Journal Home > Volume 16 , Issue 6

Lithium-sulfur (Li-S) battery is recognized as one of the promising candidates to break through the specific energy limitations of commercial lithium-ion batteries given the high theoretical specific energy, environmental friendliness, and low cost. Over the past decade, tremendous progress have been achieved in improving the electrochemical performance especially the lifespan by various strategies mainly concentrated on the sulfur cathodes. In this review, the fundamental electrochemistry of sulfur cathode and lithium anode is revealed to understand the current dilemmas. And the advances achieved through diverse strategies are comprehensively summarized, which involves lithium polysulfides (LiPSs) limitation, sulfur redox reaction regulation and electrocatalysis in sulfur cathode and artificial solid electrolyte interface (SEI), electrolyte design, and structured anode in lithium anode. Additionally, the differences between laboratory level coin cells and actual pouch cells need to be addressed that only few reports on practical Li-S pouch cell are available due to the unexpected problems on both sulfur cathode and lithium anode which are masked at lithium and electrolyte excess. Lastly, the challenges and perspective toward the practical Li-S batteries are also offered.


menu
Abstract
Full text
Outline
About this article

A review on lithium-sulfur batteries: Challenge, development, and perspective

Show Author's information Qinjun Shao1,§Shengdong Zhu1,2,§Jian Chen1( )
Advanced rechargeable battery Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
University of Chinese Academy of Sciences, Beijing 100049, China

§ Qinjun Shao and Shengdong Zhu contributed equally to this work.

Abstract

Lithium-sulfur (Li-S) battery is recognized as one of the promising candidates to break through the specific energy limitations of commercial lithium-ion batteries given the high theoretical specific energy, environmental friendliness, and low cost. Over the past decade, tremendous progress have been achieved in improving the electrochemical performance especially the lifespan by various strategies mainly concentrated on the sulfur cathodes. In this review, the fundamental electrochemistry of sulfur cathode and lithium anode is revealed to understand the current dilemmas. And the advances achieved through diverse strategies are comprehensively summarized, which involves lithium polysulfides (LiPSs) limitation, sulfur redox reaction regulation and electrocatalysis in sulfur cathode and artificial solid electrolyte interface (SEI), electrolyte design, and structured anode in lithium anode. Additionally, the differences between laboratory level coin cells and actual pouch cells need to be addressed that only few reports on practical Li-S pouch cell are available due to the unexpected problems on both sulfur cathode and lithium anode which are masked at lithium and electrolyte excess. Lastly, the challenges and perspective toward the practical Li-S batteries are also offered.

Keywords: lithium-sulfur batteries, lithium dendrite, Coulombic efficiency, shuttle effect, solid electrolyte interface

References(317)

[1]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[2]

Huang, Y. X.; Wu, F.; Chen, R. J. Thermodynamic analysis and kinetic optimization of high-energy batteries based on multi-electron reactions. Nat. Sci. Rev. 2020, 7, 1367–1386.

[3]

Li, G. R.; Chen, Z. W.; Lu, J. Lithium-sulfur batteries for commercial applications. Chem 2018, 4, 3–7.

[4]

Lei, J.; Liu, T.; Chen, J. J.; Zheng, M. S.; Zhang, Q.; Mao, B. W.; Dong, Q. F. Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries. Chem 2020, 6, 2533–2557.

[5]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[6]

Yan, J. H.; Liu, X. B.; Li, B. Y. Capacity fade analysis of sulfur cathodes in lithium-sulfur batteries. Adv. Sci. 2016, 3, 1600101.

[7]

Zhou, L.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. Host materials anchoring polysulfides in Li-S batteries reviewed. Adv. Energy Mater. 2021, 11, 2001304.

[8]

Liu, Y. T.; Elias, Y.; Meng, J. S.; Aurbach, D.; Zou, R. Q.; Xia, D. G.; Pang, Q. Q. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5, 2323–2364.

[9]

Yang, X. F.; Gao, X. J.; Sun, Q.; Jand, S. P.; Yu, Y.; Zhao, Y.; Li, X.; Adair, K.; Kuo, L. Y.; Rohrer, J. et al. Promoting the transformation of Li2S2 to Li2S: Significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries. Adv. Mater. 2019, 31, 1901220.

[10]

Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; She, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

[11]

Gorlin, Y.; Patel, M. U. M.; Freiberg, A.; He, Q.; Piana, M.; Tromp, M.; Gasteiger, H. A. Understanding the charging mechanism of lithium-sulfur batteries using spatially resolved operando X-ray absorption spectroscopy. J. Electrochem. Soc. 2016, 163, A930–A939.

[12]

Cañas, N. A.; Wolf, S.; Wagner, N.; Friedrich, K. A. In situ X-ray diffraction studies of lithium-sulfur batteries. J. Power Sources 2013, 226, 313–319.

[13]

Qiu, Y. C.; Rong, G. L.; Yang, J.; Li, G. Z.; Ma, S.; Wang, X. L.; Pan, Z. H.; Hou, Y.; Liu, M. N.; Ye, F. M. et al. Highly nitridated graphene-Li2S cathodes with stable modulated cycles. Adv. Energy Mater. 2015, 5, 1501369.

[14]

Conder, J.; Bouchet, R.; Trabesinger, S.; Marino, C.; Gubler, L.; Villevieille, C. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction. Nat. Energy 2017, 2, 17069.

[15]

Zheng, D.; Wang, G. W.; Liu, D.; Si, J. Y.; Ding, T. Y.; Qu, D. Y.; Yang, X. Q.; Qu, D. Y. The progress of Li-S batteries-understanding of the sulfur redox mechanism: Dissolved polysulfide ions in the electrolytes. Adv. Mater. Technol. 2018, 3, 1700233.

[16]

Marceau, H.; Kim, C. S.; Paolella, A.; Ladouceur, S.; Lagacé, M.; Chaker, M.; Vijh, A.; Guerfi, A.; Julien, C. M.; Mauger, A. et al. In operando scanning electron microscopy and ultraviolet–visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte. J. Power Sources 2016, 319, 247–254.

[17]

Barchasz, C.; Molton, F.; Duboc, C.; Leprêtre, J. C.; Patoux, S.; Alloin, F. Lithium/sulfur cell discharge mechanism: An original approach for intermediate species identification. Anal. Chem. 2012, 84, 3973–3980.

[18]

Cuisinier, M.; Cabelguen, P. E.; Evers, S.; He, G.; Kolbeck, M.; Garsuch, A.; Bolin, T.; Balasubramanian, M.; Nazar, L. F. Sulfur speciation in Li-S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 2013, 4, 3227–3232.

[19]

Zheng, D.; Liu, D.; Harris, J. B.; Ding, T. Y.; Si, J. Y.; Andrew, S.; Qu, D. Y.; Yang, X. Q.; Qu, D. Y. Investigation of the Li-S battery mechanism by real-time monitoring of the changes of sulfur and polysulfide species during the discharge and charge. ACS Appl. Mater. Interfaces. 2017, 9, 4326–4332.

[20]

Steudel, R.; Chivers, T. The role of polysulfide dianions and radical anions in the chemical, physical, and biological sciences, including sulfur-based batteries. Chem. Soc. Rev. 2019, 48, 3279–3319.

[21]

Yu, Z. Y.; Shao, Y.; Ma, L. P.; Liu, C. Z.; Gu, C. Y.; Liu, J. J.; He, P.; Li, M. X.; Nie, Z. X.; Peng, Z. Q. et al. Revealing the sulfur redox paths in a Li-S battery by an in situ hyphenated technique of electrochemistry and mass spectrometry. Adv. Mater. 2022, 34, 2106618.

[22]

Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 2015, 27, 5203–5209.

[23]

Mikhaylik, Y. V.; Akridge, J. R. Low temperature performance of Li-S batteries. J. Electrochem. Soc. 2003, 150, A306–A311.

[24]

Wang, D. R.; Shah, D. B.; Maslyn, J. A.; Loo, W. S.; Wujcik, K. H.; Nelson, E. J.; Latimer, M. J.; Feng, J.; Prendergast, D.; Pascal, T. A. et al. Rate constants of electrochemical reactions in a lithium-sulfur cell determined by operando X-ray absorption spectroscopy. J. Electrochem. Soc. 2018, 165, A3487–A3495.

[25]

Dey, A. N. Lithium anode film and organic and inorganic electrolyte batteries. Thin Solid Films 1977, 43, 131–171.

[26]

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

[27]

Peled, E. The Electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid–electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047–2051.

[28]

Tan, S. J.; Wang, W. P.; Tian, Y. F.; Xin, S.; Guo, Y. G. Advanced electrolytes enabling safe and stable rechargeable Li-metal batteries: Progress and prospects. Adv. Funct. Mater. 2021, 2105253.

[29]

Xu, R.; Shen, X.; Ma, X. X.; Yan, C.; Zhang, X. Q.; Chen, X.; Ding, J. F.; Huang, J. Q. Identifying the critical anion–cation coordination to regulate the electric double layer for an efficient lithium metal–anode interface. Angew. Chem., Int. Ed. 2021, 60, 4215–4220.

[30]

Peled, E.; Golodnitsky, D.; Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144, L208–L210.

[31]

Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 2000, 89, 206–218.

[32]

Eshetu, G. G.; Judez, X.; Li, C. M.; Martinez-Ibañez, M.; Gracia, I.; Bondarchuk, O.; Carrasco, J.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Ultrahigh performance all solid-state lithium sulfur batteries: Salt anion’s chemistry-induced anomalous synergistic effect. J. Am. Chem. Soc. 2018, 140, 9921–9933.

