AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline

Correlation of adsorbent cavity structure with adsorption behavior and interaction of long-chain α-olefin/paraffin on microporous adsorbents

Ruihan Yang1Fangyu Zhao1Shafqat Ullah1Xiao Chen2Junxiang Ma3Yuan Gao3Yujun Wang1( )Guangsheng Luo1
State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Lu’an Chemical Group CO., LTD., Changzhi 046299, China
Show Author Information

Graphical Abstract

The adsorption performance of long-chain α-olefin/paraffin by microporous adsorbents is dominated by the geometrical factors of adsorption cavity structures, which are quantitatively described by window size, metal node spacing, and bending degree. This work provides a new understanding of the long-chain hydrocarbon adsorption behavior different from ethylene/ethane and propylene/propane, which guides the design of adsorbents for α-olefin/paraffin separation.

Abstract

Long-chain α-olefins have a high added value as important raw materials for many highly marketable products. Fishcher–Tropsch synthesis products contain ultrahigh-content α-olefins, which are of great value if the challenging separation of α-olefin/paraffin is achieved through energy-saving ways, for which adsorption separation is an attractive technology. One of the most significant differences between the adsorption separation of long-chain and light hydrocarbons is the steric hindrance of the molecular chain. Herein, we propose a combination of window size, metal node spacing, and bending degree to quantitatively describe the adsorption cavity structure for the separation of long-chain α-olefin/paraffin. The general cavity structural characteristics of microporous materials with good separation performance for long-chain α-olefin/paraffin are revealed. The selective adsorption of liquid C6 and C8 α-olefin/paraffin mixtures on CuBTC (BTC = benzene-1,3,5-tricarboxylate) was studied in detail to reveal the influence of the cavity structure on the adsorption and interaction using a combination of batch adsorption experiments and molecular simulation techniques. CuBTC exhibited 360 and 366 mg/g olefin adsorption capacities for C6 and C8 linear α-olefins, respectively. The adsorption energies were −0.540 and −0.338 eV for C8 linear α-olefin and paraffin, respectively. The contributions of different types of interactions to the overall adsorption energy were quantified to illustrate the adsorption energy difference between α-olefin/paraffin and CuBTC. This work provides a new understanding of the long-chain hydrocarbon adsorption behavior different from ethylene/ethane and propylene/propane, which guides the design of adsorbents for α-olefin/paraffin separation.

Electronic Supplementary Material

Download File(s)
12274_2022_5231_MOESM1_ESM.pdf (747.8 KB)

References

[1]

Gollwitzer, A.; Dietel, T.; Kretschmer, W. P.; Kempe, R. A broadly tunable synthesis of linear α-olefins. Nat. Commun. 2017, 8, 1226.

[2]

Golub, F. S.; Bolotov, V. A.; Parmon, V. N. Modern trends in the processing of linear alpha olefins to technologically important products. Part 1. Katal. Prom-sti. 2020, 20, 433–455.

[3]

Li, H.; Zhang, Z. S.; Sun, G. L.; Liu, S. L.; An, L. C.; Li, X. G.; Li, H.; Gao, X. Performance and mechanism of the separation of C8 α-olefin from F-T synthesis products using novel Ag-DES. AiChE J. 2021, 67, e17252.

[4]
IHS Markit’s. Chemical Economics HandbookLinear Alpha-Olefins [Online]. https://ihsmarkit.com/products/linear-alpha-olefins-chemical-economics-handbook.html (accessed Feb 15, 2020).
[5]
Global Alpha Olefins Market Research ReportInformation by Type (1-Butene, 1-Hexene, 1-Octene, 1-Decene and Others), by Application (Polyolefin Comonomer, Plasticizer, Lubricant, Surfactant, Drilling Machinery Fuel, and Others) and RegionForecast Till 2030 [Online]. https://www.marketresearchfuture.com/reports/alpha-olefins-market-4877# (accessed Aug 10, 2022).
[6]

Torshizi, H. O.; Pour, A. N.; Mohammadi, A.; Zamani, Y.; Shahri, S. M. K. Fischer−tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of support and metal nanoparticle size on catalyst activity and products selectivity. Front. Chem. Sci. Eng. 2021, 15, 299–309.

[7]

Wentink, A. E.; Kuipers, N. J. M.; De Haan, A. B.; Scholtz, J.; Mulder, H. Olefin isomer separation by reactive extractive distillation: Modelling of vapour–liquid equilibria and conceptual design for 1-hexene purification. Chem. Eng. Process. Process Intensif. 2007, 46, 800–809.

[8]

Ma, Y. F.; Xu, J.; Jiang, H. Z.; Li, J. S. Low viscosity PAO preparation by oligomerization of alpha-olefin from coal with metallocene catalyst. Pet. Process. Petrochem. 2016, 47, 32–36.

