Journal Home > Volume 16 , Issue 4

The synergistic interaction of different components in heteronanocrystals induces interfacial phenomena and novel functionalities. Nonetheless, effective technologies to design and fabricate heteronanocrystals with materials on demand are still missing. Rich heterostructures in a copper patina are known to form at room temperature and under atmospheric pressure. The redox process of copper tarnish inspired the discovery of a simple strategy to achieve heteronanocrystals that contained elements from group 3–11 and group 14–16. The interface redox-induced method is self-regulating at ambient conditions and applicable for metal, semiconductor, and dielectric materials. The enhanced interface bonding endows the heteronanocrystals with outstanding stability and catalytic performance, while the modular approach enables the design and fabrication of heteronanocrystals with intended materials to meet different purposes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Designable heteronanocrystals via interface redox reaction

Show Author's information Zhihua Li1( )Yang Li1,§Nannan Luo1,§Yuanyuan Qie1,§Dingyi Yang2,§Guowei Cao1Yuxiang Liu1Ying Fu1Na Li1Wen Hu2Min Zhang1Rusen Yang2( )Bo Tang1( )
College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China

§ Yang Li, Nannan Luo, Yuanyuan Qie, and Dingyi Yang contributed equally to this work.

Abstract

The synergistic interaction of different components in heteronanocrystals induces interfacial phenomena and novel functionalities. Nonetheless, effective technologies to design and fabricate heteronanocrystals with materials on demand are still missing. Rich heterostructures in a copper patina are known to form at room temperature and under atmospheric pressure. The redox process of copper tarnish inspired the discovery of a simple strategy to achieve heteronanocrystals that contained elements from group 3–11 and group 14–16. The interface redox-induced method is self-regulating at ambient conditions and applicable for metal, semiconductor, and dielectric materials. The enhanced interface bonding endows the heteronanocrystals with outstanding stability and catalytic performance, while the modular approach enables the design and fabrication of heteronanocrystals with intended materials to meet different purposes.

Keywords: heteronanocrystals, interface redox-induced synthesis, modular approach

References(85)

[1]

Chen, G. R.; Sharpe, A. L.; Gallagher, P.; Rosen, I. T.; Fox, E. J.; Jiang, L. L.; Lyu, B. S.; Li, H. Y.; Watanabe, K.; Taniguchi, T. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 2019, 572, 215–219.

[2]

Chen, Z.; Liu, Y.; Zhang, H.; Liu, Z. R.; Tian, H.; Sun, Y. Q.; Zhang, M.; Zhou, Y.; Sun, J. R.; Xie, Y. W. Electric field control of superconductivity at the LaAlO3/KTaO3 (111) interface. Science 2021, 372, 721–724.

[3]

Dobrovolskiy, O. V.; Sachser, R.; Brächer, T.; Böttcher, T.; Kruglyak, V. V.; Vovk, R. V.; Shklovskij, V. A.; Huth, M.; Hillebrands, B.; Chumak, A. V. Magnon–fluxon interaction in a ferromagnet/superconductor heterostructure. Nat. Phys. 2019, 15, 477–482.

[4]

Dang, P.; Khalsa, G.; Chang, C. S.; Katzer, D. S.; Nepal, N.; Downey, B. P.; Wheeler, V. D.; Suslov, A.; Xie, A.; Beam, E. et al. An all-epitaxial nitride heterostructure with concurrent quantum Hall effect and superconductivity. Sci. Adv. 2021, 7, eabf1388.

[5]

Oh, N. K.; Kim, C.; Lee, J.; Kown, O.; Choi, Y.; Jung, G. Y.; Lim, H. Y.; Kwak, S. K.; Kim, G.; Park, H. In-situ local phase-transitioned MoSe2 in La0.5Sr0.5CoO3−δ heterostructure and stable overall water electrolysis over 1,000 hours. Nat. Commun. 2019, 10, 1723.

