Journal Home > Volume 16 , Issue 4

Lithium-sulfur (Li-S) batteries with the merits of high theoretical capacity and high energy density have gained significant attention as the next-generation energy storage devices. Unfortunately, the main pressing issues of sluggish reaction kinetics and severe shuttling of polysulfides hampered their practical application. To overcome these obstacles, various strategies adopting high-efficient electrocatalysts have been explored to enable the rapid polysulfide conversions and thereby suppressing the polysulfide shuttling. This review first summarizes the recent progress on electrocatalysts involved in hosts, interlayers, and protective layers. Then, these electrocatalysts in Li-S batteries are analyzed by listing representative works, from the viewpoints of design concepts, engineering strategies, working principles, and electrochemical performance. Finally, the remaining issues/challenges and future perspectives facing electrocatalysts are given and discussed. This review may provide new guidance for the future construction of electrocatalysts and their further utilizations in high-performance Li-S batteries.


menu
Abstract
Full text
Outline
About this article

Electrocatalysts in lithium-sulfur batteries

Show Author's information Shanying Wang1,§Ziwei Wang1,§Fangzheng Chen1Bo Peng1Jie Xu1Junzhe Li1Yaohui Lv1Qi Kang2( )Ailin Xia1( )Lianbo Ma1,3( )
Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials & Low-Carbon New Materials Research Center & School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Hong Kong, China

§ Shanying Wang and Ziwei Wang contributed equally to this work.

Abstract

Lithium-sulfur (Li-S) batteries with the merits of high theoretical capacity and high energy density have gained significant attention as the next-generation energy storage devices. Unfortunately, the main pressing issues of sluggish reaction kinetics and severe shuttling of polysulfides hampered their practical application. To overcome these obstacles, various strategies adopting high-efficient electrocatalysts have been explored to enable the rapid polysulfide conversions and thereby suppressing the polysulfide shuttling. This review first summarizes the recent progress on electrocatalysts involved in hosts, interlayers, and protective layers. Then, these electrocatalysts in Li-S batteries are analyzed by listing representative works, from the viewpoints of design concepts, engineering strategies, working principles, and electrochemical performance. Finally, the remaining issues/challenges and future perspectives facing electrocatalysts are given and discussed. This review may provide new guidance for the future construction of electrocatalysts and their further utilizations in high-performance Li-S batteries.

Keywords: lithium-sulfur batteries, electrocatalysts, electrochemical energy storage, slow reaction kinetics, polysulfide shuttling

References(433)

[1]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[2]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[3]

Liu, J.; Zhang, J. G.; Yang, Z. G.; Lemmon, J. P.; Imhoff, C.; Graff, G. L.; Li, L. Y.; Hu, J. Z.; Wang, C. M.; Xiao, J. et al. Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid. Adv. Funct. Mater. 2013, 23, 929–946.

[4]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[5]

Koohi-Fayegh, S.; Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047.

[6]

Zhang, X. X.; Li, L.; Fan, E. S.; Xue, Q.; Bian, Y. F.; Wu, F.; Chen, R. J. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem. Soc. Rev. 2018, 47, 7239–7302.

[7]

Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764.

[8]

Ma, L. B.; Lv, Y. H.; Wu, J. X.; Xia, C.; Kang, Q.; Zhang, Y. Z.; Liang, H. F.; Jin, Z. Recent advances in anode materials for potassium-ion batteries: A review. Nano Res. 2021, 14, 4442–4470.

[9]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[10]

Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

[11]
Wu, F. C.; Li, Q. Q.; Jin, G. F.; Luo, Y. H.; Du, X. H.; Li, J. D.; Zhang, Z. S. An orderly arranged dual-role MIL-53(Al) nanorods array rooted on carbon nanotube film for long-life and stable lithium-sulfur batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-4933-y.
[12]

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

[13]

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

[14]

Kang, W. M.; Deng, N. P.; Ju, J. G.; Li, Q. X.; Wu, D. Y.; Ma, X. M.; Li, L.; Naebe, M.; Cheng, B. W. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale 2016, 8, 16541–16588.

[15]

He, J. R.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 2019, 20, 55–70.

[16]

Rana, M.; Ahad, S. A.; Li, M.; Luo, B.; Wang, L. Z.; Gentle, I.; Knibbe, R. Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Mater. 2019, 18, 289–310.

[17]

Qiu, S. S.; Liang, X. Q.; Niu, S. W.; Chen, Q. G.; Wang, G. M.; Chen, M. H. Quantitative defect regulation of heterostructures for sulfur catalysis toward fast and long lifespan lithium-sulfur batteries. Nano Res. 2022, 15, 7925–7932.

[18]

Pan, H.; Cheng, Z. B.; Fransaer, J.; Luo, J. S.; Wübbenhorst, M. Cobalt-embedded 3D conductive honeycomb architecture to enable high-sulphur-loading Li-S batteries under lean electrolyte conditions. Nano Res. 2022, 15, 8091–8100.

[19]

Sun, L.; Liu, Y. X.; Zhang, K. Q.; Cheng, F.; Jiang, R. Y.; Liu, Y. Q.; Zhu, J.; Jin, Z.; Pang, H. Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in high-energy lithium-sulfur batteries. Nano Res. 2022, 15, 5105–5113.

[20]

Liu, Q.; Han, X. T.; Zheng, Z. Y.; Xiong, P. X.; Jeong, R. G.; Kim, G.; Park, H.; Kim, J.; Kim, B. K.; Park, H. S. Crystallinity regulated functional separator based on bimetallic NixFey alloy nanoparticles for facilitated redox kinetics of lithium-sulfur batteries. Adv. Funct. Mater. 2022, 2207094.

[21]

Yan, W.; Wei, J.; Chen, T.; Duan, L.; Wang, L.; Xue, X. L.; Chen, R. P.; Kong, W. H.; Lin, H. N.; Li, C. H. et al. Superstretchable, thermostable and ultrahigh-loading lithium-sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 2021, 80, 105510.

[22]

Yan, W.; Yan, K. Y.; Kuang, G. C.; Jin, Z. Fluorinated quinone derived organosulfur copolymer cathodes for long-cycling, thermostable and flexible lithium-sulfur batteries. Chem. Eng. J. 2021, 424, 130316.

[23]

Zhang, P.; Liu, C.; Yang, Y. D.; Zheng, Y.; Huo, K. F. Recent advances of freestanding cathodes for Li-S batteries. Chem. Asian. J. 2021, 16, 1–13.

[24]

Fang, X.; Peng, H. S. A revolution in electrodes: Recent progress in rechargeable lithium-sulfur batteries. Small 2015, 11, 1488–1511.

[25]

Tang, B.; Wu, H.; Du, X. F.; Cheng, X. Y.; Liu, X.; Yu, Z.; Yang, J. F.; Zhang, M.; Zhang, J. J.; Cui, G. L. Highly safe electrolyte enabled via controllable polysulfide release and efficient conversion for advanced lithium-sulfur batteries. Small 2020, 16, 1905737.

