Journal Home > Volume 16 , Issue 4

P2-type layered metal oxides have been considered as one of the promising cathode candidates for high-performance Na-ion batteries (SIBs). However, it is still challenging to balance the contradiction of high energy density and long cycle life due to the structural degradation and sluggish ion diffusion dynamics. Here, the hierarchical P2-Na2/3Ni1/3Mn2/3O2 hollow microspheres assembled by nanosheets are constructed via a self-template approach. The obtained nanosheets with more exposed electrochemical active planes serving as desodiation/sodiation reactors can provide substantial Na+ channels, shorten the diffusion pathways, and accommodate the volume changes during charge/discharge process. Benefiting from the facile Na+ diffusion paths and optimal architecture modulation, the cathode delivers a high initial Coulombic efficiency of 96.0% with a high energy density of 299.7 Wh·kg−1. The highly reversible structural evolutions processes are verified by galvanostatic intermittent titration technique (GITT) and operando electrochemical impedance spectroscopy (EIS) measurement, which would significantly improve the cycle stability (83.3% capacity retention at 1.0 C over 500 loops). Furthermore, the full cell assembled by hard carbon presents a high reversible capacity of 71 mAh·g−1 at 0.2 C and promising capacity retention (91.5% after 50 cycles). The designing concept of morphological configuration in this work paves an accessible route for building high-performance electrode materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-templating construction of hollow microspheres assembled by nanosheets with exposed active planes for sodium ion storage

Show Author's information Jianing Liang§Zhizhan Li§Jinguo ChengJinlei QinHongfang LiuDeli Wang( )
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

§ Jianing Liang and Zhizhan Li contributed equally to this work.

Abstract

P2-type layered metal oxides have been considered as one of the promising cathode candidates for high-performance Na-ion batteries (SIBs). However, it is still challenging to balance the contradiction of high energy density and long cycle life due to the structural degradation and sluggish ion diffusion dynamics. Here, the hierarchical P2-Na2/3Ni1/3Mn2/3O2 hollow microspheres assembled by nanosheets are constructed via a self-template approach. The obtained nanosheets with more exposed electrochemical active planes serving as desodiation/sodiation reactors can provide substantial Na+ channels, shorten the diffusion pathways, and accommodate the volume changes during charge/discharge process. Benefiting from the facile Na+ diffusion paths and optimal architecture modulation, the cathode delivers a high initial Coulombic efficiency of 96.0% with a high energy density of 299.7 Wh·kg−1. The highly reversible structural evolutions processes are verified by galvanostatic intermittent titration technique (GITT) and operando electrochemical impedance spectroscopy (EIS) measurement, which would significantly improve the cycle stability (83.3% capacity retention at 1.0 C over 500 loops). Furthermore, the full cell assembled by hard carbon presents a high reversible capacity of 71 mAh·g−1 at 0.2 C and promising capacity retention (91.5% after 50 cycles). The designing concept of morphological configuration in this work paves an accessible route for building high-performance electrode materials.

Keywords: sodium-ion batteries, hollow microspheres, P2-type cathode, self-template, nanosheets structure

References(50)

[1]

Tarascon, J. M. Na-ion versus Li-ion batteries: Complementarity rather than competitiveness. Joule 2020, 4, 1616–1620.

[2]

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

[3]

Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. Sodium-ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 2018, 8, 1800079.

[4]

Yang, C.; Xin, S.; Mai, L. Q.; You, Y. Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 2021, 11, 2000974.

[5]

Zhao, C. L.; Wang, Q. D.; Yao, Z. P.; Wang, J. L.; Sánchez-Lengeling, B.; Ding, F. X.; Qi, X. G.; Lu, Y. X.; Bai, X. D.; Li, B. H. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020, 370, 708–711.

[6]

Gao, Y.; Zhang, H.; Liu, X. H.; Yang, Z.; He, X. X.; Li, L.; Qiao, Y.; Chou, S. L. Low-cost polyanion-type sulfate cathode for sodium-ion battery. Adv. Energy Mater. 2021, 11, 2101751.

[7]

Peng, J.; Zhang, W.; Hu, Z.; Zhao, L. F.; Wu, C.; Peleckis, G.; Gu, Q. F.; Wang, J. Z.; Liu, H. K.; Dou, S. X. et al. Ice-assisted synthesis of highly crystallized prussian blue analogues for all-climate and long-calendar-life sodium ion batteries. Nano Lett. 2022, 22, 1302–1310.