[9]

Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

[10]

Saha, D.; Toof, B.; Krishna, R.; Orkoulas, G.; Gismondi, P.; Thorpe, R.; Comroe, M. L. Separation of ethane-ethylene and propane-propylene by Ag(I) doped and sulfurized microporous carbon. Microporous Mesoporous Mater. 2020, 299, 110099.

[11]

Wentink, A. E.; Kockmann, D.; Kuipers, N. J. M.; De Haan, A. B.; Scholtz, J.; Mulder, H. Effect of C6-olefin isomers on π-complexation for purification of 1-hexene by reactive extractive distillation. Sep. Purif. Technol. 2005, 43, 149–162.

[12]
Berg, L. Separation of 1-octene from octane by azeotropic distillation. U.S. Patent 5, 382, 330, Jan 17, 1995.
[13]
Piszczek, R.; Heins, B.; Hamilton, P.; Osby, T.; Zhang, D.; Wang, Z.; Hergenrother, M.; Nichols, J.; Haines, B.; Nicholson, J. Separating linear alpha olefin involves providing a pre-processed product stream comprising linear alpha olefins to first of series of distillation columns, and element of the series of distillation columns comprising a dividing wall column. WO Patent 2020114744-A1, Jun 11, 2020; WO2020114744-A9, Jul 22, 2021; CN113166001-A, Jul 23, 2021.
[14]

Wang, Y.; Hao, W. Y.; Jacquemin, J.; Goodrich, P.; Atilhan, M.; Khraisheh, M.; Rooney, D.; Thompson, J. Enhancing liquid-phase olefin-paraffin separations using novel silver-based ionic liquids. J. Chem. Eng. Data 2015, 60, 28–36.

[15]

Faiz, R.; Li, K. Olefin/paraffin separation using membrane based facilitated transport/chemical absorption techniques. Chem. Eng. Sci. 2012, 73, 261–284.

[16]

Ashtiani, S.; Sofer, Z.; Průša, F.; Friess, K. Molecular-level fabrication of highly selective composite ZIF-8-CNT-PDMS membranes for effective CO2/N2, CO2/H2 and olefin/paraffin separations. Sep. Purif. Technol. 2021, 274, 119003.

[17]

Hartmann, M.; Böhme, U.; Hovestadt, M.; Paula, C. Adsorptive separation of olefin/paraffin mixtures with ZIF-4. Langmuir 2015, 31, 12382–12389.

[18]

Bao, Z. B.; Chang, G. G.; Xing, H. B.; Krishna, R.; Ren, Q. L.; Chen, B. L. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures. Energy Environ. Sci. 2016, 9, 3612–3641.

[19]

Sun, H.; Ren, D. N.; Kong, R. Q.; Wang, D.; Jiang, H.; Tan, J. L.; Wu, D.; Chen, S. W.; Shen, B. X. Tuning 1-hexene/n-hexane adsorption on MOF-74 via constructing Co-Mg bimetallic frameworks. Microporous Mesoporous Mater. 2019, 284, 151–160.

[20]

Luna-Triguero, A.; Sławek, A.; Sánchez-De-Armas, R.; Gutierréz-Sevillano, J. J.; Ania, C. O.; Parra, J. B.; Vicent-Luna, J. M.; Calero, S. π-Complexation for olefin/paraffin separation using aluminosilicates. Chem. Eng. J. 2020, 380, 122482.

[21]

Saha, D.; Orkoulas, G.; Yohannan, S.; Ho, H. C.; Cakmak, E.; Chen, J. H.; Ozcan, S. Nanoporous boron nitride as exceptionally thermally stable adsorbent: Role in efficient separation of light hydrocarbons. ACS Appl. Mater. Interfaces 2017, 9, 14506–14517.

[22]

Bryan, P. F. Removal of propylene from fuel-grade propane. Sep. Purif. Rev. 2004, 33, 157–182.

[23]

Mofarahi, M.; Salehi, S. M. Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorption 2013, 19, 101–110.

[24]

Divekar, S.; Nanoti, A.; Dasgupta, S.; Aarti; Chauhan, R.; Gupta, P.; Garg, M. O.; Singh, S. P.; Mishra, I. M. Adsorption equilibria of propylene and propane on zeolites and prediction of their binary adsorption with the ideal adsorbed solution theory. J. Chem. Eng. Data 2016, 61, 2629–2637.

[25]

Grande, C. A.; Lind, A.; Vistad, Ø.; Akporiaye, D. Olefin-paraffin separation using calcium—ETS-4. Ind. Eng. Chem. Res. 2014, 53, 15522–15530.