[26]

Cheng, X. B.; Huang, J. Q.; Zhang, Q. Review—Li metal anode in working lithium-sulfur batteries. J. Electrochem. Soc. 2018, 165, A6058–A6072.

[27]

Li, G. R.; Wang, S.; Zhang, Y. N.; Li, M.; Chen, Z. W.; Lu, J. Revisiting the role of polysulfides in lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705590.

[28]

Li, F.; Liu, Q. H.; Hu, J. W.; Feng, Y. Z.; He, P. B.; Ma, J. M. Recent advances in cathode materials for rechargeable lithium-sulfur batteries. Nanoscale 2019, 11, 15418–15439.

[29]

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Review—The importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium-sulfur batteries. J. Electrochem. Soc. 2015, 162, A2567–A2576.

[30]

Shen, Y. Q.; Zeng, F. L.; Zhou, X. Y.; Wang, A. B.; Wang, W. K.; Yuan, N. Y.; Ding, J. N. A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium-sulfur batteries. J. Energy Chem. 2020, 48, 267–276.

[31]

Kim, J. G.; Noh, Y.; Kim, Y. Highly reversible lithium-sulfur batteries with nitrogen-doped carbon encapsulated sulfur cathode and nitrogen-doped carbon-coated ZnS anode. Chem. Eng. J. 2022, 435, 131339.

[32]

Rana, M.; Li, M.; Huang, X.; Luo, B.; Gentle, I.; Knibbe, R. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J. Mater. Chem. A 2019, 7, 6596–6615.

[33]

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

[34]

Yuan, H.; Huang, J. Q.; Peng, H. J.; Titirici, M. M.; Xiang, R.; Chen, R. J.; Liu, Q. B.; Zhang, Q. A review of functional binders in lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1802107.

[35]

Song, Y. Z.; Cai, W. L.; Kong, L.; Cai, J. S.; Zhang, Q.; Sun, J. Y. Rationalizing electrocatalysis of Li-S chemistry by mediator design: Progress and prospects. Adv. Energy Mater. 2020, 10, 1901075.

[36]

Zhou, H. J.; Song, C. L.; Si, L. P.; Hong, X. J.; Cai, Y. P. The development of catalyst materials for the advanced lithium-sulfur battery. Catalysts 2020, 10, 682.

[37]

Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

[38]

Li, Z.; Yuan, L. X.; Yi, Z. Q.; Sun, Y. M.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 2014, 4, 1301473.

[39]

Lv, L. P.; Guo, C. F.; Sun, W. W.; Wang, Y. Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small 2019, 15, 1804338.

[40]

Choi, S.; Seo, D. H.; Kaiser, M. R.; Zhang, C. M.; van der Laan, T.; Han, Z. J.; Bendavid, A.; Guo, X.; Yick, S.; Murdock, A. T. et al. WO3 nanolayer coated 3D-graphene/sulfur composites for high performance lithium/sulfur batteries. J. Mater. Chem. A 2019, 7, 4596–4603.

[41]

Fang, L. Z.; Feng, Z. G.; Cheng, L.; Winans, R. E.; Li, T. Design principles of single atoms on carbons for lithium-sulfur batteries. Small Methods 2020, 4, 2000315.

[42]

Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 2016, 7, 13065.

[43]

Yu, X. Y.; Zhou, G. M.; Cui, Y. Mitigation of shuttle effect in Li-S battery using a self-assembled ultrathin molybdenum disulfide interlayer. ACS Appl. Mater. Interfaces 2019, 11, 3080–3086.

[44]

Zhang, M.; Chen, W.; Xue, L. X.; Jiao, Y.; Lei, T. Y.; Chu, J. W.; Huang, J. W.; Gong, C. H.; Yan, C. Y.; Yan, Y. C. et al. Adsorption-catalysis design in the lithium-sulfur battery. Adv. Energy Mater. 2020, 10, 1903008.

[45]

Peng, H. J.; Zhang, Z. W.; Huang, J. Q.; Zhang, G.; Xie, J.; Xu, W. T.; Shi, J. L.; Chen, X.; Cheng, X. B.; Zhang, Q. A cooperative interface for highly efficient lithium-sulfur batteries. Adv. Mater. 2016, 28, 9551–9558.

[46]

Tao, X. Y.; Wan, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.

[47]

Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94–116.

[48]

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

[49]

Lv, D. P.; Zheng, J. M.; Li, Q. Y.; Xie, X.; Ferrara, S.; Nie, Z. M.; Mehdi, L. B.; Browning, N. D.; Zhang, J. G.; Graff, G. L. et al. High energy density lithium-sulfur batteries: Challenges of thick sulfur cathodes. Adv. Energy Mater. 2015, 5, 1402290.

[50]

Fu, A.; Wang, C. Z.; Pei, F.; Cui, J. Q.; Fang, X. L.; Zheng, N. F. Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 2019, 15, 1804786.

[51]

Wang, D. W.; Zeng, Q. C.; Zhou, G. M.; Yin, L. C.; Li, F.; Cheng, H. M.; Gentle, I. R.; Lu, G. Q. M. Carbon-sulfur composites for Li-S batteries: Status and prospects. J. Mater. Chem. A 2013, 1, 9382–9394.

[52]

Liu, D. H.; Zhang, C.; Zhou, G. M.; Lv, W.; Ling, G. W.; Zhi, L. J.; Yang, Q. H. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270.

[53]

Sun, Z. X.; Vijay, S.; Heenen, H. H.; Eng, A. Y. S.; Tu, W. G.; Zhao, Y. X.; Koh, S. W.; Gao, P. Q.; Seh, Z. W.; Chan, K. et al. Catalytic polysulfide conversion and physiochemical confinement for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 1904010.

[54]

Zhang, Z. W.; Peng, H. J.; Zhao, M.; Huang, J. Q. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: Progress and prospects. Adv. Funct. Mater. 2018, 28, 1707536.

[55]

Yang, X. F.; Gao, X. J.; Sun, Q.; Jand, S. P.; Yu, Y.; Zhao, Y.; Li, X.; Adair, K.; Kuo, L. Y.; Rohrer, J. et al. Promoting the transformation of Li2S2 to Li2S: Significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries. Adv. Mater. 2019, 31, 1901220.

[56]

Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 2015, 27, 5203–5209.

[57]

Liu, F.; Sun, G.; Wu, H. B.; Chen, G.; Xu, D.; Mo, R. W.; Shen, L.; Li, X. Y.; Ma, S. X.; Tao, R. et al. Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries. Nat. Commun. 2020, 11, 5215.

[58]

Zhao, Q.; Zhu, Q. Z.; Liu, Y.; Xu, B. Status and prospects of MXene-based lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100457.

[59]

Zhang, C. F.; Ma, Y. L.; Zhang, X. T.; Abdolhosseinzadeh, S.; Sheng, H. W.; Lan, W.; Pakdel, A.; Heier, J.; Nüesch, F. Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 2020, 3, 29–55.