[8]

Tang, X.; Liu, H.; Su, D. W.; Notten, P. H. L.; Wang, G. X. Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Res. 2018, 11, 3979–3990.

[9]

Gao, H. C.; Seymour, I. D.; Xin, S.; Xue, L. G.; Henkelman, G.; Goodenough, J. B. Na3MnZr(PO4)3: A high-voltage cathode for sodium batteries. J. Am. Chem. Soc. 2018, 140, 18192–18199.

[10]

Kim, H.; Lim, H.; Kim, H. S.; Kim, K. J.; Byun, D.; Choi, W. Polydopamine-derived N-doped carbon-wrapped Na3V2(PO4)3 cathode with superior rate capability and cycling stability for sodium-ion batteries. Nano Res. 2019, 12, 397–404.

[11]

Xu, Y.; Zhou, M.; Lei, Y. Organic materials for rechargeable sodium-ion batteries. Mater. Today 2018, 21, 60–78.

[12]

van der Jagt, R.; Vasileiadis, A.; Veldhuizen, H.; Shao, P. P.; Feng, X.; Ganapathy, S.; Habisreutinger, N. C.; van der Veen, M. A.; Wang, C.; Wagemaker, M. et al. Synthesis and structure−property relationships of polyimide covalent organic frameworks for carbon dioxide capture and (aqueous) sodium-ion batteries. Chem. Mater. 2021, 33, 818–833.

[13]

Somerville, J. W.; Sobkowiak, A.; Tapia-Ruiz, N.; Billaud, J.; Lozano, J. G.; House, R. A.; Gallington, L. C.; Ericsson, T.; Häggström, L.; Roberts, M. R. et al. Nature of the “Z”-phase in layered Na-ion battery cathodes. Energy Environ. Sci. 2019, 12, 2223–2232.

[14]

Li, J. K.; Wang, J.; He, X.; Zhang, L.; Senyshyn, A.; Yan, B.; Muehlbauer, M.; Cao, X.; Vortmann-Westhoven, B.; Kraft, V. et al. P2-type Na0.67Mn0.8Cu0.1Mg0.1O2 as a new cathode material for sodium-ion batteries: Insights of the synergetic effects of multi-metal substitution and electrolyte optimization. J. Power Sources 2019, 416, 184–192.

[15]

Liu, Q. N.; Hu, Z.; Li, W. J.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L.; Dou, S. X. Sodium transition metal oxides: The preferred cathode choice for future sodium-ion batteries? Energy Environ. Sci. 2021, 14, 158–179.

[16]

Zhong, X. B.; He, C.; Gao, F.; Tian, Z. Q.; Li, J. F. In situ Raman spectroscopy reveals the mechanism of titanium substitution in P2-Na2/3Ni1/3Mn2/3O2: Cathode materials for sodium batteries. J. Energy Chem. 2021, 53, 323–328.

[17]

Wang, C. C.; Liu, L. J.; Zhao, S.; Liu, Y. C.; Yang, Y. B.; Yu, H. J.; Lee, S.; Lee, G. H.; Kang, Y. M.; Liu, R. et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat. Commun. 2021, 12, 2256.

[18]

Wang, Q. C.; Meng, J. K.; Yue, X. Y.; Qiu, Q. Q.; Song, Y.; Wu, X. J.; Fu, Z. W.; Xia, Y. Y.; Shadike, Z.; Wu, J. P. et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. J. Am. Chem. Soc. 2019, 141, 840–848.

[19]

Zhao, Q. Q.; Butt, F. K.; Yang, M.; Guo, Z. F.; Yao, X. Y.; Zapata, M. J. M.; Zhu, Y. Q.; Ma, X. L.; Cao, C. B. Tuning oxygen redox chemistry of P2-type manganese-based oxide cathode via dual Cu and Co substitution for sodium-ion batteries. Energy Storage Mater. 2021, 41, 581–587.

[20]

Peng, B.; Sun, Z. H.; Zhao, L. P.; Li, J.; Zhang, G. Q. Dual-manipulation on P2-Na0.67Ni0. 33Mn0. 67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 3.5 V. Energy Storage Mater. 2021, 35, 620–629.

