater. 2019, 29, 1807375.

Nano Research
Pages 5572-5591
Cite this article:
Wu S, Liu Y. Recent advancements and manipulation strategies of colloidal Cs2BIBIIIX6 lead-free halide double perovskite nanocrystals. Nano Research, 2023, 16(4): 5572-5591. https://doi.org/10.1007/s12274-022-5232-3
Topics:

1144

Views

18

Crossref

17

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 08 August 2022
Revised: 16 October 2022
Accepted: 21 October 2022
Published: 17 January 2023
© Tsinghua University Press 2022
Return