[60]

Kim, S. J.; Kim, K.; Park, J.; Sung, Y. E. Role and potential of metal sulfide catalysts in lithium-sulfur battery applications. ChemCatChem 2019, 11, 2373–2387.

[61]

Nan, J. X.; Guo, X.; Xiao, J.; Li, X.; Chen, W. H.; Wu, W. J.; Liu, H.; Wang, Y.; Wu, M. H.; Wang, G. X. Nanoengineering of 2D MXene-based materials for energy storage applications. Small 2021, 17, 1902085.

[62]

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

[63]

Gu, X. X.; Lai, C. One dimensional nanostructures contribute better Li-S and Li-Se batteries: Progress, challenges and perspectives. Energy Storage Mater. 2019, 23, 190–224.

[64]

Park, J.; Yu, S. H.; Sung, Y. E. Design of structural and functional nanomaterials for lithium-sulfur batteries. Nano Today 2018, 18, 35–64.

[65]

Cheng, S. P.; Xia, X. H.; Liu, H. B.; Chen, Y. X. Core–shell structured MoS2@S spherical cathode with improved electrochemical performance for lithium-sulfur batteries. J. Mater. Sci. Technol. 2018, 34, 1912–1918.

[66]

Qi, M. L.; Liang, X. Q.; Wang, F.; Han, M. S.; Yin, J. H.; Chen, M. H. Sulfur-impregnated disordered SnO2/carbon aerogel core–shell microspheres cathode for lithium-sulfur batteries. J. Alloys Compd. 2019, 799, 345–350.

[67]

Yan, B.; Li, X. F.; Xiao, W.; Hu, J. H.; Zhang, L. L.; Yang, X. L. Design, synthesis, and application of metal sulfides for Li-S batteries: Progress and prospects. J. Mater. Chem. A 2020, 8, 17848–17882.

[68]

Balach, J.; Linnemann, J.; Jaumann, T.; Giebeler, L. Metal-based nanostructured materials for advanced lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 23127–23168.

[69]

Li, B.; Xu, H. F.; Ma, Y.; Yang, S. B. Harnessing the unique properties of 2D materials for advanced lithium-sulfur batteries. Nanoscale Horiz. 2019, 4, 77–98.

[70]

Feng, G. L.; Liu, X. H.; Wu, Z. G.; Chen, Y. X.; Yang, Z. G.; Wu, C. J.; Guo, X. D.; Zhong, B. H.; Xiang, W.; Li, J. S. Enhancing performance of Li-S batteries by coating separator with MnO@yeast-derived carbon spheres. J. Alloys Compd. 2020, 817, 152723.

[71]

Ng, S. F.; Lau, M. Y. L.; Ong, W. J. Lithium-sulfur battery cathode design: Tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion. Adv. Mater. 2021, 33, 2008654.

[72]

Wang, H. Q.; Zhang, W. C.; Xu, J. Z.; Guo, Z. P. Advances in polar materials for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707520.

[73]

Liu, B.; Fang, R. Y.; Xie, D.; Zhang, W. K.; Huang, H.; Xia, Y.; Wang, X. L.; Xia, X. H.; Tu, J. P. Revisiting scientific issues for industrial applications of lithium-sulfur batteries. Energy Environ. Mater. 2018, 1, 196–208.

[74]

Depardieu, M.; Janot, R.; Sanchez, C.; Bentaleb, A.; Demir-Cakan, R.; Gervais, C.; Birot, M.; Morcrette, M.; Backov, R. Novel Au/Pd@carbon macrocellular foams as electrodes for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 18047–18057.

[75]

Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863.

[76]

Cao, K. Z.; Liu, H. Q.; Li, Y.; Wang, Y. J.; Jiao, L. F. Encapsulating sulfur in δ-MnO2 at room temperature for Li-S battery cathode. Energy Storage Mater. 2017, 9, 78–84.

[77]

Zhao, M.; Peng, H. J.; Li, B. Q.; Chen, X.; Xie, J.; Liu, X. Y.; Zhang, Q.; Huang, J. Q. Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion. Angew. Chem., Int. Ed. 2020, 59, 9011–9017.

[78]

Fan, X. J.; Sun, W. W.; Meng, F. C.; Xing, A. M.; Liu, J. H. Advanced chemical strategies for lithium-sulfur batteries: A review. Green Energy Environ. 2018, 3, 2–19.

[79]

Tang, X.; Guo, X.; Wu, W. J.; Wang, G. X. 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-based batteries. Adv. Energy Mater. 2018, 8, 1801897.

[80]

Wang, Y. C.; Chu, F. L.; Zeng, J.; Wang, Q. J.; Naren, T.; Li, Y. Y.; Cheng, Y.; Lei, Y. P.; Wu, F. X. Single atom catalysts for fuel cells and rechargeable batteries: Principles, advances, and opportunities. ACS Nano 2021, 15, 210–239.

[81]

Salem, H. A.; Babu, G.; Rao, C. V.; Arava, L. M. R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J. Am. Chem. Soc. 2015, 137, 11542–11545.

[82]

Fan, C. Y.; Xiao, P.; Li, H. H.; Wang, H. F.; Zhang, L. L.; Sun, H. Z.; Wu, X. L.; Xie, H. M.; Zhang, J. P. Nanoscale polysulfides reactors achieved by chemical Au–S interaction: Improving the performance of Li-S batteries on the electrode level. ACS Appl. Mater. Interfaces 2015, 7, 27959–27967.

[83]

Zhong, M. E.; Guan, J. D.; Feng, Q. J.; Wu, X. W.; Xiao, Z. B.; Zhang, W.; Tong, S.; Zhou, N.; Gong, D. X. Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@Co/N-doped carbon nanosheet for high-performance lithium-sulfur batteries. Carbon 2018, 128, 86–96.

[84]

Tsao, Y.; Gong, H. X.; Chen, S. C.; Chen, G.; Liu, Y. Z.; Gao, T. Z.; Cui, Y.; Bao, Z. N. A nickel-decorated carbon flower/sulfur cathode for lean-electrolyte lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2101449.

[85]

Li, Y. J.; Fan, J. M.; Zhang, J. H.; Yang, J. F.; Yuan, R. M.; Chang, J.; Zheng, M. S.; Dong, Q. F. A honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S batteries. ACS Nano 2017, 11, 11417–11424.

[86]

Lim, W. G.; Mun, Y.; Cho, A.; Jo, C.; Lee, S.; Han, J. W.; Lee, J. Synergistic effect of molecular-type electrocatalysts with ultrahigh pore volume carbon microspheres for lithium-sulfur batteries. ACS Nano 2018, 12, 6013–6022.

[87]

Yu, M. L.; Zhou, S.; Wang, Z. Y.; Wang, Y. W.; Zhang, N.; Wang, S.; Zhao, J. J.; Qiu, J. S. Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Mater. 2019, 20, 98–107.

