Journal Home > Volume 16 , Issue 4

Presently, interfacial solar water evaporation (ISWE) is now injecting new vitality into the field of water remediation. However, during the ISWE process, the nonvolatile pollutants might be concentrated in residual water, and further contaminate the environment. Preparing advanced photothermal materials is in need to get comprehensive purification of various pollutants in residual water. Herein, we report a facile laser thermal method to prepare Cu2−xS/sulfur/reduced graphene oxide (Cu2−xS/S/rGO) nanocomposites for realizing all-round residual water remediation during the ISWE process. The as-prepared Cu2−xS/S/rGO nanocomposites demonstrated excellent photothermal and photocatalytic properties. Through blending with GO nanosheets having excellent adsorption capacity, the synergetic effect of photothermal, photocatalytic, and adsorption properties resulted in highly efficient purification of rhodamine B, bacterial, and heavy metal ions in residual water during the ISWE process. The experimental results also showed that, increasing solar light intensity can promote the residual water remediation, but ultrafast water evaporation under high light intensity may deteriorate the purifying effect. This report may pave a new way to prepare multifunctional materials for water remediation through the ISWE technology.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile preparation of multifunctional Cu2−xS/S/rGO composite for all-round residual water remediation during interfacial solar driven water evaporation process

Show Author's information Chaorui Xue1,§( )Yang Shen1,§Qian Zhang1Qing Chang1Ning Li1Ying Li2Wenjing Zheng1Shengliang Hu1( )Jinlong Yang2,3
School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China

§ Chaorui Xue and Yang Shen contributed equally to this work.

Abstract

Presently, interfacial solar water evaporation (ISWE) is now injecting new vitality into the field of water remediation. However, during the ISWE process, the nonvolatile pollutants might be concentrated in residual water, and further contaminate the environment. Preparing advanced photothermal materials is in need to get comprehensive purification of various pollutants in residual water. Herein, we report a facile laser thermal method to prepare Cu2−xS/sulfur/reduced graphene oxide (Cu2−xS/S/rGO) nanocomposites for realizing all-round residual water remediation during the ISWE process. The as-prepared Cu2−xS/S/rGO nanocomposites demonstrated excellent photothermal and photocatalytic properties. Through blending with GO nanosheets having excellent adsorption capacity, the synergetic effect of photothermal, photocatalytic, and adsorption properties resulted in highly efficient purification of rhodamine B, bacterial, and heavy metal ions in residual water during the ISWE process. The experimental results also showed that, increasing solar light intensity can promote the residual water remediation, but ultrafast water evaporation under high light intensity may deteriorate the purifying effect. This report may pave a new way to prepare multifunctional materials for water remediation through the ISWE technology.

Keywords: photocatalysis, photothermal, solar water evaporation, laser thermal, anti-bacterial

References(46)

[1]

Zhang, Y. F.; Liu, H. X.; Gao, F. X.; Tan, X. L.; Cai, Y. W.; Hu, B. W.; Huang, Q. F.; Fang, M.; Wang, X. K. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem 2022, 4, 100078.

[2]

Liu, X. L.; Verma, G.; Chen, Z. S.; Hu, B. W.; Huang, Q. F.; Yang, H.; Ma, S. Q.; Wang, X. K. Metal–organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation 2022, 3, 100281.

[3]

Dao, V. D.; Vu, N. H.; Yun, S. N. Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy 2020, 68, 104324.

[4]

Wu, P.; Wu, X.; Wang, Y. D.; Xu, H. L.; Owens, G. Towards sustainable saline agriculture: Interfacial solar evaporation for simultaneous seawater desalination and saline soil remediation. Water Res. 2022, 212, 118099.

[5]

Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

[6]

Ibrahim, I.; Seo, D. H.; Park, M. J.; Angeloski, A.; McDonagh, A.; Bendavid, A.; Shon, H. K.; Tijing, L. Highly stable gold nanolayer membrane for efficient solar water evaporation under a harsh environment. Chemosphere 2022, 299, 134394.