[33]

Xu, Y. B.; Wu, H. P.; He, Y.; Chen, Q. S.; Zhang, J. G.; Xu, W.; Wang, C. M. Atomic to nanoscale origin of vinylene carbonate enhanced cycling stability of lithium metal anode revealed by cryo-transmission electron microscopy. Nano Lett. 2020, 20, 418–425.

[34]

Sonoki, H.; Matsui, M.; Imanishi, N. Effect of anion species in early stage of SEI formation process. J. Electrochem. Soc. 2019, 166, A3593–A3598.

[35]

Wang, J. Y.; Huang, W.; Pei, A.; Li, Y. Z.; Shi, F. F.; Yu, X. Y.; Cui, Y. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 2019, 4, 664–670.

[36]

Liu, T. F.; Hu, H. L.; Ding, X. F.; Yuan, H. D.; Jin, C. B.; Nai, J. W.; Liu, Y. J.; Wang, Y.; Wan, Y. H.; Tao, X. Y. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 2020, 30, 346–366.

[37]

Li, Y. Z.; Li, Y. B.; Pei, A.; Yan, K.; Sun, Y. M.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017, 358, 506–510.

[38]

Shan, X. Y.; Zhong, Y.; Zhang, L. J.; Zhang, Y. Q.; Xia, X. H.; Wang, X. L.; Tu, J. P. A brief review on solid–electrolyte interphase composition characterization technology for lithium metal batteries: Challenges and perspectives. J. Phys. Chem. C 2021, 125, 19060–19080.

[39]

Zhang, Z. W.; Li, Y. Z.; Xu, R.; Zhou, W. J.; Li, Y. B.; Oyakhire, S. T.; Wu, Y. C.; Xu, J. W.; Wang, H. S.; Yu, Z. A. et al. Capturing the swelling of solid–electrolyte interphase in lithium metal batteries. Science 2022, 375, 66–70.

[40]

Gong, C.; Pu, S. D.; Gao, X. W.; Yang, S. X.; Liu, J. L.; Ning, Z. Y.; Rees, G. J.; Capone, I.; Pi, L. Q.; Liu, B. Y. et al. Revealing the role of fluoride-rich battery electrode interphases by operando transmission electron microscopy. Adv. Energy Mater. 2021, 11, 2003118.

[41]

Efaw, C. M.; Lu, B. Y.; Lin, Y. X.; Pawar, G. M.; Chinnam, P. R.; Hurley, M. F.; Dufek, E. J.; Meng, Y. S.; Li, B. A closed-host bi-layer dense/porous solid–electrolyte interphase for enhanced lithium-metal anode stability. Mater. Today 2021, 49, 48–58.

[42]

He, M. F.; Guo, R.; Hobold, G. M.; Gao, H. N.; Gallant, B. M. The intrinsic behavior of lithium fluoride in solid–electrolyte interphases on lithium. Proc. Natl. Acad. Sci. USA 2020, 117, 73–79.

[43]

Huang, W.; Wang, H. S.; Boyle, D. T.; Li, Y. Z.; Cui, Y. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid–electrolyte interphases by cryogenic electron microscopy. ACS Energy Lett. 2020, 5, 1128–1135.

[44]

Li, T.; Zhang, X. Q.; Shi, P.; Zhang, Q. Fluorinated solid–electrolyte interphase in high-voltage lithium metal batteries. Joule 2019, 3, 2647–2661.

[45]

Matsui, M. Study on electrochemically deposited Mg metal. J. Power Sources 2011, 196, 7048–7055.

[46]

Nagy, K. S.; Kazemiabnavi, S.; Thornton, K.; Siegel, D. J. Thermodynamic overpotentials and nucleation rates for electrodeposition on metal anodes. ACS Appl. Mater. Interfaces 2019, 11, 7954–7964.

[47]

Ling, C.; Banerjee, D.; Matsui, M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology. Electrochim. Acta 2012, 76, 270–274.

[48]

Jäckle, M.; Groß, A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 2014, 141, 174710.

[49]

Akolkar, R. Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. J. Power Sources 2014, 246, 84–89.

[50]

Yan, H. H.; Bie, Y. H.; Cui, X. Y.; Xiong, G. P.; Chen, L. A computational investigation of thermal effect on lithium dendrite growth. Energy Convers. Manag. 2018, 161, 193–204.

[51]

Thenuwara, A. C.; Shetty, P. P.; McDowell, M. T. Distinct nanoscale interphases and morphology of lithium metal electrodes operating at low temperatures. Nano Lett. 2019, 19, 8664–8672.

[52]

Yan, K.; Wang, J. Y.; Zhao, S. Q.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G. X. Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2019, 58, 11364–11368.

[53]

Li, L.; Basu, S.; Wang, Y. P.; Chen, Z. Z.; Hundekar, P.; Wang, B. W.; Shi, J. F.; Shi, Y.; Narayanan, S.; Koratkar, N. Self-heating-induced healing of lithium dendrites. Science 2018, 359, 1513–1516.

[54]

Xiao, J. How lithium dendrites form in liquid batteries. Science 2019, 366, 426–427.

[55]

Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 1990, 42, 7355–7367.

[56]

Brissot, C.; Rosso, M.; Chazalviel, J. N.; Baudry, P.; Lascaud, S. In situ study of dendritic growth inlithium/PEO-salt/lithium cells. Electrochim. Acta 1998, 43, 1569–1574.

[57]

Rosso, M.; Gobron, T.; Brissot, C.; Chazalviel, J. N.; Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 2001, 97–98, 804–806.

[58]

Bai, P.; Guo, J. Z.; Wang, M.; Kushima, A.; Su, L.; Li, J.; Brushett, F. R.; Bazant, M. Z. Interactions between lithium growths and nanoporous ceramic separators. Joule 2018, 2, 2434–2449.

[59]

Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 2016, 9, 3221–3229.

[60]

Chang, H. J.; Ilott, A. J.; Trease, N. M.; Mohammadi, M.; Jerschow, A.; Grey, C. P. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI. J. Am. Chem. Soc. 2015, 137, 15209–15216.

[61]

Wang, Z. X.; Sun, Z. H.; Li, J.; Shi, Y.; Sun, C. G.; An, B. G.; Cheng, H. M.; Li, F. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chem. Soc. Rev. 2021, 50, 3178–3210.

[62]

Chen, X. R.; Yao, Y. X.; Yan, C.; Zhang, R.; Cheng, X. B.; Zhang, Q. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 7743–7747.

[63]

Liu, Y. Y.; Xu, X. Y.; Kapitanova, O. O.; Evdokimov, P. V.; Song, Z. X.; Matic, A.; Xiong, S. Z. Electro-chemo-mechanical modeling of artificial solid–electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 2022, 12, 2103589.

[64]

Shen, X.; Zhang, R.; Chen, X.; Cheng, X. B.; Li, X. Y.; Zhang, Q. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength? Adv. Energy Mater. 2020, 10, 1903645.

[65]

Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium, and lithium flotsams. Nano Energy 2017, 32, 271–279.

[66]

Jiang, F. N.; Yang, S. J.; Liu, H.; Cheng, X. B.; Liu, L.; Xiang, R.; Zhang, Q.; Kaskel, S.; Huang, J. Q. Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat 2021, 1, 506–536.

[67]

Chen, Q.; Geng, K.; Sieradzki, K. Prospects for dendrite-free cycling of Li metal batteries. J. Electrochem. Soc. 2015, 162, A2004–A2007.

[68]

Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K. H.; Zhang, J. G.; Thornton, K.; Dasgupta, N. P. Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2016, 2, 790–801.

[69]

Chen, X.-R.; Yan, C.; Ding, J.-F.; Peng, H.-J.; Zhang, Q. New insights into “dead lithium” during stripping in lithium metal batteries. J. Energy Chem. 2021, 62, 289–294.

[70]

Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515.

[71]

Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 2017, 5, 11671–11681.

[72]

Shi, H. F.; Lv, W.; Zhang, C.; Wang, D. W.; Ling, G. W.; He, Y. B.; Kang, F. Y.; Yang, Q. H. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: Confining, trapping, blocking, and breaking up. Adv. Funct. Mater. 2018, 28, 1800508.

[73]

Xiao, Q. H. Q.; Yang, J. L.; Wang, X. D.; Deng, Y. R.; Han, P.; Yuan, N.; Zhang, L.; Feng, M.; Wang, C. A.; Liu, R. P. Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: Progress and perspective. Carbon Energy 2021, 3, 271–302.

[74]

Huang, L.; Shen, S. H.; Zhong, Y.; Zhang, Y. Q.; Zhang, L. J.; Wang, X. L.; Xia, X. H.; Tong, X. L.; Zhou, J. C.; Tu, J. P. Multifunctional hyphae carbon powering lithium-sulfur batteries. Adv. Mater. 2022, 34, 2107415.

[75]

Han, S. C.; Song, M. S.; Lee, H.; Kim, H. S.; Ahn, H. J.; Lee, J. Y. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries. J. Electrochem. Soc. 2003, 150, A889.

[76]

Zhao, Y.; Wu, W. L.; Li, J. X.; Xu, Z. C.; Guan, L. H. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 2014, 26, 5113–5118.

[77]

Chen, H. W.; Wang, C. H.; Dong, W. L.; Lu, W.; Du, Z. L.; Chen, L. W. Monodispersed sulfur nanoparticles for lithium-sulfur batteries with theoretical performance. Nano Lett. 2015, 15, 798–802.