[6]

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

[7]

Gao, D. F.; Zhang, Y.; Zhou, Z. W.; Cai, F.; Zhao, X. F.; Huang, W. G.; Li, Y. S.; Zhu, J. F.; Liu, P.; Yang, F. et al. Enhancing CO2 electroreduction with the metal–oxide interface. J. Am. Chem. Soc. 2017, 139, 5652–5655.

[8]

Yang, J. H.; Cooper, J. K.; Toma, F. M.; Walczak, K. A.; Favaro, M.; Beeman, J. W.; Hess, L. H.; Wang, C.; Zhu, C. H.; Gul, S. et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nat. Mater. 2017, 16, 335–341.

[9]

Bae, C.; Ho, T. A.; Kim, H.; Lee, S.; Lim, S.; Kim, M.; Yoo, H.; Montero-Moreno, J. M.; Park, J. H.; Shin, H. Bulk layered heterojunction as an efficient electrocatalyst for hydrogen evolution. Sci. Adv. 2017, 3, e1602215.

[10]

Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.

[11]

Chung, C. C.; Yeh, H.; Wu, P. H.; Lin, C. C.; Li, C. S.; Yeh, T. T.; Chou, Y.; Wei, C. Y.; Wen, C. Y.; Chou, Y. C. et al. Atomic-layer controlled interfacial band engineering at two-dimensional layered PtSe2/Si heterojunctions for efficient photoelectrochemical hydrogen production. ACS Nano 2021, 15, 4627–4635.

[12]

Wang, S. B.; Guan, B. Y.; Lou, X. W. D. Construction of ZnIn2S4–In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem. Soc. 2018, 140, 5037–5040.

[13]

Liu, G. N.; Kolodziej, C.; Jin, R.; Qi, S. P.; Lou, Y. B.; Chen, J. X.; Jiang, D. C.; Zhao, Y. X.; Burda, C. MoS2-stratified CdS-Cu2−xS core–shell nanorods for highly efficient photocatalytic hydrogen production. ACS Nano 2020, 14, 5468–5479.

[14]

Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 6673–6681.

[15]

Fang, Y.; Xue, Y.; Hui, L.; Yu, H. D.; Li, Y. L. Graphdiyne@Janus magnetite for photocatalytic nitrogen fixation. Angew. Chem., Int. Ed. 2021, 60, 3170–3174.

[16]

Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 4519–4524.

[17]

Cui, T. T.; Ma, L. N.; Wang, S. B.; Ye, C. L.; Liang, X.; Zhang, Z. D.; Meng, G.; Zheng, L. R.; Hu, H. S.; Zhang, J. W. et al. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C–C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 2021, 143, 9429–9439.

[18]

Li, W.; Liu, J.; Guo, P. F.; Li, H. Z.; Fei, B.; Guo, Y. H.; Pan, H. P.; Sun, D. L.; Fang, F.; Wu, R. B. Co/CoP heterojunction on hierarchically ordered porous carbon as a highly efficient electrocatalyst for hydrogen and oxygen evolution. Adv. Energy Mater. 2021, 11, 2102134.

[19]

Cheng, C.; He, B. W.; Fan, J. J.; Cheng, B.; Cao, S. W.; Yu, J. G. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv. Mater. 2021, 33, 2100317.

[20]

Chen, X.; Pan, W. G.; Guo, R. T.; Hu, X.; Bi, Z. X.; Wang, J. Recent progress on van der Waals heterojunctions applied in photocatalysis. J. Mater. Chem. A 2022, 10, 7604–7625.

[21]

Li, N. Y.; Chen, X. J.; Wang, J.; Liang, X. M.; Ma, L. T.; Jing, X. L.; Chen, D. L.; Li, Z. Q. ZnSe nanorods–CsSnCl3 perovskite heterojunction composite for photocatalytic CO2 reduction. ACS Nano 2022, 16, 3332–3340.

[22]

Yun, J.; Tan, J. W.; Jung, Y. K.; Yang, W.; Lee, H.; Ma, S.; Park, Y. S.; Lee, C. U.; Niu, W. Z.; Lee, J. et al. Interfacial dipole layer enables high-performance heterojunctions for photoelectrochemical water splitting. ACS Energy Lett. 2022, 7, 1392–1402.