[7]

Go, K.; Bae, K.; Choi, H.; Kim, H. Y.; Lee, K. J. Solar-to-steam generation via porous black membranes with tailored pore structures. ACS Appl. Mater. Interfaces 2019, 11, 48300–48308.

[8]

Sun, Y. R.; Yu, F.; Li, C.; Dai, X. H.; Ma, J. Nano-/micro-confined water in graphene hydrogel as superadsorbents for water purification. Nano-Micro Lett. 2020, 12, 2.

[9]

Yang, H. F.; Liu, Y. S.; Qiao, Z. Q.; Li, X. D.; Wang, Y. C.; Bao, H. B.; Yang, G. C.; Li, X. M. One-step ultrafast deflagration synthesis of N-doped WO2.9 nanorods for solar water evaporation. Appl. Surf. Sci. 2021, 555, 149697.

[10]

Wu, X.; Wu, Z. Q.; Wang, Y. D.; Gao, T.; Li, Q.; Xu, H. L. All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator. Adv. Sci. 2021, 8, 2002501.

[11]

Li, X. Q.; Min, X. Z.; Li, J. L.; Xu, N.; Zhu, P. C.; Zhu, B.; Zhu, S. N.; Zhu, J. Storage and recycling of interfacial solar steam enthalpy. Joule 2018, 2, 2477–2484.

[12]

Noureen, L.; Xie, Z. J.; Gao, Y. J.; Li, M. M.; Hussain, M.; Wang, K.; Zhang, L. B.; Zhu, J. T. Multifunctional Ag3PO4-rGO-coated textiles for clean water production by solar-driven evaporation, photocatalysis, and disinfection. ACS Appl. Mater. Interfaces 2020, 12, 6343–6350.

[13]

Djellabi, R.; Noureen, L.; Dao, V. D.; Meroni, D.; Falletta, E.; Dionysiou, D. D.; Bianchi, C. L. Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect. Chem. Eng. J. 2022, 431, 134024.

[14]

Li, H.; Li, L.; Xiong, L.; Wang, B. B.; Wang, G.; Ma, S. H.; Han, X. J. SiO2/mxene/poly (tetrafluoroethylene)-based janus membranes as solar absorbers for solar steam generation. ACS Appl. Nano Mater. 2021, 4, 14274–14284.

[15]

Dao, V. D.; Choi, H. S. Carbon-based sunlight absorbers in solar-driven steam generation devices. Glob Chall. 2018, 2, 1700094.

[16]

Xie, H.; Xu, W. H.; Du, Y.; Gong, J.; Niu, R.; Wu, T.; Qu, J. P. Cost-effective fabrication of micro-nanostructured superhydrophobic polyethylene/graphene foam with self-floating, optical trapping, acid-/alkali resistance for efficient photothermal deicing and interfacial evaporation. Small 2022, 18, 2200175.

[17]

Hu, X. Z.; Xu, W. C.; Zhou, L.; Tan, Y. L.; Wang, Y.; Zhu, S. N.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 2017, 29, 1604031.

[18]

Liu, X. H.; Cheng, H. Y.; Guo, Z. Z.; Zhan, Q.; Qian, J. W.; Wang, X. B. Bifunctional, moth-eye-like nanostructured black titania nanocomposites for solar-driven clean water generation. ACS Appl. Mater. Interfaces 2018, 10, 39661–39669.

[19]

Kim, Y. E.; Lim, J.; Lee, H.; Lee, E.; Kim, D. Y.; Jun, Y. S.; Han, J. H.; Lee, S. H. Solar-driven enhanced chemical adsorption and interfacial evaporation using porous graphene-based spherical composites. Chemosphere 2022, 291, 133013.

[20]

Vazquez-Jaime, M.; Arcibar-Orozco, J. A.; Damian-Ascencio, C. E.; Saldaña-Robles, A. L.; Martínez-Rosales, M.; Saldaña-Robles, A.; Cano-Andrade, S. Effective removal of arsenic from an aqueous solution by ferrihydrite/goethite graphene oxide composites using the modified hummers method. J. Environ. Chem. Eng. 2020, 8, 104416.