[21]

Xiao, J.; Gao, H.; Tang, K. K.; Long, M. Q.; Chen, J.; Liu, H.; Wang, G. X. Manipulating stable layered P2-type cathode via a Co-substitution strategy for high performance sodium ion batteries. Small Methods 2022, 6, 2101292.

[22]

Jung, Y. H.; Christiansen, A. S.; Johnsen, R. E.; Norby, P.; Kim, D. K. In situ X-ray diffraction studies on structural changes of a P2 layered material during electrochemical desodiation/sodiation. Adv. Funct. Mater. 2015, 25, 3227–3237.

[23]

Xie, Y. Y.; Gabriel, E.; Fan, L. L.; Hwang, I.; Li, X.; Zhu, H. Y.; Ren, Y.; Sun, C. J.; Pipkin, J.; Dustin, M. et al. Role of lithium doping in P2-Na0.67Ni0.33Mn0.67O2 for sodium-ion batteries. Chem. Mater. 2021, 33, 4445–4455.

[24]

Wang, Y. S.; Feng, Z. M.; Cui, P. X.; Zhu, W.; Gong, Y.; Girard, M. A.; Lajoie, G.; Trottier, J.; Zhang, Q. H.; Gu, L. et al. Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nat. Commun. 2021, 12, 13.

[25]

Mao, J.; Liu, X.; Liu, J. W.; Jiang, H. Y.; Zhang, T.; Shao, G. S.; Ai, G.; Mao, W. F.; Feng, Y.; Yang, W. L. et al. P2-type Na2/3Ni1/3Mn2/3O2 cathode material with excellent rate and cycling performance for sodium-ion batteries. J. Electrochem. Soc. 2019, 166, A3980–A3986.

[26]

Huang, X. Q.; Li, D. L.; Huang, H. J.; Jiang, X.; Yang, Z. H.; Zhang, W. X. Fast and highly reversible Na+ intercalation/extraction in Zn/Mg dual-doped P2-Na0.67MnO2 cathode material for high-performance Na-ion batteries. Nano Res. 2021, 14, 3531–3537.

[27]

Su, D. W.; Zhang, J. Q.; Doub, S. X.; Wang, G. X. Polypyrrole hollow nanospheres: Stable cathode materials for sodium-ion batterie. Chem. Commun. 2015, 51, 16092–16095.

[28]

Peng, B.; Sun, Z. H.; Zhao, L. P.; Zeng, S. Y.; Zhang, G. Q. Shape-induced kinetics enhancement in layered P2-Na0.67Ni0.33Mn0.67O2 porous microcuboids enables high energy/power sodium-ion full battery. Batter. Supercaps 2021, 4, 456–463.

[29]

Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550.

[30]

Zhang, Z. B.; Wang, R. Z.; Zeng, J. Q.; Shi, K. Y.; Zhu, C. B.; Yan, X. B. Size effects in sodium ion batteries. Adv. Funct. Mater. 2021, 31, 2106047.

[31]

Li, W.; Yao, Z. J.; Zhang, S. Z.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. Building superior layered oxide cathode via rational surface engineering for both liquid & solid-state sodium ion batteries. Chem. Eng. J. 2021, 421, 127788.

[32]

Liu, Y. C.; Shen, Q. Y.; Zhao, X. D.; Zhang, J.; Liu, X. B.; Wang, T. S.; Zhang, N.; Jiao, L. F.; Chen, J.; Fan, L. Z. Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes. Adv. Funct. Mater. 2020, 30, 1907837.

[33]

Tu, K. N.; Gösele, U. Hollow nanostructures based on the Kirkendall effect: Design and stability considerations. Appl. Phys. Lett. 2005, 86, 093111.

[34]

Wang, D. L.; He, H.; Han, L. L.; Lin, R. Q.; Wang, J.; Wu, Z. X.; Liu, H. F.; Xin, H. L. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries. Nano Energy 2016, 20, 212–220.

[35]

Wei, G. Z.; Lu, X.; Ke, F. S.; Huang, L.; Li, J. T.; Wang, Z. X.; Zhou, Z. Y.; Sun, S. G. Crystal habit-tuned nanoplate material of Li[Li1/3−2x/3NixMn2/3−x/3]O2 for high-rate performance lithium-ion batteries. Adv. Mater. 2010, 22, 4364–4367.