[88]

Zeng, Z. P.; Li, W.; Chen, X. J.; Liu, X. B. Bifunctional 3D hierarchical hairy foam toward ultrastable lithium/sulfur electrochemistry. Adv. Funct. Mater. 2020, 30, 2004650.

[89]

Li, J. B.; Chen, C. Y.; Chen, Y. W.; Li, Z. H.; Xie, W. F.; Zhang, X.; Shao, M. F.; Wei, M. Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li-S batteries. Adv. Energy Mater. 2019, 9, 1901935.

[90]

Li, Y. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ. Sci. 2016, 9, 1998–2004.

[91]

Luo, S. Q.; Sun, W. W.; Ke, J. H.; Wang, Y. Q.; Liu, S. K.; Hong, X. B.; Li, Y. J.; Chen, Y. F.; Xie, W.; Zheng, C. M. A 3D conductive network of porous carbon nanoparticles interconnected with carbon nanotubes as the sulfur host for long cycle life lithium-sulfur batteries. Nanoscale 2018, 10, 22601–22611.

[92]

Ma, L. B.; Lin, H. N.; Zhang, W. J.; Zhao, P. Y.; Zhu, G. Y.; Hu, Y.; Chen, R. P.; Tie, Z. X.; Liu, J.; Jin, Z. Nitrogen-doped carbon nanotube forests planted on cobalt nanoflowers as polysulfide mediator for ultralow self-discharge and high areal-capacity lithium-sulfur batteries. Nano Lett. 2018, 18, 7949–7954.

[93]

Lu, H. Y.; Zhang, C.; Zhang, Y. F.; Huang, Y. P.; Liu, M. K.; Liu, T. X. Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: Advanced sulfur hosts for lithium-sulfur batteries. Nano Res. 2018, 11, 6155–6166.

[94]

Li, Z. Q.; Li, C. X.; Ge, X. L.; Ma, J. Y.; Zhang, Z. W.; Li, Q.; Wang, C. X.; Yin, L. W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 2016, 23, 15–26.

[95]

Zhang, H.; Wang, L. G.; Li, Q.; Ma, L.; Wu, T. P.; Ma, Y. L.; Wang, J. J.; Du, C. Y.; Yin, G. P.; Zuo, P. J. Cobalt nanoparticle-encapsulated carbon nanowire arrays: Enabling the fast redox reaction kinetics of lithium-sulfur batteries. Carbon 2018, 140, 385–393.

[96]

Chen, T.; Cheng, B. R.; Zhu, G. Y.; Chen, R. P.; Hu, Y.; Ma, L. B.; Lv, H. L.; Wang, Y. R.; Liang, J.; Tie, Z. X. et al. Highly efficient retention of polysulfides in “sea urchin”-like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries. Nano Lett. 2017, 17, 437–444.

[97]

Liu, S. H.; Li, J.; Yan, X.; Su, Q. F.; Lu, Y. H.; Qiu, J. S.; Wang, Z. Y.; Lin, X. D.; Huang, J. L.; Liu, R. L. et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries. Adv. Mater. 2018, 30, 1706895.

[98]

Wang, R.; Yang, J. L.; Chen, X.; Zhao, Y.; Zhao, W. G.; Qian, G. Y.; Li, S. N.; Xiao, Y. G.; Chen, H.; Ye, Y. S. et al. Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li-S battery. Adv. Energy Mater. 2020, 10, 1903550.

[99]

Li, Y. J.; Wang, W. Y.; Zhang, B.; Fu, L.; Wan, M. T.; Li, G. C.; Cai, Z.; Tu, S. B.; Duan, X. R.; Seh, Z. W. et al. Manipulating redox kinetics of sulfur species using Mott–schottky electrocatalysts for advanced lithium-sulfur batteries. Nano Lett. 2021, 21, 6656–6663.

[100]

Wang, P.; Zhang, Z. A.; Yan, X. L.; Xu, M.; Chen, Y. X.; Li, J. M.; Li, J.; Zhang, K.; Lai, Y. Q. Pomegranate-like microclusters organized by ultrafine Co nanoparticles@nitrogen-doped carbon subunits as sulfur hosts for long-life lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 14178–14187.

[101]

Su, L.; Zhang, J. Q.; Chen, Y.; Yang, W.; Wang, J.; Ma, Z. P.; Shao, G. J.; Wang, G. X. Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li-S batteries. Nano Energy 2021, 85, 105981.

[102]

Park, S. K.; Lee, J. K.; Kang, Y. C. Yolk–shell structured assembly of bamboo-like nitrogen-doped carbon nanotubes embedded with Co nanocrystals and their application as cathode material for Li-S batteries. Adv. Funct. Mater. 2018, 28, 1705264.

[103]

Zhang, X. Q.; Zhong, Y.; Xia, X. H.; Xia, Y.; Wang, D. H.; Zhou, C. A.; Tang, W. J.; Wang, X. L.; Wu, J. B.; Tu, J. P. Metal-embedded porous graphitic carbon fibers fabricated from bamboo sticks as a novel cathode for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 13598–13605.

[104]

Zhong, Y.; Xia, X. H.; Deng, S. J.; Zhan, J. Y.; Fang, R. Y.; Xia, Y.; Wang, X. L.; Zhang, Q.; Tu, J. P. Popcorn inspired porous macrocellular carbon: Rapid puffing fabrication from rice and its applications in lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1701110.

[105]

Liu, J.; Wei, A. X.; Pan, G. X.; Xiong, Q. Q.; Chen, F.; Shen, S. H.; Xia, X. H. Atomic layer deposition-assisted construction of binder-free Ni@N-doped carbon nanospheres films as advanced host for sulfur cathode. Nano-Micro Lett. 2019, 11, 64.

[106]

Li, Y. J.; Wu, J. B.; Zhang, B.; Wang, W. Y.; Zhang, G. Q.; Seh, Z. W.; Zhang, N.; Sun, J.; Huang, L.; Jiang, J. J. et al. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater. 2020, 30, 250–259.

[107]

Wang, X. W.; Sun, J. M.; Li, T. T.; Song, Z. X.; Wu, D.; Zhao, B.; Xiang, K.; Ai, W.; Fu, X. Z.; Luo, J. L. Folic acid self-assembly synthesis of ultrathin N-doped carbon nanosheets with single-atom metal catalysts. Energy Storage Mater. 2021, 36, 409–416.

[108]

Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

[109]

Li, Y. J.; Chen, G. L.; Mou, J. R.; Liu, Y. Z.; Xue, S. F.; Tan, T.; Zhong, W. T.; Deng, Q.; Li, T.; Hu, J. H. et al. Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2020, 28, 196–204.

[110]

Zhao, H.; Tian, B. B.; Su, C. L.; Li, Y. Single-atom iron and doped sulfur improve the catalysis of polysulfide conversion for obtaining high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 7171–7177.