[21]

Zhang, P.; He, P.; Zhao, Y.; Yang, S.; Yu, Q.; Xie, X.; Ding, G. Oxidating fresh porous graphene networks toward ultra-large graphene oxide with electrical conductivity. Adv. Funct. Mater. 2022, 32, 2202697.

[22]

Yu, H.; He, Y.; Xiao, G. Q.; Fan, Y.; Ma, J.; Gao, Y. X.; Hou, R. T.; Chen, J. Y. Weak-reduction graphene oxide membrane for improving water purification performance. J. Mater. Sci. Technol. 2020, 39, 106–112.

[23]

Tan, D. Z.; Liu, X. F.; Qiu, J. R. Photochemical synthesis of doped graphene quantum dots and their photoluminescence in aqueous and solid states. RSC Adv. 2015, 5, 84276–84279.

[24]

Saedi, S.; Shokri, M.; Rhim, J. W. Antimicrobial activity of sulfur nanoparticles: Effect of preparation methods. Arabian J. Chem. 2020, 13, 6580–6588.

[25]
Meng, F. T.; Zhang, Y. A.; Zhang, S. F.; Ju, B. Z.; Tang, B. T. Polysulfide nanoparticles-reduced graphene oxide composite aerogel for efficient solar-driven water purification. Green Energy Environ., in press, https://doi.org/10.1016/j.gee.2021.04.004.
[26]

Chen, Y.; Su, R. D.; Wang, F. D.; Zhou, W. Z.; Gao, B. Y.; Yue, Q. Y.; Li, Q. In-situ synthesis of CuS@carbon nanocomposites and application in enhanced photo-Fenton degradation of 2,4-DCP. Chemosphere 2020, 270, 129295.

[27]

Raj, S. I.; Jaiswal, A. Nanoscale transformation in CuS Fenton-like catalyst for highly selective and enhanced dye degradation. J. Photochem. Photobiol. A: Chem. 2021, 410, 113158.

[28]

Zhang, J.; Xing, T. Y.; Zhang, M.; Zhou, Y. L. Facile preparation of Cu2−xS supernanoparticles with an unambiguous SERS enhancement mechanism. Chem. Eng. J. 2022, 434, 134457.

[29]

Huang, W.; Liu, F. P.; Huang, Y. Y.; Yang, W.; Zhong, H. F.; Peng, J. Y. Facile one-pot synthesis of hollow-structured CuS/Cu2S hybrid for enhanced electrochemical determination of glucose. Electrochemistry 2021, 89, 340–347.

[30]

Li, M.; Yang, X. J.; Ren, J. S.; Qu, K. G.; Qu, X. G. Using graphene oxide high near-infrared absorbance for photothermal treatment of alzheimer’s disease. Adv. Mater. 2012, 24, 1722–1728.

[31]

Wu, X.; Robson, M. E.; Phelps, J. L.; Tan, J. S.; Shao, B.; Owens, G.; Xu, H. L. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. Nano Energy 2019, 56, 708–715.

[32]

Li, X. D.; Liang, L.; Sun, Y. F.; Xu, J. Q.; Jiao, X. C.; Xu, X. L.; Ju, H. X.; Pan, Y.; Zhu, J. F.; Xie, Y. Ultrathin conductor enabling efficient IR light CO2 reduction. J. Am. Chem. Soc. 2019, 141, 423–430.

[33]

Yan, S. W.; Song, H. J.; Li, Y.; Yang, J.; Jia, X. H.; Wang, S. Z.; Yang, X. F. Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photocatalytic decontamination and water evaporation. Appl. Catal. B: Environ. 2022, 301, 120820.

[34]

Hou, Q.; Xue, C. R.; Li, N.; Wang, H. Q.; Chang, Q.; Liu, H. T.; Yang, J. L.; Hu, S. L. Self-assembly carbon dots for powerful solar water evaporation. Carbon 2019, 149, 556–563.