[78]

Shi, H. D.; Zhao, X. J.; Wu, Z. S.; Dong, Y. F.; Lu, P. F.; Chen, J.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium sulfur batteries. Nano Energy 2019, 60, 743–751.

[79]

He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L. F. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. ACS Nano. 2013, 7, 10920–10930.

[80]

Li, Z.; Wu, H. B.; Lou, X. W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 3061–3070.

[81]

Peng, H. J.; Zhang, Q. Designing host materials for sulfur cathodes: From physical confinement to surface chemistry. Angew. Chem., Int. Ed. 2015, 54, 11018–11020.

[82]

Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

[83]

Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting Magnéli-phase TinO2n−1 nanomaterials for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5288–5294.

[84]

Wang, C.; Su, K.; Wan, W.; Guo, H.; Zhou, H. H.; Chen, J.; Zhang, X. X.; Huang, Y. H. High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 5018–5023.

[85]

Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821–4827.

[86]

Meini, S.; Elazari, R.; Rosenman, A.; Garsuch, A.; Aurbach, D. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems. J. Phys. Chem. Lett. 2014, 5, 915–918.

[87]

Kim, K. R.; Lee, K. S.; Ahn, C. Y.; Yu, S. H.; Sung, Y. E. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator. Sci. Rep. 2016, 6, 32433.

[88]

Tsao, Y.; Lee, M.; Miller, E. C.; Gao, G. P.; Park, J.; Chen, S. C.; Katsumata, T.; Tran, H.; Wang, L. W.; Toney, M. F. et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries. Joule 2019, 3, 872–884.

[89]

Li, G.; Wang, X. L.; Seo, M. H.; Li, M.; Ma, L.; Yuan, Y. F.; Wu, T. P.; Yu, A. P.; Wang, S.; Lu, J. et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries. Nat. Commun. 2018, 9, 705.

[90]

Gao, X.; Zheng, X. L.; Tsao, Y.; Zhang, P.; Xiao, X.; Ye, Y. S.; Li, J.; Yang, Y. F.; Xu, R.; Bao, Z. N. et al. All-solid-state lithium-sulfur batteries enhanced by redox mediators. J. Am. Chem. Soc. 2021, 143, 18188–18195.

[91]

Zhao, M.; Peng, H. J.; Wei, J. Y.; Huang, J. Q.; Li, B. Q.; Yuan, H.; Zhang, Q. Dictating high-capacity lithium-sulfur batteries through redox-mediated lithium sulfide growth. Small Methods 2020, 4, 1900344.

[92]
Peng, Y. Q.; Zhao, M.; Chen, Z. X.; Cheng, Q.; Liu, Y. R.; Li, X. Y.; Song, Y. W.; Li, B. Q.; Huang, J. Q. Boosting sulfur redox kinetics by a pentacenetetrone redox mediator for high-energy-density lithium-sulfur batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-4584-z.
DOI
[93]

Liang, X.; Kwok, C. Y.; Lodi-Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C. J.; Houtarde, D.; Kaup, K.; Sommer, H. et al. Tuning transition metal oxide–sulfur interactions for long life lithium sulfur batteries: The “Goldilocks” principle. Adv. Energy Mater. 2016, 6, 1501636.

[94]

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat Commun. 2015, 6, 5682.

[95]

Wang, S. Z.; Liao, J. X.; Yang, X. F.; Liang, J. N.; Sun, Q.; Liang, J. W.; Zhao, F. P.; Koo, A.; Kong, F. P.; Yao, Y. Y. et al. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy 2019, 57, 230–240.

[96]

Kang, H. J.; Park, J. W.; Hwang, H. J.; Kim, H.; Jang, K. S.; Ji, X. L.; Kim, H. J.; Im, W. B.; Jun, Y. S. Electrocatalytic and stoichiometric reactivity of 2D layered siloxene for high-energy-dense lithium-sulfur batteries. Carbon Energy 2021, 3, 976–990.

[97]

Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531–1537.

[98]

Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.

[99]

Li, Z.; Yuan, L. X.; Yi, Z. Q.; Sun, Y. M.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 2014, 4, 1301473.

[100]

Gao, J.; Sun, C. S.; Xu, L.; Chen, J.; Wang, C.; Guo, D. C.; Chen, H. Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode. J. Power Sources 2018, 382, 179–189.

[101]

Wu, H. B.; Wei, S. Y.; Zhang, L.; Xu, R.; Hng, H. H.; Lou, X. W. D. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chem. -Eur. J. 2013, 19, 10804–10808.

[102]

Zhu, Q. Z.; Zhao, Q.; An, Y. B.; Anasori, B.; Wang, H. R.; Xu, B. Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery. Nano Energy 2017, 33, 402–409.

[103]

Zheng, S. Y.; Wen, Y.; Zhu, Y. J.; Han, Z.; Wang, J. H.; Yang, J.; Wang, C. S. In situ sulfur reduction and intercalation of graphite oxides for Li-S battery cathodes. Adv. Energy Mater. 2014, 4, 1400482.

[104]

Markevich, E.; Salitra, G.; Rosenman, A.; Talyosef, Y.; Chesneau, F.; Aurbach, D. The effect of a solid–electrolyte interphase on the mechanism of operation of lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 19873–19883.

[105]

Wu, X. J.; Zhang, Q.; Tang, G.; Cao, Y. L.; Yang, H. X.; Li, H.; Ai, X. P. A solid-phase conversion sulfur cathode with full capacity utilization and superior cycle stability for lithium-sulfur batteries. Small 2022, 18, 2106144.

[106]

Li, X.; Banis, M.; Lushington, A.; Yang, X. F.; Sun, Q.; Zhao, Y.; Liu, C. Q.; Li, Q. Z.; Wang, B. Q.; Xiao, W. et al. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation. Nat. Commun. 2018, 9, 4509.

[107]

Chen, X.; Ji, H. J.; Rao, Z. X.; Yuan, L.; Shen, Y.; Xu, H. H.; Li, Z.; Huang, Y. H. Insight into the fading mechanism of the solid-conversion sulfur cathodes and designing long cycle lithium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2102774.

[108]

He, F.; Wu, X. J.; Qian, J. F.; Cao, Y. L.; Yang, H. X.; Ai, X. P.; Xia, D. G. Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. J. Mater. Chem. A 2018, 6, 23396–23407.

[109]

He, M. X.; Li, X.; Yang, X. F.; Wang, C. H.; Zheng, M. L.; Li, R. Y.; Zuo, P. J.; Yin, G. P.; Sun, X. L. Realizing solid-phase reaction in Li-S batteries via localized high-concentration carbonate electrolyte. Adv. Energy Mater. 2021, 11, 2101004.

[110]

Ng, S. F.; Lau, M. Y. L.; Ong, W. J. Lithium-sulfur battery cathode design: Tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion. Adv. Mater. 2021, 33, 2008654.

[111]

Hu, A. J.; Zhou, M. J.; Lei, T. Y.; Hu, Y.; Du, X. C.; Gong, C. H.; Shu, C. Z.; Long, J. P.; Zhu, J.; Chen, W. et al. Optimizing redox reactions in aprotic lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2002180.

[112]

Dai, Y. Y.; Xu, C. M.; Liu, X. H.; He, X. X.; Yang, Z.; Lai, W. H.; Li, L.; Qiao, Y.; Chou, S. L. Manipulating metal–sulfur interactions for achieving high-performance S cathodes for room temperature Li/Na-sulfur batteries. Carbon Energy 2021, 3, 253–270.

[113]

Al Salem, H.; Babu, G.; Rao, C. V.; Arava, L. M. R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J. Am. Chem. Soc. 2015, 137, 11542–11545.

[114]

Li, Y. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ. Sci. 2016, 9, 1998–2004.

[115]

Wang, C. H.; Li, Y. H.; Cao, F.; Zhang, Y. Q.; Xia, X. H.; Zhang, L. J. Employing Ni-embedded porous graphitic carbon fibers for high-efficiency lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2022, 14, 10457–10466.

[116]

Wang, Z. Y.; Zhang, B. H.; Liu, S.; Li, G. R.; Yan, T. Y.; Gao, X. P. Nickel-platinum alloy nanocrystallites with high-index facets as highly effective core catalyst for lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200893.

[117]
Wang, Z. Y.; Ge, H. L.; Liu, S.; Li, G. R.; Gao, X. P. High-entropy alloys to activate the sulfur cathode for lithium-sulfur batteries. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12358.
DOI
[118]

Tian, L. Y.; Zhang, Z.; Liu, S.; Li, G. R.; Gao, X. P. High-entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium-sulfur batteries. Energy Environ. Mater. 2022, 5, 645–654.

[119]

Xu, H. F.; Hu, R. M.; Zhang, Y. Z.; Yan, H. B.; Zhu, Q.; Shang, J. X.; Yang, S. B.; Li, B. Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 2021, 43, 212–220.

[120]

Lu, Y.; Qin, J. L.; Shen, T.; Yu, Y. F.; Chen, K.; Hu, Y. Z.; Liang, J. N.; Gong, M. X.; Zhang, J. J.; Wang, D. L. Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li-S batteries. Adv. Energy Mater. 2021, 2101780.

[121]

Yuan, H. F.; Zhang, N.; Tian, L. W.; Xu, L.; Shao, Q. J.; Zaidi, S. D. A.; Xiao, J. P.; Chen, J. Incorporation of layered tin(IV) phosphate in graphene framework for high performance lithium-sulfur batteries. J. Energy Chem. 2021, 53, 99–108.

[122]

Hua, W. X.; Li, H.; Pei, C.; Xia, J. Y.; Sun, Y. F.; Zhang, C.; Lv, W.; Tao, Y.; Jiao, Y.; Zhang, B. S. et al. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2101006.