[26]

Anson, A.; Wang, Y.; Lin, C. C. H.; Kuznicki, T. M.; Kuznicki, S. M. Adsorption of ethane and ethylene on modified ETS-10. Chem. Eng. Sci. 2008, 63, 4171–4175.

[27]

Wang, Y. X.; Peh, S. B.; Zhao, D. Alternatives to cryogenic distillation: Advanced porous materials in adsorptive light olefin/paraffin separations. Small 2019, 15, 1900058.

[28]

Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[29]

Wang, Y. X.; Zhao, D. Beyond equilibrium: Metal-organic frameworks for molecular sieving and kinetic gas separation. Cryst. Growth Des. 2017, 17, 2291–2308.

[30]

Saha, D.; Kim, M. B.; Robinson, A. J.; Babarao, R.; Thallapally, P. K. Elucidating the mechanisms of paraffin-olefin separations using nanoporous adsorbents: An overview. iScience 2021, 24, 103042.

[31]

Wang, Q. M.; Shen, D. M.; Bülow, M.; Lau, M. L.; Deng, S. G.; Fitch, F. R.; Lemcoff, N. O.; Semanscin, J. Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater. 2002, 55, 217–230.

[32]

Lamia, N.; Jorge, M.; Granato, M. A.; Paz, F. A. A.; Chevreau, H.; Rodrigues, A. E. Adsorption of propane, propylene and isobutane on a metal-organic framework: Molecular simulation and experiment. Chem. Eng. Sci. 2009, 64, 3246–3259.

[33]

Bao, Z. B.; Alnemrat, S.; Yu, L.; Vasiliev, I.; Ren, Q. L.; Lu, X. Y.; Deng, S. G. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework. Langmuir 2011, 27, 13554–13562.

[34]

Bae, Y. S.; Lee, C. Y.; Kim, K. C.; Farha, O. K.; Nickias, P.; Hupp, J. T.; Nguyen, S. T.; Snurr, R. Q. High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites. Angew. Chem., Int. Ed. 2012, 51, 1857–1860.

[35]

Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 2012, 335, 1606–1610.

[36]

Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

[37]

Lee, S. J.; Yoon, J. W.; Seo, Y. K.; Kim, M. B.; Lee, S. K.; Lee, U. H.; Hwang, Y. K.; Bae, Y. S.; Chang, J. S. Effect of purification conditions on gas storage and separations in a chromium-based metal-organic framework MIL-101. Microporous Mesoporous Mater. 2014, 193, 160–165.

[38]

Li, K. H.; Olson, D. H.; Seidel, J.; Emge, T. J.; Gong, H. W.; Zeng, H. P.; Li, J. Zeolitic imidazolate frameworks for kinetic separation of propane and propene. J. Am. Chem. Soc. 2009, 131, 10368–10369.

[39]

Krokidas, P.; Castier, M.; Moncho, S.; Sredojevic, D. N.; Brothers, E. N.; Kwon, H. T.; Jeong, H. K.; Lee, J. S.; Economou, I. G. ZIF-67 framework:A promising new candidate for propylene/propane separation. Experimental data and molecular simulations. J. Phys. Chem. C 2016, 120, 8116–8124.

[40]

Lin, R. B.; Li, L. B.; Zhou, H. L.; Wu, H.; He, C. H.; Li, S.; Krishna, R.; Li, J. P.; Zhou, W.; Chen, B. L. Molecular sieving of ethylene from ethane using a rigid metal-organic framework. Nat. Mater. 2018, 17, 1128–1133.

[41]

Bentley, J.; Foo, G. S.; Rungta, M.; Sangar, N.; Sievers, C.; Sholl, D. S.; Nair, S. Effects of open metal site availability on adsorption capacity and olefin/paraffin selectivity in the metal-organic framework Cu3(BTC)2. Ind. Eng. Chem. Res. 2016, 55, 5043–5053.

[42]

Maes, M.; Alaerts, L.; Vermoortele, F.; Ameloot, R.; Couck, S.; Finsy, V.; Denayer, J. F. M.; De Vos, D. E. Separation of C5-hydrocarbons on microporous materials: Complementary performance of MOFs and zeolites. J. Am. Chem. Soc. 2010, 132, 2284–2292.

[43]

Hartmann, M.; Kunz, S.; Himsl, D.; Tangermann, O.; Ernst, S.; Wagener, A. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. Langmuir 2008, 24, 8634–8642.

[44]

Yu, Y.; Yang, L. F.; Tan, B.; Hu, J. B.; Wang, Q. J.; Cui, X. L.; Xing, H. B. Remarkable separation of C5 olefins in anion-pillared hybrid porous materials. Nano Res. 2021, 14, 541–545.