[35]

Shi, Y. Y.; Zhang, C. F.; Wang, Y. H.; Cui, Y. M.; Wang, Q. Y.; Liu, G. J.; Gao, S. M.; Yuan, Y. F. Plasmonic silver nanoparticles embedded in flexible three-dimensional carbonized melamine foam with enhanced solar-driven water evaporation. Desalination 2021, 507, 115038.

[36]

Liu, Z. X.; Zhou, Z.; Wu, N. Y.; Zhang, R. Q.; Zhu, B.; Jin, H.; Zhang, Y. M.; Zhu, M. F.; Chen, Z. G. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano 2021, 15, 13007–13018.

[37]

Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

[38]

Wang, J. T.; Hong, J. L. Effect of folding on 3D photothermal cones with efficient solar-driven water evaporation. Appl. Therm. Eng. 2020, 178, 115636.

[39]

Jiang, L. S.; Wang, K.; Wu, X. Y.; Zhang, G. K. Highly enhanced full solar spectrum-driven photocatalytic CO2 reduction performance in Cu2−xS/g-C3N4 composite: Efficient charge transfer and mechanism insight. Sol. RRL 2021, 5, 2000326.

[40]

Shen, L. H.; Wei, J. H.; Liu, Z. F.; Bai, Z. W.; Li, Y. G.; Zhang, D. D.; Zhang, C. X. Stable layered sulfur nanosheets prepared by one-step liquid-phase exfoliation of natural sublimed sulfur with bovine serum albumin for photocatalysis. Chem. Mater. 2020, 32, 10476–10481.

[41]

Hao, D. D.; Yang, Y. D.; Xu, B.; Cai, Z. S. Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation. ACS Sustainable Chem. Eng. 2018, 6, 10789–10797.

[42]

Vatandost, E.; Saraei, A. G. H.; Chekin, F.; Raeisi, S. N.; Shahidi, S. A. Antioxidant, antibacterial and anticancer performance of reduced graphene oxide prepared via green tea extract assisted biosynthesis. ChemistrySelect 2020, 5, 10401–10406.

[43]

Zhang, Z.; Sun, J. Y.; Mo, S. D.; Kim, J.; Guo, D. G.; Ju, J.; Yu, Q. L.; Liu, M. Y. Constructing a highly efficient CuS/Cu9S5 heterojunction with boosted interfacial charge transfer for near-infrared photocatalytic disinfection. Chem. Eng. J. 2022, 431, 134287.

[44]

Song, C. Q.; Li, T. C.; Guo, W.; Gao, Y.; Yang, C. Y.; Zhang, Q.; An, D.; Huang, W. C.; Yan, M.; Guo, C. S. Hydrophobic Cu12Sb4S13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity. New J. Chem. 2018, 42, 3175–3179.

[45]

Tang, Y. N.; Qin, Z.; Zhong, Y. H.; Yin, S. Y.; Liang, S.; Sun, H. Three-phase interface photocatalysis for the enhanced degradation and antibacterial property. J. Colloid Interface Sci. 2022, 612, 194–202.

[46]

Dong, C. C.; Lu, J.; Qiu, B. C.; Shen, B.; Xing, M. Y.; Zhang, J. L. Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Appl. Catal. B: Environ. 2018, 222, 146–156.

File
12274_2022_5225_MOESM1_ESM.pdf (666.5 KB)
12274_2022_5225_MOESM2_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 August 2022
Revised: 10 October 2022
Accepted: 19 October 2022
Published: 13 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgement

This work was supported by the key research and development program of Shanxi Province (International Cooperation) (No. 201903D421082), Natural Science Foundation of Shanxi Province (No. 20210302123029), the National Natural Science Foundation of China (Nos. 51602292 and 22105181), Scientific and Technological Innovation Programs of Higher Education in Shanxi (Nos. 2019L0589 and 2020L0279).

Return