[123]

Wang, L.; Hua, W. X.; Wan, X.; Feng, Z.; Hu, Z. H.; Li, H.; Niu, J. T.; Wang, L. X.; Wang, A. S.; Liu, J. Y. et al. Design rules of a sulfur redox electrocatalyst for lithium-sulfur batteries. Adv. Mater. 2022, 34, 2110279.

[124]

Wang, L.; Hu, Z. H.; Wan, X.; Hua, W. X.; Li, H.; Yang, Q. H.; Wang, W. C. Li2S4 anchoring governs the catalytic sulfur reduction on defective SmMn2O5 in lithium-sulfur battery. Adv. Energy Mater. 2022, 12, 2200340.

[125]

Yan, B.; Li, X. F.; Xiao, W.; Hu, J. H.; Zhang, L. L.; Yang, X. L. Design, synthesis, and application of metal sulfides for Li-S batteries: Progress and prospects. J. Mater. Chem. A 2020, 8, 17848–17882.

[126]

Zhang, Q. F.; Wang, Y. P.; Seh, Z. W.; Fu, Z. H.; Zhang, R. F.; Cui, Y. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 2015, 15, 3780–3786.

[127]

Wang, H. T.; Zhang, Q. F.; Yao, H. B.; Liang, Z.; Lee, H. W.; Hsu, P. C.; Zheng, G. Y.; Cui, Y. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett. 2014, 14, 7138–7144.

[128]

Babu, G.; Masurkar, N.; Al Salem, H.; Arava, L. M. R. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis. J. Am. Chem. Soc. 2017, 139, 171–178.

[129]

Lin, H. B.; Yang, L. Q.; Jiang, X.; Li, G. C.; Zhang, T. R.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1476–1486.

[130]

Shao, Q. J.; Lu, P. F.; Xu, L.; Guo, D. C.; Gao, J.; Wu, Z. S.; Chen, J. Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type Li-S batteries. J. Energy Chem. 2020, 51, 262–271.

[131]

Liu, B.; Zhang, Y.; Wang, Z. L.; Ai, C. Z.; Liu, S. F.; Liu, P.; Zhong, Y.; Lin, S. W.; Deng, S. J.; Liu, Q. et al. Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries. Adv. Mater. 2020, 32, 2003657.

[132]

Chen, X.; Peng, H. J.; Zhang, R.; Hou, T. Z.; Huang, J. Q.; Li, B.; Zhang, Q. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides? ACS Energy Lett. 2017, 2, 795–801.

[133]

Shen, Z. H.; Jin, X.; Tian, J. M.; Li, M.; Yuan, Y. F.; Zhang, S.; Fang, S. S.; Fan, X.; Xu, W. G.; Lu, H. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium-sulfur batteries. Nat. Catal. 2022, 5, 555–563.

[134]

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

[135]

Wang, Y. K.; Zhang, R. F.; Pang, Y. C.; Chen, X.; Lang, J. X.; Xu, J. J.; Xiao, C. H.; Li, H. L.; Xi, K.; Ding, S. J. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 2019, 16, 228–235.

[136]

Xiao, K. K.; Wang, J.; Chen, Z.; Qian, Y. H.; Liu, Z.; Zhang, L. L.; Chen, X. H.; Liu, J. L.; Fan, X. F.; Shen, Z. X. Improving polysulfides adsorption and redox kinetics by the Co4N nanoparticle/N-doped carbon composites for lithium-sulfur batteries. Small 2019, 15, 1901454.

[137]

Li, R. R.; Peng, H. J.; Wu, Q. P.; Zhou, X. J.; He, J.; Shen, H. J.; Yang, M. H.; Li, C. L. Sandwich-like catalyst-carbon-catalyst trilayer structure as a compact 2D host for highly stable lithium-sulfur batteries. Angew. Chem., Int. Ed. 2020, 59, 12129–12138.

[138]

Zhao, M.; Peng, H. J.; Zhang, Z. W.; Li, B. Q.; Chen, X.; Xie, J.; Chen, X.; Wei, J. Y.; Zhang, Q.; Huang, J. Q. Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal. Angew. Chem., Int. Ed. 2019, 58, 3779–3783.

[139]

Shen, Z. H.; Zhang, Z. L.; Li, M.; Yuan, Y. F.; Zhao, Y.; Zhang, S.; Zhong, C. L.; Zhu, J.; Lu, J.; Zhang, H. G. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano 2020, 14, 6673–6682.

[140]

Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.

[141]

Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.

[142]

Xiao, Z. B.; Li, Z. L.; Meng, X. P.; Wang, R. H. MXene-engineered lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 22730–22743.

[143]

Xiao, Z. B.; Li, Z. L.; Li, P. Y.; Meng, X. P.; Wang, R. H. Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries. ACS Nano 2019, 13, 3608–3617.

[144]

Song, Y. Z.; Sun, Z. T.; Fan, Z. D.; Cai, W. L.; Shao, Y. L.; Sheng, G.; Wang, M. L.; Song, L. X.; Liu, Z. F.; Zhang, Q. et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy 2020, 70, 104555.

[145]

Zhang, Y. G.; Li, G. R.; Wang, J. Y.; Cui, G. L.; Wei, X. L.; Shui, L. L.; Kempa, K.; Zhou, G. F.; Wang, X.; Chen, Z. W. Hierarchical defective Fe3−xC@C hollow microsphere enables fast and long-lasting lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2001165.

[146]

Guo, Y. C.; Khatoon, R.; Lu, J. G.; He, Q. G.; Gao, X.; Yang, X. P.; Hu, X.; Wu, Y.; Lian, J. L.; Li, Z. P. et al. Regulating adsorption ability toward polysulfides in a porous carbon/Cu3P hybrid for an ultrastable high-temperature lithium-sulfur battery. Carbon Energy 2021, 3, 841–855.

[147]

Zhou, J. B.; Liu, X. J.; Zhu, L. Q.; Zhou, J.; Guan, Y.; Chen, L.; Niu, S. W.; Cai, J. Y.; Sun, D.; Zhu, Y. C. et al. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry. Joule 2018, 2, 2681–2693.

[148]

Shen, Z. H.; Cao, M. Q.; Zhang, Z. L.; Pu, J.; Zhong, C. L.; Li, J. C.; Ma, H. X.; Li, F. J.; Zhu, J.; Pan, F. et al. Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium-sulfur conversion in a microreactor-like battery. Adv. Funct. Mater. 2020, 30, 1906661.

[149]

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2–TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

[150]

Qin, B.; Cai, Y. F.; Wang, P. C.; Zou, Y. C.; Cao, J.; Qi, J. L. Crystalline molybdenum carbide–amorphous molybdenum oxide heterostructures: In situ surface reconfiguration and electronic states modulation for Li-S batteries. Energy Storage Mater. 2022, 47, 345–353.

[151]

Yao, Y.; Wang, H. Y.; Yang, H.; Zeng, S. F.; Xu, R.; Liu, F. F.; Shi, P. C.; Feng, Y. Z.; Wang, K.; Yang, W. J. et al. A dual-functional conductive framework embedded with TiN–VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 2020, 32, 1905658.

[152]

Liang, Z. W.; Shen, J. D.; Xu, X. J.; Li, F. K.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv. Mater. 2022, 34, 2200102.

[153]

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

[154]

Wang, F. F.; Li, J.; Zhao, J.; Yang, Y. X.; Su, C. L.; Zhong, Y. L.; Yang, Q. H.; Lu, J. Single-atom electrocatalysts for lithium sulfur batteries: Progress, opportunities, and challenges. ACS Mater. Lett. 2020, 2, 1450–1463.

[155]

Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

[156]

Wang, C. G.; Song, H. W.; Yu, C. C.; Ullah, Z.; Guan, Z. X.; Chu, R. R.; Zhang, Y. F.; Zhao, L. Y.; Li, Q.; Liu, L. W. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 3421–3430.

[157]

Zhang, L. L.; Liu, D. B.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y. J.; Song, L.; Niu, Z. Q.; Chen, J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903955.

[158]

Shi, H. D.; Ren, X. M.; Lu, J. M.; Dong, C.; Liu, J.; Yang, Q. H.; Chen, J.; Wu, Z. S. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv. Energy Mater. 2020, 10, 2002271.

[159]

Zhang, D.; Wang, S.; Hu, R. M.; Gu, J. N.; Cui, Y. L. S.; Li, B.; Chen, W. H.; Liu, C. T.; Shang, J. X.; Yang, S. B. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2002471.

[160]

Yi, Z. L.; Su, F. Y.; Dai, L. Q.; Wang, Z. B.; Xie, L. J.; Zuo, Z.; Chen, X.; Liu, Y. D.; Chen, C. M. Uncovering electrocatalytic conversion mechanisms from Li2S2 to Li2S: Generalization of computational hydrogen electrode. Energy Storage Mater. 2022, 47, 327–335.

[161]

Shao, Q. J.; Xu, L.; Guo, D. C.; Su, Y.; Chen, J. Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 23772–23783.

[162]

Peng, M.; Dong, C. Y.; Gao, R.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2021, 7, 262–273.

[163]

Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett. 2020, 20, 1252–1261.

[164]

Zeng, Z. H.; Nong, W.; Li, Y.; Wang, C. X. Universal-descriptors-guided design of single atom catalysts toward oxidation of Li2S in lithium-sulfur batteries. Adv. Sci. 2021, 8, 2102809.