[23]

Li, H. Y.; Gong, H. M.; Jin, Z. L. Phosphorus modified Ni-MOF-74/BiVO4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2022, 307, 121166.

[24]

Zhao, J. Z.; Ji, M. X.; Chen, H. L.; Weng, Y. X.; Zhong, J.; Li, Y. J.; Wang, S. Y.; Chen, Z. R.; Xia, J. X.; Li, H. M. Interfacial chemical bond modulated Bi19S27Br3/g-C3N4 Z-scheme heterojunction for enhanced photocatalytic CO2 conversion. Appl. Catal. B: Environ. 2022, 307, 121162.

[25]

Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline–amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

[26]

Feng, X. Z.; Zou, H. Y.; Zheng, R. J.; Wei, W. F.; Wang, R. H.; Zou, W. S.; Lim, G.; Hong, J.; Duan, L. L.; Chen, H. Bi2O3/BiO2 nanoheterojunction for highly efficient electrocatalytic CO2 reduction to formate. Nano Lett. 2022, 22, 1656–1664.

[27]

Moon, H. S.; Hsiao, K. C.; Wu, M. C.; Yun, Y. J.; Hsu, Y. J.; Yong, K. Spatial separation of cocatalysts on Z-scheme organic/inorganic heterostructure hollow spheres for enhanced photocatalytic H2 evolution and in-depth analysis of the charge-transfer mechanism. Adv. Mater. 2022, 2200172.

[28]

Kosco, J.; Gonzalez-Carrero, S.; Howells, C. T.; Fei, T.; Dong, Y. F.; Sougrat, R.; Harrison, G. T.; Firdaus, Y.; Sheelamanthula, R.; Purushothaman, B. et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat. Energy 2022, 7, 340–351.

[29]

Huang, H. W.; Verhaeghe, D.; Weng, B.; Ghosh, B.; Zhang, H. W.; Hofkens, J.; Steele, J. A.; Roeffaers, M. B. J. Metal halide perovskite based heterojunction photocatalysts. Angew. Chem., Int. Ed. 2022, 61, e202203261.

[30]

Yang, J. M.; Zhu, X. W.; Yu, Q.; He, M. Q.; Zhang, W.; Mo, Z.; Yuan, J. J.; She, Y. B.; Xu, H.; Li, H. M. Multidimensional In2O3/In2S3 heterojunction with lattice distortion for CO2 photoconversion. Chin. J. Catal. 2022, 43, 1286–1294.

[31]

Li, L. L.; Chen, X. B.; Wu, Y. E.; Wang, D. S.; Peng, Q.; Zhou, G.; Li, Y. D. Pd–Cu2O and Ag–Cu2O hybrid concave nanomaterials for an effective synergistic catalyst. Angew. Chem., Int. Ed. 2013, 52, 11049–11053.

[32]

Guo, S. Q.; Zhang, H. J.; Hu, Z. Z.; Zhen, M. M.; Yang, B.; Shen, B. X.; Dong, F. Composition-dependent micro-structure and photocatalytic performance of g-C3N4 quantum dots@SnS2 heterojunction. Nano Res. 2021, 14, 4188–4196.

[33]

Cheng, Y. Y.; Liu, Y. X.; Liu, Y. L.; Li, Y. X.; Wu, R. Q.; Du, Y. C.; Askari, N.; Liu, N. Y.; Qiao, F.; Sun, C. H. et al. A core-satellite structured type II heterojunction photocatalyst with enhanced CO2 reduction under visible light. Nano Res. 2022, 15, 8880–8889.

[34]

Mao, Y. S.; Wang, P. F.; Zhan, S. H. Shedding light on the role of interfacial chemical bond in heterojunction photocatalysis. Nano Res. 2022, 12, 10158–10170.

[35]

Liu, L. F.; Zhang, J. L.; Tan, X. N.; Zhang, B. X.; Shi, J. B.; Cheng, X. Y.; Tan, D. X.; Han, B. X.; Zheng, L. R.; Zhang, F. Y. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron–hole separation for high-performance hydrogen evolution. Nano Res. 2020, 13, 983–988.