[111]

Liu, Z. Z.; Zhou, L.; Ge, Q.; Chen, R. J.; Ni, M.; Utetiwabo, W.; Zhang, X. L.; Yang, W. Atomic iron catalysis of polysulfide conversion in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 19311–19317.

[112]

Wang, C. G.; Song, H. W.; Yu, C. C.; Ullah, Z.; Guan, Z. X.; Chu, R. R.; Zhang, Y. F.; Zhao, L. L.; Li, Q.; Liu, L. W. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 3421–3430.

[113]

Shao, Q. J.; Xu, L.; Guo, D. C.; Su, Y.; Chen, J. Atomic level design of single iron atom embedded mesoporous hollow carbon spheres as multi-effect nanoreactors for advanced lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 23772–23783.

[114]

Wang, J.; Jia, L. J.; Zhong, J.; Xiao, Q. B.; Wang, C.; Zang, K. T.; Liu, H. T.; Zheng, H. C.; Luo, J.; Yang, J. et al. Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Mater. 2019, 18, 246–252.

[115]

Shi, H. D.; Ren, X. M.; Lu, J. M.; Dong, C.; Liu, J.; Yang, Q. H.; Chen, J.; Wu, Z. S. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv. Energy Mater. 2020, 10, 2002271.

[116]

Ma, F.; Wan, Y. Y.; Wang, X. M.; Wang, X. C.; Liang, J. S.; Miao, Z. P.; Wang, T. Y.; Ma, C.; Lu, G.; Han, J. T. et al. Bifunctional atomically dispersed Mo-N2/C nanosheets boost lithium sulfide deposition/decomposition for stable lithium-dulfur batteries. ACS Nano 2020, 14, 10115–10126.

[117]

Zhao, T. K.; Chen, J. W.; Yuan, M. L.; Dai, K. Q.; Zhang, J. X.; Li, S. W.; He, H. Y.; Liu, Z. J.; Zhang, G. J. Local charge rearrangement to boost the chemical adsorption and catalytic conversion of polysulfides for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 7566–7574.

[118]

Han, X.; Zhang, Z. Y.; Xu, X. F. Single atom catalysts supported on N-doped graphene toward fast kinetics in Li-S batteries: A theoretical study. J. Mater. Chem. A 2021, 9, 12225–12235.

[119]

Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett. 2020, 20, 1252–1261.

[120]

Liang, X.; Kwok, C. Y.; Lodi-Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C. J.; Houtarde, D.; Kaup, K.; Sommer, H. et al. Tuning transition metal oxide–sulfur interactions for long life lithium sulfur batteries: The “goldilocks” principle. Adv. Energy Mater. 2016, 6, 1501636.

[121]

Moreno, N.; Caballero, Á.; Morales, J.; Rodríguez-Castellón, E. Improved performance of electrodes based on carbonized olive stones/S composites by impregnating with mesoporous TiO2 for advanced Li-S batteries. J. Power Sources 2016, 313, 21–29.

[122]

Gao, P. B.; Xu, S. X.; Chen, Z. W.; Huang, X.; Bao, Z. H.; Lao, C. S.; Wu, G. M.; Mei, Y. F. Flexible and hierarchically structured sulfur composite cathode based on the carbonized textile for high-performance Li-S batteries. ACS Appl. Mater. Interfaces 2018, 10, 3938–3947.

[123]

Guo, J. L.; Zhao, S. Y.; Shen, Y. L.; Shao, G. S.; Zhang, F. X. “Room-like” TiO2 array as a sulfur host for lithium-sulfur batteries:Combining advantages of array and closed structures. ACS Sustain. Chem. Eng. 2020, 8, 7609–7616.

[124]

Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

[125]

Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759.

[126]

Wei, H.; Rodriguez, E. F.; Best, A. S.; Hollenkamp, A. F.; Chen, D. H.; Caruso, R. A. Chemical bonding and physical trapping of sulfur in mesoporous magnéli Ti4O7 microspheres for high-performance Li-S battery. Adv. Energy Mater. 2017, 7, 1601616.

[127]

Wang, F.; Ding, X.; Shi, R. Y.; Li, M. R.; Lei, Y. M.; Lei, Z. B.; Jiang, G. S.; Xu, F.; Wang, H. Q.; Jia, L. C. et al. Facile synthesis of Ti4O7 on hollow carbon spheres with enhanced polysulfide binding for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 10494–10504.

[128]

Liu, M. T.; Jhulki, S.; Sun, Z. F.; Magasinski, A.; Hendrix, C.; Yushin, G. Atom-economic synthesis of Magnéli phase Ti4O7 microspheres for improved sulfur cathodes for Li-S batteries. Nano Energy 2021, 79, 105428.

[129]

Mei, S. L.; Jafta, C. J.; Lauermann, I.; Ran, Q. D.; Kärgell, M.; Ballauff, M.; Lu, Y. Porous Ti4O7 particles with interconnected-pore structure as a high-efficiency polysulfide mediator for lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1701176.

[130]

Chen, A.; Liu, W. F.; Hu, H.; Chen, T.; Ling, B. L.; Liu, K. Y. Facile preparation of ultrafine Ti4O7 nanoparticle-embedded porous carbon for high areal capacity lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 20083–20092.

[131]

Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting magnéli-phase TinO2n−1 nanomaterials for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5288–5294.

[132]

Song, X.; Gao, T.; Wang, S. Q.; Bao, Y.; Chen, G. P.; Ding, L. X.; Wang, H. H. Free-standing sulfur host based on titanium-dioxide-modified porous-carbon nanofibers for lithium-sulfur batteries. J. Power Sources 2017, 356, 172–180.

[133]

Hwang, J. Y.; Kim, H. M.; Lee, S. K.; Lee, J. H.; Abouimrane, A.; Khaleel, M. A.; Belharouak, I.; Manthiram, A.; Sun, Y. K. High-energy, high-rate, lithium-sulfur batteries: Synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer. Adv. Energy Mater. 2016, 6, 1501480.

[134]

Huang, J. Q.; Wang, Z. Y.; Xu, Z. L.; Chong, W. G.; Qin, X. Y.; Wang, X. Y.; Kim, J. K. Three-dimensional porous graphene aerogel cathode with high sulfur loading and embedded TiO2 nanoparticles for advanced lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 28663–28670.

[135]

Gao, L.; Cao, M. L.; Fu, Y. Q.; Zhong, Z. C.; Shen, Y.; Wang, M. K. Hierarchical TiO2 spheres assisted with graphene for a high performance lithium-sulfur battery. J. Mater. Chem. A 2016, 4, 16454–16461.

[136]

Ding, B.; Xu, G. Y.; Shen, L. F.; Nie, P.; Hu, P. F.; Dou, H.; Zhang, X. G. Fabrication of a sandwich structured electrode for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 14280–14285.