[165]

Han, Z. Y.; Zhao, S. Y.; Xiao, J. W.; Zhong, X. W.; Sheng, J. Z.; Lv, W.; Zhang, Q. F.; Zhou, G. M.; Cheng, H. M. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv. Mater. 2021, 33, 2105947.

[166]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[167]

Qiu, Y.; Fan, L. S.; Wang, M. X.; Yin, X. J.; Wu, X.; Sun, X.; Tian, D.; Guan, B.; Tang, D. Y.; Zhang, N. Q. Precise synthesis of Fe-N2 sites with high activity and stability for long-life lithium-sulfur batteries. ACS Nano 2020, 14, 16105–16113.

[168]

Ma, C.; Zhang, Y. Q.; Feng, Y. M.; Wang, N.; Zhou, L. J.; Liang, C. P.; Chen, L. B.; Lai, Y. Q.; Ji, X. B.; Yan, C. L. et al. Engineering Fe–N coordination structures for fast redox conversion in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2100171.

[169]

Wang, J. Y.; Qiu, W. B.; Li, G. R.; Liu, J. B.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Wang, X. et al. Coordinatively deficient single-atom Fe–N–C electrocatalyst with optimized electronic structure for high-performance lithium-sulfur batteries. Energy Storage Mater. 2022, 46, 269–277.

[170]

Liu, Y. N.; Wei, Z. Y.; Zhong, B.; Wang, H. T.; Xia, L.; Zhang, T.; Duan, X. M.; Jia, D. C.; Zhou, Y.; Huang, X. X. O-, N-Coordinated single Mn atoms accelerating polysulfides transformation in lithium-sulfur batteries. Energy Storage Mater. 2021, 35, 12–18.

[171]

Zhang, S. J.; Shao, Q. J.; Su, Y.; Xu, L.; Jiang, Q. K.; Chen, J. Atomically dispersed Co anchored on N, S-riched carbon as efficient electrocatalysts for advanced Li-S batteries. J. Alloys Compd. 2022, 910, 164799.

[172]

Li, Y. B.; Sun, Y. M.; Pei, A.; Chen, K. F.; Vailionis, A.; Li, Y. Z.; Zheng, G. Y.; Sun, J.; Cui, Y. Robust pinhole-free Li3N solid electrolyte grown from molten lithium. ACS Cent. Sci. 2018, 4, 97–104.

[173]

Chen, H.; Pei, A.; Lin, D. C.; Xie, J.; Yang, A. K.; Xu, J. W.; Lin, K. X.; Wang, J. Y.; Wang, H. S.; Shi, F. F. et al. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv. Energy Mater. 2019, 9, 1900858.

[174]

Zhao, J.; Liao, L.; Shi, F. F.; Lei, T.; Chen, G. X.; Pei, A.; Sun, J.; Yan, K.; Zhou, G. M.; Xie, J. et al. Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc. 2017, 139, 11550–11558.

[175]

Lin, D. C.; Liu, Y. Y.; Chen, W.; Zhou, G. M.; Liu, K.; Dunn, B.; Cui, Y. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 2017, 17, 3731–3737.

[176]

Zhang, X. Q.; Chen, X.; Xu, R.; Cheng, X. B.; Peng, H. J.; Zhang, R.; Huang, J. Q.; Zhang, Q. Columnar lithium metal anodes. Angew. Chem., Int. Ed. 2017, 129, 14395–14399.

[177]

Zhao, K. X.; Jin, Q.; Zhang, L. Y.; Li, L.; Wu, L. L.; Zhang, X. T. Achieving dendrite-free lithium deposition on the anode of lithium-sulfur battery by LiF-rich regulation layer. Electrochim. Acta 2021, 393, 138981.

[178]

Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X. Q.; Nazar, L. F. A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2017, 2, 17119.

[179]

Guo, W.; Han, Q.; Jiao, J. R.; Wu, W. H.; Zhu, X. B.; Chen, Z. H.; Zhao, Y. In situ construction of robust biphasic surface layers on lithium metal for lithium-sulfide batteries with long cycle Life. Angew. Chem., Int. Ed. 2021, 60, 7267–7274.

[180]

Hu, A. J.; Chen, W.; Du, X. C.; Hu, Y.; Lei, T. Y.; Wang, H. B.; Xue, L. X.; Li, Y. Y.; Sun, H.; Yan, Y. C. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 2021, 14, 4115–4124.

[181]

Li, Q.; Zeng, F. L.; Guan, Y. P.; Jin, Z. Q.; Huang, Y. Q.; Yao, M.; Wang, W. K.; Wang, A. B. Poly(dimethylsiloxane) modified lithium anode for enhanced performance of lithium-sulfur batteries. Energy Storage Mater. 2018, 13, 151–159.

[182]

Zhao, P. Y.; Feng, Y. Y.; Li, T. T.; Li, B.; Hu, L. L.; Sun, K.; Bao, C. G.; Xiong, S. Z.; Matic, A.; Song, J. X. Stable lithium metal anode enabled by high-dimensional lithium deposition through a functional organic substrate. Energy Storage Mater. 2020, 33, 158–163.

[183]

Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid–electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 2017, 29, 1605531.

[184]

Peng, Z.; Zhao, N.; Zhang, Z. G.; Wan, H.; Lin, H.; Liu, M.; Shen, C.; He, H. Y.; Guo, X. X.; Zhang, J. G. et al. Stabilizing Li–electrolyte interface with a transplantable protective layer based on nanoscale LiF domains. Nano Energy 2017, 39, 662–672.

[185]

Xu, R.; Xiao, Y.; Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Zhang, X. Q.; Yan, C.; Zhang, Q.; Huang, J. Q. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv. Mater. 2019, 31, 1808392.

[186]

Wang, H. J.; Wu, L. L.; Xue, B.; Wang, F.; Luo, Z. K.; Zhang, X. H.; Calvez, L.; Fan, P.; Fan, B. Improving cycling stability of the lithium anode by a spin-coated high-purity Li3PS4 artificial SEI layer. ACS Appl. Mater. Interfaces 2022, 14, 15214–15224.

[187]

Zheng, G. Y.; Wang, C.; Pei, A.; Lopez, J.; Shi, F. F.; Chen, Z.; Sendek, A. D.; Lee, H. W.; Lu, Z. D.; Schneider, H. et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 2016, 1, 1247–1255.

[188]

Cui, C.; Zhang, R. P.; Fu, C. K.; Xie, B. X.; Du, C. Y.; Wang, J. J.; Gao, Y. Z.; Yin, G. P.; Zuo, P. J. Stabilizing lithium metal anode enabled by a natural polymer layer for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 28252–28260.

[189]

Jiang, S.; Lu, Y.; Lu, Y. Y.; Han, M.; Li, H. X.; Tao, Z. L.; Niu, Z. Q.; Chen, J. Nafion/titanium dioxide-coated lithium anode for stable lithium-sulfur batteries. Chem. Asian J. 2018, 13, 1379–1385.

[190]

Luo, J.; Lee, R. C.; Jin, J. T.; Weng, Y. T.; Fang, C. C.; Wu, N. L. A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li-S batteries. Chem. Commun. 2017, 53, 963–966.

[191]

Lopez, J.; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 2018, 140, 11735–11744.

[192]

Luo, J.; Fang, C. C.; Wu, N. L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701482.

[193]

Tamwattana, O.; Park, H.; Kim, J.; Hwang, I.; Yoon, G.; Hwang, T. H.; Kang, Y. S.; Park, J.; Meethong, N.; Kang, K. High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries. ACS Energy Lett. 2021, 6, 4416–4425.

[194]

Kozen, A. C.; Lin, C. F.; Pearse, A. J.; Schroeder, M. A.; Han, X. G.; Hu, L. B.; Lee, S. B.; Rubloff, G. W.; Noked, M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 2015, 9, 5884–5892.

[195]

Wang, W. W.; Yue, X. Y.; Meng, J. K.; Wang, J. Y.; Wang, X. X.; Chen, H.; Shi, D. R.; Fu, J.; Zhou, Y. N.; Chen, J. et al. Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater. 2019, 18, 414–422.

[196]

Wang, L. P.; Wang, Q. J.; Jia, W. S.; Chen, S. L.; Gao, P.; Li, J. Z. Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. J. Power Sources 2017, 342, 175–182.

[197]

Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat. Nanotechnol. 2018, 13, 337–344.

[198]

Liu, F.; Xiao, Q. F.; Wu, H. B.; Shen, L.; Xu, D.; Cai, M.; Lu, Y. F. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701744.

[199]

Chen, L.; Huang, Z. N.; Shahbazian-Yassar, R.; Libera, J. A.; Klavetter, K. C.; Zavadil, K. R.; Elam, J. W. Directly formed alucone on lithium metal for high-performance Li batteries and Li-S batteries with high sulfur mass loading. ACS Appl. Mater. Interfaces 2018, 10, 7043–7051.

[200]

Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C. S.; Affinito, J. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J. Electrochem. Soc. 2009, 156, A694–A702.

[201]

Xiong, S. Z.; Xie, K.; Diao, Y.; Hong, X. B. On the role of polysulfides for a stable solid–electrolyte interphase on the lithium anode cycled in lithium-sulfur batteries. J. Power Sources 2013, 236, 181–187.

[202]

Xiong, S. Z.; Xie, K.; Diao, Y.; Hong, X. B. Characterization of the solid–electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries. J. Power Sources 2014, 246, 840–845.

[203]

Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

[204]

Yan, C.; Cheng, X. B.; Zhao, C. Z.; Huang, J. Q.; Yang, S. T.; Zhang, Q. Lithium metal protection through in situ formed solid–electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode. J. Power Sources 2016, 327, 212–220.