[36]

Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3−xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334.

[37]

Li, Z. X.; Xu, Q. L.; Gou, F. L.; He, B.; Chen, W.; Zheng, W. W.; Jiang, X.; Chen, K.; Qi, C. Z.; Ma, D. K. Gd-doped CuBi2O4/CuO heterojunction film photocathodes for photoelectrochemical H2O2 production through oxygen reduction. Nano Res. 2021, 14, 3439–3445.

[38]

Behura, S. K.; Wang, C.; Wen, Y.; Berry, V. Graphene–semiconductor heterojunction sheds light on emerging photovoltaics. Nat. Photonics 2019, 13, 312–318.

[39]

Dinh, T.; Nguyen, T.; Foisal, A. R. M.; Phan, H. P.; Nguyen, T. K.; Nguyen, N. T.; Dao, D. V. Optothermotronic effect as an ultrasensitive thermal sensing technology for solid-state electronics. Sci. Adv. 2020, 6, eaay2671.

[40]

Zhao, S. Q.; Wu, Q. Q.; Pi, J. C.; Liu, J. Y.; Zheng, J. T.; Hou, S. J.; Wei, J. Y.; Li, R. H.; Sadeghi, H.; Yang, Y. et al. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv. 2020, 6, eaba6714.

[41]

Zhang, X.; Grajal, J.; Vazquez-Roy, J. L.; Radhakrishna, U.; Wang, X. X.; Chern, W.; Zhou, L.; Lin, Y. X.; Shen, P. C.; Ji, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 2019, 566, 368–372.

[42]

Zhang, C. D.; Li, M. Y.; Tersoff, J.; Han, Y. M.; Su, Y. S.; Li, L. J.; Muller, D. A.; Shih, C. K. Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152–158.

[43]

Miranti, R.; Shin, D.; Septianto, R. D.; Ibáñez, M.; Kovalenko, M. V.; Matsushita, N.; Iwasa, Y.; Bisri, S. Z. Exclusive electron transport in core@shell PbTe@PbS colloidal semiconductor nanocrystal assemblies. ACS Nano 2020, 14, 3242–3250.

[44]

Liu, H. W.; Zhu, X. L.; Sun, X. X.; Zhu, C. G.; Huang, W.; Zhang, X. H.; Zheng, B. Y.; Zou, Z. X.; Luo, Z. Y.; Wang, X. et al. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3 p–n heterojunctions. ACS Nano 2019, 13, 13573–13580.

[45]

Ma, X. J.; Zhang, Z.; Zhang, C.; Ruan, X. H.; Meng, Q. H.; Feng, J. H.; Cai, F. L.; Yang, Y. J.; Bu, N. S.; Zhou, S. Y. et al. Constructing a conjugated bridge for efficient electron transport at the interface of an inorganic–organic hetero-junction. J. Mater. Chem. A 2022, 10, 19750–19756.

[46]

Kim, Y.; Kim, T.; Kim, E. K. High-performance MoS2/p+-Si heterojunction field-effect transistors by interface modulation. Nano Res. 2022, 15, 6500–6506.

[47]

Hao, J.; Kim, Y. H.; Habisreutinger, S. N.; Harvey, S. P.; Miller, E. M.; Foradori, S. M.; Arnold, M. S.; Song, Z. N.; Yan, Y. F.; Luther, J. M. et al. Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Sci. Adv. 2021, 7, eabf1959.

[48]

Ding, K.; Wang, J. J.; Zhou, Y. X.; Tian, H.; Lu, L.; Mazzarello, R.; Jia, C. L.; Zhang, W.; Rao, F.; Ma, E. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science 2019, 366, 210–215.

[49]

Shan, H.; Qin, J.; Ding, Y. C.; Sari, H. M. K.; Song, X. X.; Liu, W.; Hao, Y. C.; Wang, J. J.; Xie, C.; Zhang, J. J. et al. Controllable heterojunctions with a semicoherent phase boundary boosting the potassium storage of CoSe2/FeSe2. Adv. Mater. 2021, 33, 2102471.

