Journal Home > Volume 16 , Issue 9

Piezoelectricity is the electric charge which accumulates in certain materials in response to mechanical stimuli, while piezoelectric nanogenerators (PENGs) converting mechanical energy into electricity can be widely used for energy harvesting and self-powered systems. The group IV-VI monochalcogenides may exhibit strong piezoelectricity because of their puckered C2v symmetry and electronic structure, making them promising for flexible PENG. Herein, we investigated the synthesis and piezoelectric properties of multilayer SnSe nanosheets grown by chemical vapor deposition (CVD). The SnSe nanosheets exhibited high single-crystallinity, large area, and good stability. The strong layer-dependent in-plane piezoelectric coefficient of SnSe nanosheets showed a saturated trend to be ~ 110 pm/V, which overcomes the weak piezoelectric response or odd-even effects in other layered nanosheets. A high energy conversion efficiency of 9.3% and a maximum power density of 538 mW/cm2 at 1.03% strain have been demonstrated in a SnSe-based PENG. Based on the enhanced piezoelectricity of SnSe and attractive output performance of the nanogenerator, a self-powered sensor for human motion monitoring is further developed. These results demonstrate the strong piezoelectricity in high quality CVD-grown SnSe nanosheets, allowing for application in flexible smart piezoelectric sensors and advanced microelectromechanical devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis and enhanced piezoelectric response of CVD-grown SnSe layered nanosheets for flexible nanogenerators

Show Author's information Fumei YangMan-Chung WongJianfeng MaoZehan WuJianhua Hao( )
Department of Applied Physics, the Hong Kong Polytechnic University, Hong Kong 999077, China

Abstract

Piezoelectricity is the electric charge which accumulates in certain materials in response to mechanical stimuli, while piezoelectric nanogenerators (PENGs) converting mechanical energy into electricity can be widely used for energy harvesting and self-powered systems. The group IV-VI monochalcogenides may exhibit strong piezoelectricity because of their puckered C2v symmetry and electronic structure, making them promising for flexible PENG. Herein, we investigated the synthesis and piezoelectric properties of multilayer SnSe nanosheets grown by chemical vapor deposition (CVD). The SnSe nanosheets exhibited high single-crystallinity, large area, and good stability. The strong layer-dependent in-plane piezoelectric coefficient of SnSe nanosheets showed a saturated trend to be ~ 110 pm/V, which overcomes the weak piezoelectric response or odd-even effects in other layered nanosheets. A high energy conversion efficiency of 9.3% and a maximum power density of 538 mW/cm2 at 1.03% strain have been demonstrated in a SnSe-based PENG. Based on the enhanced piezoelectricity of SnSe and attractive output performance of the nanogenerator, a self-powered sensor for human motion monitoring is further developed. These results demonstrate the strong piezoelectricity in high quality CVD-grown SnSe nanosheets, allowing for application in flexible smart piezoelectric sensors and advanced microelectromechanical devices.

Keywords: SnSe, piezoelectric nanogenerator, piezotronics, piezoresponse force microscope, self-powered device

References(42)

[1]

Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D. L.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

[2]

Wu, W. Z.; Wang, Z. L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 2016, 1, 16031.

[3]

Wang, Z. L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 2012, 24, 4632–4646.

[4]

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

[5]

Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.

[6]

Wang, Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567.

[7]

Han, S. A.; Lee, J.; Lin, J. J.; Kim, S. W.; Kim, J. H. Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy 2019, 57, 680–691.

[8]

Duerloo, K. A. N.; Ong, M. T.; Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 2012, 3, 2871–2876.

[9]

Blonsky, M. N.; Zhuang, H. L.; Singh, A. K.; Hennig, R. G. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 2015, 9, 9885–9891.

[10]

Fei, R. X.; Li, W. B.; Li, J.; Yang, L. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 2015, 107, 173104.

[11]

Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2015, 10, 151–155.