[36]

Zhou, Z. W.; Li, J. Y.; Luo, Z. Y.; He, Z. J.; Zheng, J. C.; Li, Y. J.; Mao, J.; Dai, K. H.; Yan, C.; Sun, Z. M. Na2/3MnO2 nanoplates with exposed active planes as superior electrochemical performance sodium-ion batteries. Ionics 2021, 27, 5187–5196.

[37]

Li, J. L.; Yao, R. M.; Cao, C. B. LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 5075–5082.

[38]

Shen, Q. Y.; Zhao, X. D.; Liu, Y. C.; Li, Y. P.; Zhang, J.; Zhang, N.; Yang, C. H.; Chen, J. Dual-strategy of cation-doping and nanoengineering enables fast and stable sodium-ion storage in a novel Fe/Mn-based layered oxide cathode. Adv. Sci. 2020, 7, 2002199.

[39]

Zhou, Y. N.; Wang, P. F.; Niu, Y. B.; Li, Q. H.; Yu, X. Q.; Yin, Y. X.; Xu, S. L.; Guo, Y. G. A P2/P3 composite layered cathode for high-performance Na-ion full batteries. Nano Energy 2019, 55, 143–150.

[40]

Yuan, T. C.; Wang, Y. X.; Zhang, J. X.; Pu, X. J.; Ai, X. P.; Chen, Z. X.; Yang, H. X.; Cao, Y. L. 3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy 2019, 56, 160–168.

[41]

Lu, Y.; Liang, J. N.; Hu, Y. Z.; Liu, Y.; Chen, K.; Deng, S. F.; Wang, D. L. Accurate control multiple active sites of carbonaceous anode for high performance sodium storage: Insights into capacitive contribution mechanism. Adv. Energy Mater. 2020, 10, 1903312.

[42]

Xiao, Y.; Zhu, Y. F.; Yao, H. R.; Wang, P. F.; Zhang, X. D.; Li, H. L.; Yang, X. A.; Gu, L.; Li, Y. C.; Wang, T. et al. A stable layered oxide cathode material for high-performance sodium-ion battery. Adv. Energy Mater. 2019, 9, 1803978.

[43]

Liang, J. N.; Lu, Y.; Wang, J.; Liu, X. P.; Chen, K.; Ji, W. H.; Zhu, Y.; Wang, D. L. Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage. J. Energy Chem. 2020, 47, 188–195.

[44]

Wan, T. H.; Saccoccio, M.; Chen, C.; Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRTtools. Electrochim. Acta 2015, 184, 483–499.

[45]

Wang, J.; Huang, Q. A.; Li, W. H.; Wang, J.; Zhuang, Q. C.; Zhang, J. J. Fundamentals of distribution of relaxation times for electrochemical impedance spectroscopy. J. Electrochem. 2020, 26, 607–627.

[46]

Wang, D. W.; Li, F.; Fang, H. T.; Liu, M.; Lu, G. Q.; Cheng, H. M. Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport. J. Phys. Chem. B 2006, 110, 8570–8575.

[47]

Yuan, D. S.; Zeng, J. H.; Kristian, N.; Wang, Y.; Wang, X. Bi2O3 deposited on highly ordered mesoporous carbon for supercapacitors. Electrochem. Commun. 2009, 11, 313–317.

[48]

Sun, Y.; Guo, S. H.; Zhou, H. S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci. 2019, 12, 825–840.

[49]

Boyd, S.; Ganeshan, K.; Tsai, W. Y.; Wu, T.; Saeed, S.; Jiang, D. E.; Balke, N.; van Duin, A. C. T.; Augustyn, V. Effects of interlayer confinement and hydration on capacitive charge storage in birnessite. Nat. Mater. 2021, 20, 1689–1694.

[50]

Ge, P.; Hou, H. S.; Li, S. J.; Yang, L.; Ji, X. B. Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage. Adv. Funct. Mater. 2018, 28, 1801765.

File
12274_2022_5221_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 August 2022
Revised: 17 October 2022
Accepted: 17 October 2022
Published: 31 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 91963109), and the Fundamental Research Funds for the Central Universities (No. 2172019kfyRCPY100). The authors thank the Analytical and Testing Center of Huazhong University of Science and Technology for allowing use its facilities.

Return