[50]

Zhu, S.; Wang, C. D.; Shou, H. W.; Zhang, P. J.; Wan, P.; Guo, X.; Yu, Z.; Wang, W. J.; Chen, S. M.; Chu, W. S. et al. In situ architecting endogenous heterojunction of MoS2 coupling with Mo2CTx MXenes for optimized Li+ storage. Adv. Mater. 2022, 34, 2108809.

[51]

Jeong, Y.; Lee, H. J.; Park, J.; Lee, S.; Jin, H. J.; Park, S.; Cho, H.; Hong, S.; Kim, T.; Kim, K. et al. Engineering MoSe2/MoS2 heterojunction traps in 2D transistors for multilevel memory, multiscale display, and synaptic functions. npj 2D Mater. Appl. 2022, 6, 23.

[52]

Kong, Z.; Wang, L.; Iqbal, S.; Zhang, B.; Wang, B.; Dou, J. M.; Wang, F. B.; Qian, Y. T.; Zhang, M.; Xu, L. Q. Iron selenide-based heterojunction construction and defect engineering for fast potassium/sodium-ion storage. Small 2022, 18, 2107252.

[53]

Haghighat-Shishavan, S.; Nazarian-Samani, M.; Nazarian-Samani, M.; Hosseini-Shokouh, S. H.; Maschmeyer, T.; Kim, K. B. Realization of Sn2P2S6-carbon nanotube anode with high K+/Na+ storage performance via rational interface manipulation-induced shuttle-effect inhibition and self-healing. Chem. Eng. J. 2022, 435, 134965.

[54]

Wan, S. Y.; Peng, Q.; Wu, Z. Y.; Zhou, Y. B. Nonvolatile ferroelectric memory with lateral β/α/β In2Se3 heterojunctions. ACS Appl. Mater. Interfaces 2022, 14, 25693–25700.

[55]

Yao, W. Q.; Zheng, W. Z.; Xu, J.; Tian, C. X.; Han, K.; Sun, W. Z.; Xiao, S. X. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano 2021, 15, 7114–7130.

[56]

Hu, C.; Chen, L.; Hu, Y. J.; Chen, A. P.; Chen, L.; Jiang, H.; Li, C. Z. Light-motivated SnO2/TiO2 heterojunctions enabling the breakthrough in energy density for lithium-ion batteries. Adv. Mater. 2021, 33, 2103558.

[57]

Chen, S. Y.; Xing, C. Y.; Huang, D. Z.; Zhou, C. H.; Ding, B.; Guo, Z. H.; Peng, Z. C.; Wang, D.; Zhu, X.; Liu, S. Z. et al. Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. Sci. Adv. 2020, 6, eaay6825.

[58]

Song, P.; Shen, J. W.; Ye, D. K.; Dong, B. J.; Wang, F.; Pei, H.; Wang, J. B.; Shi, J. Y.; Wang, L. H.; Xue, W. et al. Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework. Nat. Commun. 2020, 11, 838.

[59]

Dong, X. H.; Cheng, R.; Zhu, S.; Liu, H. M.; Zhou, R. Y.; Zhang, C. Y.; Chen, K.; Mei, L. Q.; Wang, C. Y.; Su, C. J. et al. A heterojunction structured WO2.9–WSe2 nanoradiosensitizer increases local tumor ablation and checkpoint blockade immunotherapy upon low radiation dose. ACS Nano 2020, 14, 5400–5416.

[60]

Huang, X.; Xing, J.; Wang, Z. G.; Han, J.; Wang, R. X.; Li, C. H.; Xiao, C. R.; Lu, F.; Zhai, J. X.; Zhou, Z. N. et al. 0D/1D heterojunction implant with electro-mechanobiological coupling cues promotes osteogenesis. Adv. Funct. Mater. 2021, 31, 2106249.

[61]

Pan, C.; Mao, Z.; Yuan, X.; Zhang, H. J.; Mei, L.; Ji, X. Y. Heterojunction nanomedicine. Adv. Sci. 2022, 9, 2105747.