[12]

Hinchet, R.; Khan, U.; Falconi, C.; Kim, S. W. Piezoelectric properties in two-dimensional materials: Simulations and experiments. Mater. Today 2018, 21, 611–630.

[13]

Li, W. B.; Li, J. Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Res. 2015, 8, 3796–3802.

[14]

Lee, G. J.; Lee, M. K.; Park, J. J.; Hyeon, D. Y.; Jeong, C. K.; Park, K. I. Piezoelectric energy harvesting from two-dimensional boron nitride nanoflakes. ACS Appl. Mater. Interfaces 2019, 11, 37920–37926.

[15]

Lee, J. H.; Park, J. Y.; Cho, E. B.; Kim, T. Y.; Han, S. A.; Kim, T. H.; Liu, Y. N.; Kim, S. K.; Roh, C. J.; Yoon, H. J. et al. Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Adv. Mater. 2017, 29, 1606667.

[16]

Lu, A. Y.; Zhu, H. Y.; Xiao, J.; Chuu, C. P.; Han, Y. M.; Chiu, M. H.; Cheng, C. C.; Yang, C. W.; Wei, K. H.; Yang, Y. M. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 2017, 12, 744–749.

[17]

Yuan, S. G.; Io, W. F.; Mao, J. F.; Chen, Y. C.; Luo, X.; Hao, J. H. Enhanced piezoelectric response of layered In2Se3/MoS2 nanosheet-based van der Waals heterostructures. ACS Appl. Nano Mater. 2020, 3, 11979–11986.

[18]

Mao, J. F.; Wu, Z. H.; Guo, F.; Hao, J. H. Strain-induced performance enhancement of a monolayer photodetector via patterned substrate engineering. ACS Appl. Mater. Interfaces 2022, 14, 36052–36059.

[19]

Han, S. A.; Kim, T. H.; Kim, S. K.; Lee, K. H.; Park, H. J.; Lee, J. H.; Kim, S. W. Point-defect-passivated MoS2 nanosheet-based high performance piezoelectric nanogenerator. Adv. Mater. 2018, 30, 1800342.

[20]

Io, W. F.; Wong, M. C.; Pang, S. Y.; Zhao, Y. Q.; Ding, R.; Guo, F.; Hao, J. H. Strong piezoelectric response in layered CuInP2S6 nanosheets for piezoelectric nanogenerators. Nano Energy 2022, 99, 107371.

[21]

Shi, W. R.; Gao, M. X.; Wei, J. P.; Gao, J. F.; Fan, C. W.; Ashalley, E.; Li, H. D.; Wang, Z. M. Tin selenide (SnSe): Growth, properties, and applications. Adv. Sci. 2018, 5, 1700602.

[22]

Yang, S. X.; Liu, Y.; Wu, M. H.; Zhao, L. D.; Lin, Z. Y.; Cheng, H. C.; Wang, Y. L.; Jiang, C. B.; Wei, S. H.; Huang, L. et al. Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 2018, 11, 554–564.

[23]

Li, P.; Zhang, Z. K.; Shen, W. T.; Hu, C. G.; Shen, W. F.; Zhang, D. Z. A self-powered 2D-material sensor unit driven by a SnSe piezoelectric nanogenerator. J. Mater. Chem. A 2021, 9, 4716–4723.

[24]

Alluri, N. R.; Raj, N. P. M. J.; Khandelwal, G.; Kim, S. J. Shape-dependent in-plane piezoelectric response of SnSe nanowall/microspheres. Nano Energy 2021, 88, 106231.

[25]

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

[26]

Cui, C. J.; Xue, F.; Hu, W. J.; Li, L. J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. NPJ 2D Mater. Appl. 2018, 2, 18.

[27]

Lyu, Y.; Wu, Z. H.; Io, W. F.; Hao, J. H. Observation and theoretical analysis of near-infrared luminescence from CVD grown lanthanide Er doped monolayer MoS2 triangles. Appl. Phys. Lett. 2019, 115, 153105.