[137]

Li, Y. Y.; Cai, Q. F.; Wang, L.; Li, Q. W.; Peng, X.; Gao, B.; Huo, K. F.; Chu, P. K. Mesoporous TiO2 nanocrystals/graphene as an efficient sulfur host material for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 23784–23792.

[138]

Wang, M.; Tan, S. Y.; Kan, S. T.; Wu, Y. F.; Sang, S. B.; Liu, K. Y.; Liu, H. T. In-situ assembly of TiO2 with high exposure of (001) facets on three-dimensional porous graphene aerogel for lithium-sulfur battery. J. Energy Chem. 2020, 49, 316–322.

[139]

Zha, C. Y.; Wu, D. H.; Zhang, T. K.; Wu, J. H.; Chen, H. Y. A facile and effective sulfur loading method: Direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery. Energy Storage Mater. 2019, 17, 118–125.

[140]

Zegeye, T. A.; Kuo, C. F. J.; Wotango, A. S.; Pan, C. J.; Chen, H. M.; Haregewoin, A. M.; Cheng, J. H.; Su, W. N.; Hwang, B. J. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries. J. Power Sources 2016, 324, 239–252.

[141]

Fang, M. M.; Chen, Z. M.; Liu, Y.; Quan, J. P.; Yang, C.; Zhu, L. C.; Xu, Q. B.; Xu, Q. Design and synthesis of novel sandwich-type C@TiO2@C hollow microspheres as efficient sulfur hosts for advanced lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 1630–1638.

[142]

Yao, J.; Mei, T.; Cui, Z. Q.; Yu, Z. H.; Xu, K.; Wang, X. B. Hollow carbon spheres with TiO2 encapsulated sulfur and polysulfides for long-cycle lithium-sulfur batteries. Chem. Eng. J. 2017, 330, 644–650.

[143]

An, Y. L.; Zhang, Z.; Fei, H. F.; Xiong, S. L.; Ji, B.; Feng, J. K. Ultrafine TiO2 confined in porous-nitrogen-doped carbon from metal-organic frameworks for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 12400–12407.

[144]

Yao, W. Q.; Chu, C. J.; Zheng, W. Z.; Zhan, L.; Wang, Y. L. “Pea-pod-like” nitrogen-doped hollow porous carbon cathode hosts decorated with polar titanium dioxide nanocrystals as efficient polysulfide reservoirs for advanced lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 18191–18205.

[145]

Yu, M. P.; Ma, J. S.; Song, H. Q.; Wang, A. J.; Tian, F. Y.; Wang, Y. S.; Qiu, H.; Wang, R. M. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 1495–1503.

[146]

Zha, C. Y.; Yang, F. L.; Zhang, J. J.; Zhang, T. K.; Dong, S.; Chen, H. Y. Promoting polysulfide redox reactions and improving electronic conductivity in lithium-sulfur batteries via hierarchical cathode materials of graphene-wrapped porous TiO2 microspheres with exposed (001) facets. J. Mater. Chem. A 2018, 6, 16574–16582.

[147]

Zhou, S. Y.; Hu, J. Y.; Liu, S. G.; Lin, J. X.; Cheng, J.; Mei, T.; Wang, X. B.; Liao, H. G.; Huang, L.; Sun, S. G. Biomimetic micro cell cathode for high performance lithium-sulfur batteries. Nano Energy 2020, 72, 104680.

[148]

Salhabi, E. H. M.; Zhao, J. L.; Wang, J. Y.; Yang, M.; Wang, B.; Wang, D. Hollow multi-shelled structural TiO2−x with multiple spatial confinement for long-life lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 9078–9082.

[149]

Wang, H. E.; Yin, K. L.; Qin, N.; Zhao, X.; Xia, F. J.; Hu, Z. Y.; Guo, G. L.; Cao, G. Z.; Zhang, W. J. Oxygen-deficient titanium dioxide as a functional host for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 10346–10353.

[150]

Liang, Z.; Zheng, G. Y.; Li, W. Y.; Seh, Z. W.; Yao, H. B.; Yan, K.; Kong, D. S.; Cui, Y. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 2014, 8, 5249–5256.

[151]

Wang, Y. K.; Zhang, R. F.; Chen, J.; Wu, H.; Lu, S. Y.; Wang, K.; Li, H. L.; Harris, C. J.; Xi, K.; Kumar, R. V. et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 2019, 9, 1900953.

[152]

Liu, Q.; Zhang, J. H.; He, S. A.; Zou, R. J.; Xu, C. T.; Cui, Z.; Huang, X. J.; Guan, G. Q.; Zhang, W. L.; Xu, K. B. et al. Stabilizing lithium-sulfur batteries through control of sulfur aggregation and polysulfide dissolution. Small 2018, 14, 1703816.

[153]

Liu, Z. J.; Liu, B. L.; Guo, P. Q.; Shang, X. N.; Lv, M. Z.; Liu, D. Q.; He, D. Y. Enhanced electrochemical kinetics in lithium-sulfur batteries by using carbon nanofibers/manganese dioxide composite as a bifunctional coating on sulfur cathode. Electrochim. Acta 2018, 269, 180–187.

[154]

Chao, G. J.; Zhang, L. S.; Yuan, S. J.; Xue, T. T.; Yang, F.; Huang, Y. P.; Fan, W.; Liu, T. X. Ultrathin MnO2 sheet arrays grown on hollow carbon fibers as effective polysulfide-blocking interlayers for high-performance Li-S batteries. ACS Appl. Energy Mater. 2020, 3, 12703–12708.

[155]

Ni, L. B.; Wu, Z.; Zhao, G. J.; Sun, C. Y.; Zhou, C. Q.; Gong, X. X.; Diao, G. W. Core–shell structure and interaction mechanism of γ-MnO2 coated sulfur for improved lithium-sulfur batteries. Small 2017, 13, 1603466.

[156]

Pan, H.; Cheng, Z. B.; Zhang, X.; Wan, K.; Fransaer, J.; Luo, J. S.; Wübbenhorst, M. Manganese dioxide nanosheet functionalized reduced graphene oxide as a compacted cathode matrix for lithium-sulphur batteries with a low electrolyte/sulphur ratio. J. Mater. Chem. A 2020, 8, 21824–21832.

[157]

Li, Y.; Ye, D. X.; Liu, W.; Shi, B.; Guo, R.; Zhao, H. B.; Pei, H. J.; Xu, J. Q.; Xie, J. Y. A MnO2/graphene oxide/multi-walled carbon nanotubes-sulfur composite with dual-efficient polysulfide adsorption for improving lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 28566–28573.

[158]

Chen, Z. H.; Hu, Y. X.; Liu, W.; Yu, F.; Yu, X. F.; Mei, T.; Yu, L.; Wang, X. B. Three-dimensional engineering of sulfur/MnO2 composites for high-rate lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 38394–38404.