[62]

Geng, B. J.; Zhang, S. R.; Yang, X.; Shi, W. Y.; Li, P.; Pan, D. Y.; Shen, L. X. Cu2−xO@TiO2−y Z-scheme heterojunctions for sonodynamic-chemodynamic combined tumor eradication. Chem. Eng. J. 2022, 435, 134777.

[63]

Kang, Y.; Mao, Z.; Wang, Y.; Pan, C.; Ou, M. T.; Zhang, H. J.; Zeng, W. W.; Ji, X. Y. Design of a two-dimensional interplanar heterojunction for catalytic cancer therapy. Nat. Commun. 2022, 13, 2425.

[64]

Zhang, Y.; Lv, Q. Y.; Chi, K.; Li, Q. L.; Fan, H. L.; Cai, B.; Xiao, F.; Wang, S.; Wang, Z.; Wang, L. Hierarchical porous carbon heterojunction flake arrays derived from metal organic frameworks and ionic liquid for H2O2 electrochemical detection in cancer tissue. Nano Res. 2021, 14, 1335–1343.

[65]

Li, X. F.; Lin, M. W.; Lin, J. B.; Huang, B.; Puretzky, A. A.; Ma, C.; Wang, K.; Zhou, W.; Pantelides, S. T.; Chi, M. F. et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv. 2016, 2, e1501882.

[66]

Zhang, J. Q.; Li, Y. G.; Zhao, X. L.; Zhang, H. Y.; Wang, L.; Chen, H. J.; Wang, S. J.; Xu, X. Y.; Shi, L.; Zhang, L. C. et al. A hydrogen-initiated chemical epitaxial growth strategy for in-plane heterostructured photocatalyst. ACS Nano 2020, 14, 17505–17514.

[67]

Fenton, J. L.; Steimle, B. C.; Schaak, R. E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science 2018, 360, 513–517.

[68]

More, P. M.; Nguyen, D. L.; Dongare, M. K.; Umbarkar, S. B.; Nuns, N.; Girardon, J. S.; Dujardin, C.; Lancelot, C.; Mamede, A. S.; Granger, P. Rational preparation of Ag and Au bimetallic catalysts for the hydrocarbon-SCR of NOx: Sequential deposition vs. coprecipitation method. Appl. Catal. B: Environ. 2015, 162, 11–20.

[69]

Yao, D. D.; Yang, H. P.; Chen, H. P.; Williams, P. T. Co-precipitation, impregnation and so-gel preparation of Ni catalysts for pyrolysis-catalytic steam reforming of waste plastics. Appl. Catal. B: Environ. 2018, 239, 565–577.

[70]

Misra, S.; Li, L. G.; Zhang, D.; Jian, J.; Qi, Z. M.; Fan, M.; Chen, H. T.; Zhang, X. H.; Wang, H. Y. Self-assembled ordered three-phase Au–BaTiO3–ZnO vertically aligned nanocomposites achieved by a templating method. Adv. Mater. 2019, 31, 1806529.

[71]

Du, G. F.; Pei, J.; Jiang, Z. Y.; Chen, Q. L.; Cao, Z. M.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Origin of symmetry breaking in the seed-mediated growth of bi-metal nano-heterostructures. Sci. Bull. 2018, 63, 892–899.

[72]

Faber, H.; Das, S.; Lin, Y. H.; Pliatsikas, N.; Zhao, K.; Kehagias, T.; Dimitrakopulos, G.; Amassian, A.; Patsalas, P. A.; Anthopoulos, T. D. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution. Sci. Adv. 2017, 3, e1602640.

[73]

Ma, D.; Hu, B.; Wu, W. D.; Liu, X.; Zai, J. T.; Shu, C.; Tsega, T. T.; Chen, L. W.; Qian, X. F.; Liu, T. L. Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries. Nat. Commun. 2019, 10, 3367.