[205]

Cheng, X. B.; Yan, C.; Chen, X.; Guan, C.; Huang, J. Q.; Peng, H. J.; Zhang, R.; Yang, S. T.; Zhang, Q. Implantable solid–electrolyte interphase in lithium-metal batteries. Chem 2017, 2, 258–270.

[206]

Zu, C. X.; Manthiram, A. Stabilized lithium-metal surface in a polysulfide-rich environment of lithium-sulfur batteries. J. Phys. Chem. Lett. 2014, 5, 2522–2527.

[207]

Yang, Y. B.; Liu, Y. X.; Song, Z. P.; Zhou, Y. H.; Zhan, H. Li+-permeable film on lithium anode for lithium sulfur battery. ACS Appl. Mater. Interfaces 2017, 9, 38950–38958.

[208]

Ren, Y. X.; Zhao, T. S.; Liu, M.; Zeng, Y. K.; Jiang, H. R. A self-cleaning Li-S battery enabled by a bifunctional redox mediator. J. Power Sources. 2017, 361, 203–210.

[209]

Wu, F. X.; Thieme, S.; Ramanujapuram, A.; Zhao, E. B.; Weller, C.; Althues, H.; Kaskel, S.; Borodin, O.; Yushin, G. Toward in situ protected sulfur cathodes by using lithium bromide and pre-charge. Nano Energy 2017, 40, 170–179.

[210]

Wu, F. X.; Lee, J. T.; Nitta, N.; Kim, H.; Borodin, O.; Yushin, G. Lithium iodide as a promising electrolyte additive for lithium-sulfur batteries: Mechanisms of performance enhancement. Adv. Mater. 2015, 27, 101–108.

[211]

Yang, W.; Yang, W.; Song, A. L.; Gao, L. J.; Sun, G.; Shao, G. J. Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries. J. Power Sources 2017, 348, 175–182.

[212]

Wu, H. L.; Shin, M.; Liu, Y. M.; See, K. A.; Gewirth, A. A. Thiol-based electrolyte additives for high-performance lithium-sulfur batteries. Nano Energy 2017, 32, 50–58.

[213]

Guo, W.; Zhang, W. Y.; Si, Y. B.; Wang, D. H.; Fu, Y. Z.; Manthiram, A. Artificial dual solid–electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nat. Commun. 2021, 12, 3031.

[214]

Phadke, S.; Coadou, E.; Anouti, M. Catholyte formulations for high-energy Li-S batteries. J. Phys. Chem. Lett. 2017, 8, 5907–5914.

[215]

Matsuda, S.; Kubo, Y.; Uosaki, K.; Nakanishi, S. Insulative microfiber 3D matrix as a host material minimizing volume change of the anode of Li metal batteries. ACS Energy Lett. 2017, 2, 924–929.

[216]

Li, N.; Wei, W. F.; Xie, K. Y.; Tan, J. W.; Zhang, L.; Luo, X. D.; Yuan, K.; Song, Q.; Li, H. J.; Shen, C. et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries. Nano Lett. 2018, 18, 2067–2073.

[217]

Wang, G.; Xiong, X. H.; Lin, Z. H.; Zheng, J.; Zheng, F. H.; Li, Y. P.; Liu, Y. Z.; Yang, C. H.; Tang, Y. W.; Liu, M. L. Uniform Li deposition regulated via three-dimensional polyvinyl alcohol nanofiber networks for effective Li metal anodes. Nanoscale 2018, 10, 10018–10024.

[218]

Fan, L.; Zhuang, H. L.; Zhang, W. D.; Fu, Y.; Liao, Z. H.; Lu, Y. Y. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode. Adv. Energy Mater. 2018, 8, 1703360.

[219]

Li, G. X.; Liu, Z.; Huang, Q. Q.; Gao, Y.; Regula, M.; Wang, D. W.; Chen, L. Q.; Wang, D. H. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 2018, 3, 1076–1083.

[220]

Zhang, W. D.; Zhuang, H. L.; Fan, L.; Gao, L. N.; Lu, Y. Y. A “cation–anion regulation” synergistic anode host for dendrite-free lithium metal batteries. Sci. Adv. 2018, 4, eaar4410.

[221]

Yan, K.; Sun, B.; Munroe, P.; Wang, G. X. Three-dimensional pie-like current collectors for dendrite-free lithium metal anodes. Energy Storage Mater. 2018, 11, 127–133.

[222]

Jang, T.; Kang, J. H.; Kim, S.; Shim, M.; Lee, J.; Song, J.; Kim, W.; Ryu, K.; Byon, H. R. Nanometer-scale surface roughness of a 3D Cu substrate promoting Li nucleation in Li-metal batteries. ACS Appl. Energy Mater. 2021, 4, 2644–2651.

[223]

Gu, Y.; Xu, H. Y.; Zhang, X. G.; Wang, W. W.; He, J. W.; Tang, S.; Yan, J. W.; Wu, D. Y.; Zheng, M. S.; Dong, Q. F. et al. Lithiophilic faceted Cu (100) surfaces: High utilization of host surface and cavities for lithium metal anodes. Angew. Chem., Int. Ed. 2019, 58, 3092–3096.

[224]

Qian, J.; Wang, S.; Li, Y.; Zhang, M. L.; Wang, F. J.; Zhao, Y. Y.; Sun, Q.; Li, L.; Wu, F.; Chen, R. J. Lithium induced nano-sized copper with exposed lithiophilic surfaces to achieve dense lithium deposition for lithium metal anode. Adv. Funct. Mater. 2021, 31, 2006950.

[225]

Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

[226]

Jin, C. B.; Sheng, O. W.; Lu, Y.; Luo, J. M.; Yuan, H. D.; Zhang, W. K.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C. et al. Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA·cm−2. Nano Energy 2018, 45, 203–209.

[227]

Yang, C. P.; Yao, Y. G.; He, S. M.; Xie, H.; Hitz, E.; Hu, L. B. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 2017, 29, 1702714.

[228]

Ely, D. R.; García, R. E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J. Electrochem. Soc. 2013, 160, A662–A668.

[229]

Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632.

[230]

Wang, J. Y.; Wang, H. S.; Xie, J.; Yang, A. K.; Pei, A.; Wu, C. L.; Shi, F. F.; Liu, Y. Y.; Lin, D. C.; Gong, Y. J. et al. Fundamental study on the wetting property of liquid lithium. Energy Storage Mater. 2018, 14, 345–350.

[231]

Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.

[232]

Chen, X.; Chen, X. R.; Hou, T. Z.; Li, B. Q.; Cheng, X. B.; Zhang, R.; Zhang, Q. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv. 2019, 5, eaau7728.

[233]

Deng, W.; Zhu, W. H.; Zhou, X. F.; Peng, X. Q.; Liu, Z. P. Highly reversible Li plating confined in three-dimensional interconnected microchannels toward high-rate and stable metallic lithium anodes. ACS Appl. Mater. Interfaces 2018, 10, 20387–20395.

[234]

Zhang, Y.; Wang, C. W.; Pastel, G.; Kuang, Y. D.; Xie, H.; Li, Y. J.; Liu, B. Y.; Luo, W.; Chen, C. J.; Hu, L. B. 3D wettable framework for dendrite-free alkali metal anodes. Adv. Energy Mater. 2018, 8, 1800635.

[235]

Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Zhang, Z. Q.; Wu, X. J.; Yang, X. Q.; Zhou, Y. N. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater. 2018, 14, 335–344.

[236]

Fan, L.; Li, S. Y.; Liu, L.; Zhang, W. D.; Gao, L. N.; Fu, Y.; Chen, F.; Li, J.; Zhuang, H. L.; Lu, Y. Y. Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase. Adv. Energy Mater. 2018, 8, 1802350.

[237]

Yu, B. Z.; Tao, T.; Mateti, S.; Lu, S. G.; Chen, Y. Nanoflake arrays of lithiophilic metal oxides for the ultra-stable anodes of lithium-metal batteries. Adv. Funct. Mater. 2018, 28, 1803023.

[238]

Ma, Y.; Jing, Y. X.; Gu, Y. T.; Qi, P. W.; Lian, Y. B.; Yang, C.; Abdul Razzaq, A.; Zhao, X. H.; Peng, Y.; Zeng, X. Q. et al. Redox-driven lithium perfusion to fabricate Li@Ni-foam composites for high lithium-loading 3D anodes. ACS Appl. Mater. Interfaces 2020, 12, 9355–9364.

[239]

Yue, X. Y.; Bao, J.; Yang, S. Y.; Luo, R. J.; Wang, Q. C.; Wu, X. J.; Shadike, Z.; Yang, X. Q.; Zhou, Y. N. Petaloid-shaped ZnO coated carbon felt as a controllable host to construct hierarchical Li composite anode. Nano Energy 2020, 71, 104614.

[240]

Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

[241]

Liang, Z.; Lin, D. C.; Zhao, J.; Lu, Z. D.; Liu, Y. Y.; Liu, C.; Lu, Y. Y.; Wang, H. T.; Yan, K.; Tao, X. Y. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. USA 2016, 113, 2862–2867.

[242]

Zhu, M. Q.; Li, B.; Li, S. M.; Du, Z. G.; Gong, Y. J.; Yang, S. B. Dendrite-free metallic lithium in lithiophilic carbonized metal–organic frameworks. Adv. Energy Mater. 2018, 8, 1703505.

[243]

Niu, C. J.; Pan, H. L.; Xu, W.; Xiao, J.; Zhang, J. G.; Luo, L. L.; Wang, C. M.; Mei, D. H.; Meng, J. S.; Wang, X. P. et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 2019, 14, 594–601.