[159]

Chen, H.; Dong, W. D.; Xia, F. J.; Zhang, Y. J.; Yan, M.; Song, J. P.; Zou, W.; Liu, Y.; Hu, Z. Y.; Liu, J. et al. Hollow nitrogen-doped carbon/sulfur@MnO2 nanocomposite with structural and chemical dual-encapsulation for lithium-sulfur battery. Chem. Eng. J. 2020, 381, 122746.

[160]

Tu, S. B.; Zhao, X. X.; Cheng, M. R.; Sun, P. F.; He, Y. W.; Xu, Y. H. Uniform mesoporous MnO2 nanospheres as a surface chemical adsorption and physical confinement polysulfide mediator for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 10624–10630.

[161]

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

[162]

Huang, S. Z.; Liu, L. X.; Wang, Y.; Shang, Y.; Zhang, L.; Wang, J. W.; Zheng, Y.; Schmidt, O. G.; Yang, H. Y. Elucidating the reaction kinetics of lithium-sulfur batteries by operando XRD based on an open-hollow S@MnO2 cathode. J. Mater. Chem. A 2019, 7, 6651–6658.

[163]

Xu, H. H.; Qie, L.; Manthiram, A. An integrally-designed, flexible polysulfide host for high-performance lithium-sulfur batteries with stabilized lithium-metal anode. Nano Energy 2016, 26, 224–232.

[164]

Chen, M. F.; Lu, Q.; Jiang, S. X.; Huang, C.; Wang, X. Y.; Wu, B.; Xiang, K. X.; Wu, Y. T. MnO2 nanosheets grown on the internal/external surface of N-doped hollow porous carbon nanospheres as the sulfur host of advanced lithium-sulfur batteries. Chem. Eng. J. 2018, 335, 831–842.

[165]

Rehman, S.; Tang, T. Y.; Ali, Z.; Huang, X. X.; Hou, Y. L. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 2017, 13, 1700087.

[166]

Ni, L. B.; Zhao, G. J.; Yang, G.; Niu, G. S.; Chen, M.; Diao, G. W. Dual core–shell-structured S@C@MnO2 nanocomposite for highly stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 34793–34803.

[167]

Wu, X.; Du, Y.; Wang, P. X.; Fan, L. S.; Cheng, J. H.; Wang, M. X.; Qiu, Y.; Guan, B.; Wu, H. X.; Zhang, N. Q. et al. Kinetics enhancement of lithium-sulfur batteries by interlinked hollow MoO2 sphere/nitrogen-doped graphene composite. J. Mater. Chem. A 2017, 5, 25187–25192.

[168]

Wang, C. L.; Li, K.; Zhang, F. F.; Wu, Z. J.; Sun, L. S.; Wang, L. M. Insight of enhanced redox chemistry for porous MoO2 carbon-derived framework as polysulfide reservoir in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 42286–42293.

[169]

Ji, P. H.; Shang, B.; Peng, Q. M.; Hu, X. B.; Wei, J. W. α-MoO3 spheres as effective polysulfides adsorbent for high sulfur content cathode in lithium-sulfur batteries. J. Power Sources 2018, 400, 572–579.

[170]

Chen, D.; Yue, X. Y.; Li, X. L.; Bao, J.; Qiu, Q. Q.; Wu, X. J.; Zhang, X.; Zhou, Y. N. Freestanding double-layer MoO3/CNT@S membrane: A promising flexible cathode for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 2354–2361.

[171]

Zheng, C.; Niu, S. Z.; Lv, W.; Zhou, G. M.; Li, J.; Fan, S. X.; Deng, Y. Q.; Pan, Z. Z.; Li, B. H.; Kang, F. Y. et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 2017, 33, 306–312.

[172]

Lv, K. Z.; Wang, P. F.; Wang, C.; Shen, Z. H.; Lu, Z. D.; Zhang, H. G.; Zheng, M. B.; He, P.; Zhou, H. S. Oxygen-deficient ferric oxide as an electrochemical cathode catalyst for high-energy lithium-sulfur batteries. Small 2020, 16, 2000870.

[173]

Lu, K.; Zhang, H.; Gao, S. Y.; Ma, H. Y.; Chen, J. Z.; Cheng, Y. W. Manipulating polysulfide conversion with strongly coupled Fe3O4 and nitrogen doped carbon for stable and high capacity lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1807309.

[174]

Li, H. P.; Wang, J. Y.; Zhang, Y. G.; Wang, Y.; Mentbayeva, A.; Bakenov, Z. Synthesis of carbon coated Fe3O4 grown on graphene as effective sulfur-host materials for advanced lithium/sulfur battery. J. Power Sources 2019, 437, 226901.

[175]

Huang, Y. C.; Li, Z. H.; Zhu, T. Y.; Gao, X. H.; Lv, X. Q.; Ling, M.; Wan, Z. W.; Xia, Y. Y. Ferromagnetic 1D-Fe3O4@C microrods boost polysulfide anchoring for lithium-sulfur batteries. ACS Appl. Energy Mater. 2021, 4, 3921–3927.

[176]

He, J. R.; Luo, L.; Chen, Y. F.; Manthiram, A. Yolk–shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1702707.

[177]

Liu, G. X.; Feng, K.; Cui, H. T.; Li, J.; Liu, Y. Y.; Wang, M. R. MOF derived in-situ carbon-encapsulated Fe3O4@C to mediate polysulfides redox for ultrastable lithium-sulfur batteries. Chem. Eng. J. 2020, 381, 122652.

[178]

Xin, S. S.; Li, J.; Cui, H. T.; Liu, Y. Y.; Wei, H. Y.; Zhong, Y. Y.; Wang, M. R. Self-templating synthesis of prismatic-like N-doped carbon tubes embedded with Fe3O4 as a high-efficiency polysulfide-anchoring-conversion mediator for high performance lithium-sulfur batteries. Chem. Eng. J. 2021, 410, 128153.

[179]

Zhang, Y. P.; Gu, R.; Zheng, S.; Liao, K. X.; Shi, P. H.; Fan, J. C.; Xu, Q. J.; Min, Y. L. Long-life Li-S batteries based on enabling the immobilization and catalytic conversion of polysulfides. J. Mater. Chem. A 2019, 7, 21747–21758.

[180]

Ding, M.; Huang, S. Z.; Wang, Y.; Hu, J. P.; Pam, M. E.; Fan, S.; Shi, Y. M.; Ge, Q.; Yang, H. Y. Promoting polysulfide conversion by catalytic ternary Fe3O4/carbon/graphene composites with ordered microchannels for ultrahigh-rate lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 25078–25087.

[181]

Li, R. L.; Rao, D. W.; Zhou, J. B.; Wu, G.; Wang, G. Z.; Zhu, Z. X.; Han, X.; Sun, R. B.; Li, H.; Wang, C. et al. Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nat. Commun. 2021, 12, 3102.

[182]

Wu, S. K.; Wang, Y. Z.; Na, S. S.; Chen, C. J.; Yu, T. F.; Wang, H. Y.; Zang, H. M. Porous hollow carbon nanospheres embedded with well-dispersed cobalt monoxide nanocrystals as effective polysulfide reservoirs for high-rate and long-cycle lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 17352–17359.