[74]

Shaikh, H.; Jin, X. H.; Harniman, R. L.; Richardson, R. M.; Whittell, G. R.; Manners, I. Solid-state donor–acceptor coaxial heterojunction nanowires via living crystallization-driven self-assembly. J. Am. Chem. Soc. 2020, 142, 13469–13480.

[75]

Xing, Z.; Hu, J.; Ma, M.; Lin, H.; An, Y. M.; Liu, Z. H.; Zhang, Y.; Li, J. Y.; Yang, S. H. From one to two: In situ construction of an ultrathin 2D–2D closely bonded heterojunction from a single-phase monolayer nanosheet. J. Am. Chem. Soc. 2019, 141, 19715–19727.

[76]

Tezcan, F.; Ahmad, A.; Yerlikaya, G.; Zia-ur-Rehman; Paksoy, H.; Kardas, G. Criss-crossed α-Fe2O3 nanorods/Bi2S3 heterojunction for enhanced photoelectrochemical water splitting. Fuel 2022, 324, 124477.

[77]

Nguyen, T. N. N.; Chang, K. S. Piezoelectricity-enhanced multifunctional applications of hydrothermally-grown p-BiFeO3–n-ZnO heterojunction films. Renew. Energy 2022, 197, 89–100.

[78]

Wang, Q. X.; Yu, Z. X.; Chen, Q. M.; Shan, M. Y.; Xiang, Q. C.; Tan, Q. Y.; He, N. D.; Liu, Y. C. MOF-templated core–shell CoSx@BiOBr Z-type heterojunction degradation of multiple antibiotics. Sep. Purif. Technol. 2022, 300, 121781.

[79]

Li, J. M.; Wu, C. C.; Li, J.; Dong, B. H.; Zhao, L.; Wang, S. M. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution. Chin. J. Catal. 2022, 43, 339–349.

[80]

Chen, H. Y.; Wang, L. Y.; Shen, C.; Zhang, J. H.; Guo, W. L. Strong electron-ion coupling in gradient halide perovskite heterojunction. Nano Res. 2021, 14, 1012–1017.

[81]

Zhong, J. H.; Wu, B.; Madoune, Y.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Nano Res. 2022, 15, 2489–2496.

[82]

Li, X. Y.; Ji, M. W.; Li, H. B.; Wang, H. Z.; Xu, M.; Rong, H. P.; Wei, J.; Liu, J.; Liu, J. J.; Chen, W. X. et al. Cation/anion exchange reactions toward the syntheses of upgraded nanostructures: Principles and applications. Matter 2020, 2, 554–586.

[83]

Li, X. Y.; Su, M. Y.; Wang, Y. C.; Xu, M.; Tong, M. M.; Haigh, S. J.; Zhang, J. T. Telluride nanocrystals with adjustable amorphous shell thickness and core–shell structure modulation by aqueous cation exchange. Inorg. Chem. 2022, 61, 3989–3996.

[84]

Chang, Y.; Xu, M.; Huang, L.; Pan, R. R.; Liu, J. J.; Liu, J.; Rong, H. P.; Chen, W. X.; Zhang, J. T. Micro-scale 2D quasi-nanosheets formed by 0D nanocrystals: From single to multicomponent building blocks. Sci. China Mater. 2020, 63, 1265–1271.

[85]

Kapoor, S.; Barnabas, F. A.; Sauer, Jr. M. C.; Meisel, D.; Jonah, C. D. Kinetics of hydrogen formation from formaldehyde in basic aqueous solutions. J. Phys. Chem. 1995, 99, 6857–6863.

Video
12274_2022_5222_MOESM1_ESM.mp4
File
12274_2022_5222_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 September 2022
Revised: 18 October 2022
Accepted: 19 October 2022
Published: 12 January 2023
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors express their thanks to the support from the following: the National Natural Science Foundation of China (Nos. 21541014, 21927811, 52192610, and 51973170), National Natural Science Foundation of Shandong Province (No. ZR2018MB006), National Natural Science Foundation of Shaanxi Province (Nos. 2019JCW-17 and 2020JCW-15), and Development and Planning Guide Foundation of Xidian University (No. 21103200005).

Return