[45]

Yang, R. H.; Gao, R. M.; Qian, Z.; Wang, Y. J. Batch and fixed bed column selective adsorption of C6, C8 and C10 linear α-olefins from binary liquid olefin/paraffin mixtures onto 5A and 13X microporous molecular sieves. Sep. Purif. Technol. 2020, 230, 115884.

[46]

Yang, R. H.; Chen, X.; Ma, J. X.; Gao, Y.; Wang, Y. J.; Luo, G. S. Direct imaging and mechanism study of C6 α-olefin adsorption on faujasite and Linde Type A zeolites. Nano Res. 2022, 15, 5322–5330.

[47]

Chowdhury, P.; Bikkina, C.; Meister, D.; Dreisbach, F.; Gumma, S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous Mesoporous Mater. 2009, 117, 406–413.

[48]

Aarti; Bhadauria, S.; Nanoti, A.; Dasgupta, S.; Divekar, S.; Gupta, P.; Chauhan, R. [Cu3(BTC)2]-polyethyleneimine: An efficient MOF composite for effective CO2 separation. RSC Adv. 2016, 6, 93003–93009.

[49]

Bader, R. F. W.; Beddall, P. M. Virial field relationship for molecular charge distributions and the spatial partitioning of molecular properties. J. Chem. Phys. 1972, 56, 3320–3329.

[50]
Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, 1994; pp 248–275.
[51]

Yang, R. H.; Gao, R. M.; Wang, Y. J.; Qian, Z.; Luo, G. S. Selective adsorption of C6, C8, and C10 linear α-olefins from binary liquid-phase olefin/paraffin mixtures using zeolite adsorbents: Experiment and simulations. Langmuir 2020, 36, 8597–8609.

[52]

Yang, R. H.; Ullah, S.; Wang, Y. J.; Luo, G. S.; Qian, Z. Adsorption separation of liquid-phase C5–C6 alkynes and olefins using FAU zeolite adsorbents. Sep. Purif. Technol. 2021, 278, 119563.

[53]

Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150.

[54]

Wick, C. D.; Martin, M. G.; Siepmann, J. I. Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkenes and alkylbenzenes. J. Phys. Chem. B 2000, 104, 8008–8016.

[55]

Martin, M. G.; Siepmann, J. I. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 1998, 102, 2569–2577.

[56]

Maerzke, K. A.; Schultz, N. E.; Ross, R. B.; Siepmann, J. I. TraPPE-UA force field for acrylates and Monte Carlo simulations for their mixtures with alkanes and alcohols. J. Phys. Chem. B 2009, 113, 6415–6425.

[57]

Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035.

[58]

Dubbeldam, D.; Torres-Knoop, A.; Walton, K. S. On the inner workings of Monte Carlo codes. Mol. Simul. 2013, 39, 1253–1292.

[59]

Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 2016, 42, 81–101.

[60]

Siepmann, J. I.; Frenkel, D. Configurational bias Monte Carlo: A new sampling scheme for flexible chains. Mol. Phys. 1992, 75, 59–70.

[61]

Chempath, S.; Denayer, J. F. M.; De Meyer, K. M. A.; Baron, G. V.; Snurr, R. Q. Adsorption of liquid-phase alkane mixtures in silicalite: Simulations and experiment. Langmuir 2004, 20, 150–156.

[62]

Daems, I.; Baron, G. V.; Punnathanam, S.; Snurr, R. Q.; Denayer, J. F. M. Molecular cage nestling in the liquid-phase adsorption of n-alkanes in 5A zeolite. J. Phys. Chem. C 2007, 111, 2191–2197.

[63]

Macedonia, M. D.; Maginn, E. J. A biased grand canonical Monte Carlo method for simulating adsorption using all-atom and branched united atom models. Mol. Phys. 1999, 96, 1375–1390.

[64]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[65]

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

[66]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[67]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[68]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

[69]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[70]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[71]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[72]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09 Rev. D. 01. Gaussian Inc.: Wallingford, CT, 2009.
[73]

Zhang, J. X.; Sheong, F. K.; Lin, Z. Y. Unravelling chemical interactions with principal interacting orbital analysis. Chem. -Eur. J. 2018, 24, 9639–9650.

[74]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

Nano Research
Pages 5721-5732
Cite this article:
Yang R, Zhao F, Ullah S, et al. Correlation of adsorbent cavity structure with adsorption behavior and interaction of long-chain α-olefin/paraffin on microporous adsorbents. Nano Research, 2023, 16(4): 5721-5732. https://doi.org/10.1007/s12274-022-5231-4
Topics:

6619

Views

2

Crossref

4

Web of Science

4

Scopus

1

CSCD

Altmetrics

Received: 20 July 2022
Revised: 30 September 2022
Accepted: 20 October 2022
Published: 24 November 2022
© Tsinghua University Press 2022
Return