[244]

Li, K.; Hu, Z. Y.; Ma, J. Z.; Chen, S.; Mu, D. X.; Zhang, J. T. A 3D and stable lithium anode for high-performance lithium-iodine batteries. Adv. Mater. 2019, 31, 1902399.

[245]

Zhu, S. D.; Chen, J. Recognizing the nitrogen/oxygen co-doped lithiophilicity chemistry toward molten Li infusion for fabricating composite Li metal anode. J. Alloys Compd. 2022, 903, 163553.

[246]

Zhao, Q.; Hao, X. G.; Su, S. M.; Ma, J. B.; Hu, Y.; Liu, Y.; Kang, F. Y.; He, Y. B. Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. J. Mater. Chem. A 2019, 7, 15871–15879.

[247]

Ye, Y. S.; Zhao, Y. Y.; Zhao, T.; Xu, S. N.; Xu, Z. X.; Qian, J.; Wang, L. L.; Xing, Y.; Wei, L.; Li, Y. J. et al. An antipulverization and high-continuity lithium metal anode for high-energy lithium batteries. Adv. Mater. 2021, 33, 2105029.

[248]

Shi, P.; Li, T.; Zhang, R.; Shen, X.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Chen, X. R.; Liu, H.; Zhang, Q. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries. Adv. Mater. 2019, 31, 1807131.

[249]

Wan, M. T.; Kang, S. J.; Wang, L.; Lee, H. W.; Zheng, G. W.; Cui, Y.; Sun, Y. M. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun. 2020, 11, 829.

[250]

Cao, Z. J.; Li, B.; Yang, S. B. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays. Adv. Mater. 2019, 31, 1901310.

[251]

Shen, X.; Cheng, X. B.; Shi, P.; Huang, J. Q.; Zhang, X. Q.; Yan, C.; Li, T.; Zhang, Q. Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries. J. Energy Chem. 2018, 37, 29–34.

[252]

Ye, Y. F.; Song, M. K.; Xu, Y.; Nie, K. Q.; Liu, Y. S.; Feng, J.; Sun, X. H.; Cairns, E. J.; Zhang, Y. G.; Guo, J. H. Lithium nitrate: A double-edged sword in the rechargeable lithium-sulfur cell. Energy Storage Mater. 2019, 16, 498–504.

[253]

Ding, N.; Zhou, L.; Zhou, C. W.; Geng, D. S.; Yang, J.; Chien, S. W.; Liu, Z. L.; Ng, M. F.; Yu, A. S.; Hor, T. S. A. et al. Building better lithium-sulfur batteries: From LiNO3 to solid oxide catalyst. Sci. Rep. 2016, 6, 33154.

[254]

Zhang, S. S. A new finding on the role of LiNO3 in lithium-sulfur battery. J. Power Sources 2016, 322, 99–105.

[255]

Shi, Z. P.; Wang, L.; Xu, H. F.; Wei, J. Q.; Yue, H. Y.; Dong, H. Y.; Yin, Y. H.; Yang, S. T. A soluble single atom catalyst promotes lithium polysulfide conversion in lithium sulfur batteries. Chem. Commun. (Camb. ) 2019, 55, 12056–12059.

[256]

Wang, Z. K.; Ji, H. Q.; Zhou, L. Z.; Shen, X. W.; Gao, L. H.; Liu, J.; Yang, T. Z.; Qian, T.; Yan, C. L. All-liquid-phase reaction mechanism enabling cryogenic Li-S batteries. ACS Nano 2021, 15, 13847–13856.

[257]

Liu, T.; Li, H. J.; Yue, J. M.; Feng, J. N.; Mao, M. L.; Zhu, X. Z.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q. et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells. Angew. Chem., Int. Ed. 2021, 60, 17547–17555.

[258]

Xu, R.; Li, J. C. M.; Lu, J.; Amine, K.; Belharouak, I. Demonstration of highly efficient lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 4170–4179.

[259]

Cao, R. G.; Chen, J. Z.; Han, K. S.; Xu, W.; Mei, D. H.; Bhattacharya, P.; Engelhard, M. H.; Mueller, K. T.; Liu, J.; Zhang, J. G. Effect of the anion activity on the stability of Li metal anodes in lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 3059–3066.

[260]

Lang, S. Y.; Xiao, R. J.; Gu, L.; Guo, Y. G.; Wen, R.; Wan, L. J. Interfacial mechanism in lithium-sulfur batteries: How salts mediate the structure evolution and dynamics. J. Am. Chem. Soc. 2018, 140, 8147–8155.

[261]

Zou, Q. L.; Lu, Y. C. Solvent-dictated lithium sulfur redox reactions: An operando UV–vis spectroscopic study. J. Phys. Chem. Lett. 2016, 7, 1518–1525.

[262]

Cuisinier, M.; Hart, C.; Balasubramanian, M.; Garsuch, A.; Nazar, L. F. Radical or not radical: Revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes. Adv. Energy Mater. 2015, 5, 1401801.

[263]

Vijayakumar, M.; Govind, N.; Walter, E.; Burton, S. D.; Shukla, A.; Devaraj, A.; Xiao, J.; Liu, J.; Wang, C. M.; Karim, A. et al. Molecular structure and stability of dissolved lithium polysulfide species. Phys. Chem. Chem. Phys. 2014, 16, 10923–10932.

[264]

Baek, M.; Shin, H.; Char, K.; Choi, J. W. New high donor electrolyte for lithium-sulfur batteries. Adv. Mater. 2020, 32, 2005022.

[265]

Pan, H. L.; Chen, J. Z.; Cao, R. G.; Murugesan, V.; Rajput, N. N.; Han, K. S.; Persson, K.; Estevez, L.; Engelhard, M. H.; Zhang, J. G. et al. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth. Nat. Energy 2017, 2, 813–820.

[266]

Chu, H.; Noh, H.; Kim, Y. J.; Yuk, S.; Lee, J. H.; Lee, J.; Kwack, H.; Kim, Y.; Yang, D. K.; Kim, H. T. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 2019, 10, 188.

[267]

Yang, B.; Jiang, H. R.; Zhou, Y. C.; Liang, Z. J.; Zhao, T. S.; Lu, Y. C. Critical role of anion donicity in Li2S deposition and sulfur utilization in Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 25940–25948.

[268]

Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

[269]

Jia, W. S.; Fan, C.; Wang, L. P.; Wang, Q. J.; Zhao, M. J.; Zhou, A. J.; Li, J. Z. Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery. ACS Appl. Mater. Interfaces 2016, 8, 15399–15405.

[270]

Shuai, Y.; Zhang, Z. P.; Chen, K. H.; Lou, J.; Wang, Y. Highly stable lithium plating by a multifunctional electrolyte additive in a lithium-sulfurized polyacrylonitrile battery. Chem. Commun. 2019, 55, 2376–2379.

[271]

Dai, H. L.; Xi, K.; Liu, X.; Lai, C.; Zhang, S. Q. Cationic surfactant based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms. J. Am. Chem. Soc. 2018, 140, 17515–17521.

[272]

Tao, R.; Bi, X. X.; Li, S.; Yao, Y.; Wu, F.; Wang, Q.; Zhang, C. Z.; Lu, J. Kinetics tuning the electrochemistry of lithium dendrites formation in lithium batteries through electrolytes. ACS Appl. Mater. Interfaces 2017, 9, 7003–7008.

[273]

Liu, Y. Y.; Xu, X. Y.; Sadd, M.; Kapitanova, O. O.; Krivchenko, V. A.; Ban, J.; Wang, J. L.; Jiao, X. X.; Song, Z. X.; Song, J. X. et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal. Adv. Sci. 2021, 8, 2003301.

[274]

Yang, H. C.; Yin, L. C.; Shi, H. F.; He, K.; Cheng, H. M.; Li, F. Suppressing lithium dendrite formation by slowing its desolvation kinetics. Chem. Commun. 2019, 55, 13211–13214.

[275]

Boyle, D. T.; Kong, X.; Pei, A.; Rudnicki, P. E.; Shi, F. F.; Huang, W.; Bao, Z. N.; Qin, J.; Cui, Y. Transient voltammetry with ultramicroelectrodes reveals the electron transfer kinetics of lithium metal anodes. ACS Energy Lett. 2020, 5, 701–709.

[276]

Kurchin, R.; Viswanathan, V. Marcus–Hush–Chidsey kinetics at electrode–electrolyte interfaces. J. Chem. Phys. 2020, 153, 134706.

[277]

Wang, S. M.; Qu, J. Y.; Wu, F.; Yan, K.; Zhang, C. Z. Cycling performance and kinetic mechanism analysis of a Li metal anode in series-concentrated ether electrolytes. ACS Appl. Mater. Interfaces 2020, 12, 8366–8375.

[278]

Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.

[279]

Fan, X. L.; Chen, L.; Ji, X.; Deng, T.; Hou, S.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J. J.; Xu, K. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018, 4, 174–185.

[280]

Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.

[281]

Cho, S. J.; Yu, D. E.; Pollard, T. P.; Moon, H.; Jang, M.; Borodin, O.; Lee, S. Y. Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes. iScience 2020, 23, 100844.

[282]

Dokko, K.; Tachikawa, N.; Yamauchi, K.; Tsuchiya, M.; Yamazaki, A.; Takashima, E.; Park, J. W.; Ueno, K.; Seki, S.; Serizawa, N. et al. Solvate ionic liquid electrolyte for Li-S batteries. J. Electrochem. Soc. 2013, 160, A1304–A1310.