[28]

Io, W. F.; Yuan, S. G.; Pang, S. Y.; Wong, L. W.; Zhao, J.; Hao, J. H. Temperature- and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α-In2Se3 layers. Nano Res. 2020, 13, 1897–1902.

[29]

Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

[30]

Zhao, S. L.; Wang, H.; Zhou, Y.; Liao, L.; Jiang, Y.; Yang, X.; Chen, G. C.; Lin, M.; Wang, Y.; Peng, H. L. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 2015, 8, 288–295.

[31]

Chandrasekhar, H. R.; Humphreys, R. G.; Zwick, U.; Cardona, M. Infrared and Raman spectra of the IV-VI compounds SnS and SnSe. Phys. Rev. B 1977, 15, 2177–2183.

[32]

Vaughn II, D. D.; In, S. I.; Schaak, R. E. A precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: The case of SnSe. ACS Nano 2011, 5, 8852–8860.

[33]

Ma, X. H.; Cho, K. H.; Sung, Y. M. Growth mechanism of vertically aligned SnSe nanosheets via physical vapour deposition. CrystEngComm 2014, 16, 5080–5086.

[34]

Kim, S. K.; Bhatia, R.; Kim, T. H.; Seol, D.; Kim, J. H.; Kim, H.; Seung, W.; Kim, Y.; Lee, Y. H.; Kim, S. W. Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy 2016, 22, 483–489.

[35]

Xue, F.; Zhang, J. W.; Hu, W. J.; Hsu, W. T.; Han, A. L.; Leung, S. F.; Huang, J. K.; Wan, Y.; Liu, S. H.; Zhang, J. L. et al. Multidirection piezoelectricity in mono- and multilayered hexagonal α-In2Se3. ACS Nano 2018, 12, 4976–4983.

[36]

Kim, D. M.; Eom, C. B.; Nagarajan, V.; Ouyang, J.; Ramesh, R.; Vaithyanathan, V.; Schlom, D. G. Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates. Appl. Phys. Lett. 2006, 88, 142904.

[37]

Liu, F. C.; You, L.; Seyler, K. L.; Li, X. B.; Yu, P.; Lin, J. H.; Wang, X. W.; Zhou, J. D.; Wang, H.; He, H. Y. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 2016, 7, 12357.

[38]

Ma, W. D.; Lu, J. F.; Wan, B. S.; Peng, D. F.; Xu, Q.; Hu, G. F.; Peng, Y. Y.; Pan, C. F.; Wang, Z. L. Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators. Adv. Mater. 2020, 32, 1905795.

[39]

Zhou, J.; Fei, P.; Gu, Y. D.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 2008, 8, 3973–3977.

[40]

Khan, H.; Mahmood, N.; Zavabeti, A.; Elbourne, A.; Rahman, A.; Zhang, B. Y.; Krishnamurthi, V.; Atkin, P.; Ghasemian, M. B.; Yang, J. et al. Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators. Nat. Commun. 2020, 11, 3449.

[41]

Hallil, H.; Cai, W. F.; Zhang, K.; Yu, P.; Liu, S.; Xu, R.; Zhu, C.; Xiong, Q. H.; Liu, Z.; Zhang, Q. Strong piezoelectricity in 3R-MoS2 flakes. Adv. Electron. Mater. 2022, 8, 2101131.

[42]

Huang, Y.; Xu, K.; Wang, Z. X.; Shifa, T. A.; Wang, Q. S.; Wang, F.; Jiang, C.; He, J. Designing the shape evolution of SnSe2 nanosheets and their optoelectronic properties. Nanoscale 2015, 7, 17375–17380.

File
12274_2022_5230_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 September 2022
Revised: 19 October 2022
Accepted: 19 October 2022
Published: 05 December 2022
Issue date: September 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the grants from Research Grants Council of Hong Kong (Nos. GRF PolyU 153025/19P, SRFS2122-5S02, and AoE/P-701/20) and PolyU Otto Poon Charitable Foundation Research Institute for Smart Energy (No. Q-CDBD).

Return