[283]

Zhang, L. L.; Wan, F.; Wang, X. Y.; Cao, H.; Dai, X.; Niu, Z. Q.; Wang, Y. J.; Chen, J. Dual-functional graphene carbon as polysulfide trapper for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 5594–5602.

[284]

Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4, 1877–1892.

[285]

Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280.

[286]

Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.

[287]

Zhu, S. D.; Chen, J. Dual strategy with Li-ion solvation and solid electrolyte interphase for high Coulombic efficiency of lithium metal anode. Energy Storage Mater. 2022, 44, 48–56.

[288]

Weng, W.; Pol, V. G.; Amine, K. Ultrasound assisted design of sulfur/carbon cathodes with partially fluorinated ether electrolytes for highly efficient Li-S batteries. Adv. Mater. 2013, 25, 1608–1615.

[289]

Azimi, N.; Weng, W.; Takoudis, C.; Zhang, Z. C. Improved performance of lithium-sulfur battery with fluorinated electrolyte. Electrochem. Commun. 2013, 37, 96–99.

[290]

Azimi, N.; Xue, Z.; Bloom, I.; Gordin, M. L.; Wang, D. H.; Daniel, T.; Takoudis, C.; Zhang, Z. C. Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2015, 7, 9169–9177.

[291]

Shen, C.; Xie, J. X.; Zhang, M.; Andrei, P.; Hendrickson, M.; Plichta, E. J.; Zheng, J. P. Understanding the role of lithium polysulfide solubility in limiting lithium-sulfur cell capacity. Electrochim. Acta 2017, 248, 90–97.

[292]

Karaseva, E. V.; Kuzmina, E. V.; Kolosnitsyn, D. V.; Shakirova, N. V.; Sheina, L. V.; Kolosnitsyn, V. S. The mechanism of effect of support salt concentration in electrolyte on performance of lithium-sulfur cells. Electrochim. Acta 2019, 296, 1102–1114.

[293]

Dörfler, S.; Althues, H.; Härtel, P.; Abendroth, T.; Schumm, B.; Kaskel, S. Challenges and key parameters of lithium-sulfur batteries on pouch cell level. Joule 2020, 4, 539–554.

[294]

Zhao, M.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. A perspective toward practical lithium-sulfur batteries. ACS Cent. Sci. 2020, 6, 1095–1104.

[295]

Chen, S. R.; Niu, C. J.; Lee, H.; Li, Q. Y.; Yu, L.; Xu, W.; Zhang, J. G.; Dufek, E. J.; Whittingham, M. S.; Meng, S. et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries. Joule 2019, 3, 1094–1105.

[296]

Shi, L. L.; Bak, S. M.; Shadike, Z.; Wang, C. Q.; Niu, C. J.; Northrup, P.; Lee, H.; Baranovskiy, A. Y.; Anderson, C. S.; Qin, J. et al. Reaction heterogeneity in practical high-energy lithium-sulfur pouch cells. Energy Environ. Sci. 2020, 13, 3620–3632.

[297]

Chen, Z. X.; Zhao, M.; Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Huang, J. Q. Toward practical high-energy-density lithium-sulfur pouch cells: A review. Adv. Mater. 2022, 2201555.

[298]

Ye, G.; Zhao, M.; Hou, L. P.; Chen, W. J.; Zhang, X. Q.; Li, B. Q.; Huang, J. Q. Evaluation on a 400 Wh·kg−1 lithium-sulfur pouch cell. J. Energy Chem. 2022, 66, 24–29.

[299]

Cheng, Q.; Chen, Z. X.; Li, X. Y.; Hou, L. P.; Bi, C. X.; Zhang, X. Q.; Huang, J. Q.; Li, B. Q. Constructing a 700 Wh·kg–1-level rechargeable lithium-sulfur pouch cell. J. Energy. Chem. 2023, 76, 181–186.

[300]

Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries. Mater. Today 2021, 45, 62–76.

[301]

Yang, X. X.; Li, X. T.; Zhao, C. F.; Fu, Z. H.; Zhang, Q. S.; Hu, C. Promoted deposition of three-dimensional Li2S on catalytic Co phthalocyanine nanorods for stable high-loading lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 32752–32763.

[302]

Cui, X. M.; Chu, Y.; Wang, X. H.; Zhang, X. Z.; Li, Y. X.; Pan, Q. M. Stabilizing lithium metal anodes by a self-healable and Li-regulating interlayer. ACS Appl. Mater. Interfaces 2021, 13, 44983–44990.

[303]

Wang, Z. Y.; Lu, Z. X.; Guo, W.; Luo, Q.; Yin, Y. H.; Liu, X. B.; Li, Y. S.; Xia, B. Y.; Wu, Z. P. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries. Adv. Mater. 2021, 33, 2006702.

[304]

Gong, L. Y.; Zhang, H.; Wang, Y.; Luo, E. G.; Li, K.; Gao, L. Q.; Wang, Y. M.; Wu, Z. J.; Jin, Z.; Ge, J. J. et al. Bridge bonded oxygen ligands between approximated FeN4 Sites confer catalysts with high ORR performance. Angew. Chem., Int. Ed. 2020, 59, 13923–13928.

[305]

Wu, J. Y.; Rao, Z. X.; Liu, X. T.; Shen, Y.; Yuan, L. X.; Li, Z.; Xie, X. L.; Huang, Y. H. Composite lithium metal anodes with lithiophilic and low-tortuosity scaffold enabling ultrahigh currents and capacities in carbonate electrolytes. Adv. Funct. Mater. 2021, 31, 2009961.

[306]

Moorthy, B.; Ponraj, R.; Yun, J. H.; Wang, J. E.; Kim, D. J.; Kim, D. K. Ice-templated free-standing reduced graphene oxide for dendrite-free lithium metal batteries. ACS Appl. Energy Mater. 2020, 3, 11053–11060.

[307]

Chang, J.; Shang, J.; Sun, Y. M.; Ono, L. K.; Wang, D. R.; Ma, Z. J.; Huang, Q. Y.; Chen, D. D.; Liu, G. Q.; Cui, Y. et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 2018, 9, 4480.

[308]

Han, Z.; Li, S.; Sun, M.; He, R.; Zhong, W.; Yu, C.; Cheng, S.; Xie, J. Fluorobenzene diluted low-density electrolyte for high-energy density and high-performance lithium-sulfur batteries. J. Energy Chem. 2022, 68, 752–761.

[309]

Liu, T.; Shi, Z.; Li, H. J.; Xue, W. J.; Liu, S. S.; Yue, J. M.; Mao, M. L.; Hu, Y. S.; Li, H.; Huang, X. J. et al. Low-density fluorinated silane solvent enhancing deep cycle lithium-sulfur batteries’ lifetime. Adv. Mater. 2021, 33, 2102034.

[310]

He, L.; Shao, S. Y.; Zong, C. X.; Hong, B.; Wang, M. R.; Lai, Y. Q. Electrode interface engineering in lithium-sulfur batteries enabled by a trifluoroacetamide-based electrolyte. ACS Appl. Mater. Interfaces 2022, 14, 31814–31823.

[311]

Weller, C.; Thieme, S.; Härtel, P.; Althues, H.; Kaskel, S. Intrinsic shuttle suppression in lithium-sulfur batteries for pouch cell application. J. Electrochem. Soc. 2017, 164, A3766–A3771.

[312]

Zhang, X. Q.; Jin, Q.; Nan, Y. L.; Hou, L. P.; Li, B. Q.; Chen, X.; Jin, Z. H.; Zhang, X. T.; Huang, J. Q.; Zhang, Q. Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 15503–15509.

[313]

He, Y. B.; Chang, Z.; Wu, S. C.; Qiao, Y.; Bai, S. Y.; Jiang, K. Z.; He, P.; Zhou, H. S. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater. 2018, 8, 1802130.

[314]

Xu, J.; An, S. H.; Song, X. Y.; Cao, Y. J.; Wang, N.; Qiu, X.; Zhang, Y.; Chen, J. W.; Duan, X. L.; Huang, J. H. et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv. Mater. 2021, 33, 2105178.

[315]

Song, C. L.; Li, Z. H.; Ma, L. Y.; Li, M. Z.; Huang, S.; Hong, X. J.; Cai, Y. P.; Lan, Y. Q. Single-atom zinc and anionic framework as Janus separator coatings for efficient inhibition of lithium dendrites and shuttle effect. ACS Nano 2021, 15, 13436–13443.

[316]

Jiang, J. C.; Fan, Q. N.; Liu, H. K.; Chou, S. L.; Konstantinov, K.; Wang, J. Z. Understanding the effects of the low-concentration electrolyte on the performance of high-energy-density Li-S batteries. ACS Appl. Mater. Interfaces 2021, 13, 28405–28414.

[317]
Chu, F. L.; Wang, M.; Liu, J. M.; Guan, Z. Q.; Yu, H. Y.; Liu, B.; Wu, F. X. Low concentration electrolyte enabling cryogenic lithium-sulfur batteries. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202205393.
DOI
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 August 2022
Revised: 13 October 2022
Accepted: 19 October 2022
Published: 05 January 2023
Issue date: June 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the fellowship of the National Natural Science Foundation of China (No. 22209177), the China Postdoctoral Science Foundation (No. 2021M703149), the Strategy Priority Research Program of Chinese Academy of Science (No. XDA17020404), the R&D Projects in Key Areas of Guangdong Province (No. 2019B090908001), and the High-Specific-Energy Primary Power Battery Project (No. 2020-PYS/K-YY-J033).

Return