[183]

Liu, R. P.; Guo, F.; Zhang, X. F.; Yang, J. L.; Li, M. Y.; Wu, M. M.; Liu, H.; Feng, M.; Zhang, L. Novel “bird-nest” structured Co3O4/acidified multiwall carbon nanotube (ACNT) hosting materials for lithium-sulfur batteries. ACS Appl. Energy Mater. 2019, 2, 1348–1356.

[184]

Xu, J.; Zhang, W. X.; Chen, Y.; Fan, H. B.; Su, D. W.; Wang, G. X. MOF-derived porous N-Co3O4@N-C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 2797–2807.

[185]

Zhou, L.; Li, H.; Wu, X. C.; Zhang, Y.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. Double-shelled Co3O4/C nanocages enabling polysulfides adsorption for high-performance lithium-sulfur batteries. ACS Appl. Energy Mater. 2019, 2, 8153–8162.

[186]

Wang, J. L.; Yan, X. F.; Zhang, Z.; Ying, H. J.; Guo, R. N.; Yang, W. T.; Han, W. Q. Facile preparation of high-content N-doped CNT microspheres for high-performance lithium storage. Adv. Funct. Mater. 2019, 29, 1904819.

[187]

Chang, Z.; Dou, H.; Ding, B.; Wang, J.; Wang, Y.; Hao, X. D.; MacFarlane, D. R. Co3O4 nanoneedle arrays as a multifunctional “super-reservoir” electrode for long cycle life Li-S batteries. J. Mater. Chem. A 2017, 5, 250–257.

[188]

Ding, G. Y.; Li, Y. H.; Zhang, Y.; Huang, C. M.; Yao, X. R.; Lin, K. X.; Shen, K. L.; Yan, W.; Sun, F. G.; Zhou, L. Waste to wealth: Exhausted nitrogen-doped mesoporous carbon/MgO desulfurizers turned to high-sulfur-loading composite cathodes for Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 19096–19103.

[189]

Wang, C.; Yi, Y. K.; Li, H. P.; Wu, P. W.; Li, M. T.; Jiang, W.; Chen, Z. G.; Li, H. M.; Zhu, W. S.; Dai, S. Rapid gas-assisted exfoliation promises V2O5 nanosheets for high performance lithium-sulfur batteries. Nano Energy 2020, 67, 104253.

[190]

Liu, X. W.; Li, Z. H.; Liao, X. B.; Hong, X. F.; Li, Y.; Zhou, C.; Zhao, Y.; Xu, X.; Mai, L. Q. A three-dimensional nitrogen-doped graphene framework decorated with an atomic layer deposited ultrathin V2O5 layer for lithium sulfur batteries with high sulfur loading. J. Mater. Chem. A 2020, 8, 12106–12113.

[191]

Guo, Y.; Zhang, Y.; Zhang, Y.; Xiang, M. W.; Wu, H.; Liu, H. K.; Dou, S. X. Interwoven V2O5 nanowire/graphene nanoscroll hybrid assembled as efficient polysulfide-trapping-conversion interlayer for long-life lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 19358–19370.

[192]

Carter, R.; Oakes, L.; Muralidharan, N.; Cohn, A. P.; Douglas, A.; Pint, C. L. Polysulfide anchoring mechanism revealed by atomic layer deposition of V2O5 and sulfur-filled carbon nanotubes for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 7185–7192.

[193]

Tao, Y. Q.; Wei, Y. J.; Liu, Y.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium-sulfur battery. Energy Environ. Sci. 2016, 9, 3230–3239.

[194]

Wang, J. Y.; Li, G. R.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Wang, X.; Chen, Z. W. Engineering the conductive network of metal oxide-based sulfur cathode toward efficient and longevous lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2002076.

[195]

Cao, B. K.; Li, D.; Hou, B.; Mo, Y.; Yin, L. H.; Chen, Y. Synthesis of double-shell SnO2@C hollow nanospheres as sulfur/sulfide cages for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 27795–27802.

[196]

Wang, M. X.; Fan, L. S.; Wu, X.; Tian, D.; Cheng, J. H.; Qiu, Y.; Wu, H. X.; Guan, B.; Zhang, N. Q.; Sun, K. N. et al. Hierarchical mesoporous SnO2 nanosheets on carbon cloth toward enhancing the polysulfides redox for lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 19613–19618.

[197]

Hong, Y. J.; Lee, J. K.; Kang, Y. C. Yolk–shell carbon microspheres with controlled yolk and void volumes and shell thickness and their application as a cathode material for Li-S batteries. J. Mater. Chem. A 2017, 5, 988–995.

[198]

Liu, S. T.; Zhang, C.; Yue, W. B.; Chen, X.; Yang, X. J. Graphene-based mesoporous SnO2 nanosheets as multifunctional hosts for high-performance lithium-sulfur batteries. ACS Appl. Energy Mater. 2019, 2, 5009–5018.

[199]

Xiao, D. J.; Lu, C. X.; Chen, C. M.; Yuan, S. X. CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2018, 10, 216–222.

[200]

Ma, L. B.; Chen, R. P.; Zhu, G. Y.; Hu, Y.; Wang, Y. R.; Chen, T.; Liu, J.; Jin, Z. Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries. ACS Nano 2017, 11, 7274–7283.

[201]

Sun, F. G.; Wang, J. T.; Long, D. H.; Qiao, W. M.; Ling, L. C.; Lv, C. X.; Cai, R. A high-rate lithium-sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles. J. Mater. Chem. A 2013, 1, 13283–13289.

[202]

Xu, H. H.; Manthiram, A. Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium-sulfur batteries. Nano Energy 2017, 33, 124–129.

[203]

Liu, Z.; Zheng, X.; Luo, S. L.; Xu, S. Q.; Yuan, N. Y.; Ding, J. N. High performance Li-S battery based on amorphous NiS2 as the host material for the S cathode. J. Mater. Chem. A 2016, 4, 13395–13399.

[204]

Ren, J.; Zhou, Y. B.; Xia, L.; Zheng, Q. J.; Liao, J.; Long, E. Y.; Xie, F. Y.; Xu, C. G.; Lin, D. M. Rational design of a multidimensional N-doped porous carbon/MoS2/CNT nano-architecture hybrid for high performance lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 13835–13847.

[205]

Tian, Y. X.; Huang, H. W.; Liu, G. X.; Bi, R.; Zhang, L. Metal-organic framework derived yolk–shell NiS2/carbon spheres for lithium-sulfur batteries with enhanced polysulfide redox kinetics. Chem. Commun. 2019, 55, 3243–3246.

[206]
He, J. R.; Chen, Y. F.; Manthiram, A. MOF-derived cobalt sulfide grown on 3D graphene foam as an efficient sulfur host for long-life lithium-sulfur batteries. iScience 2018, 4, 36–43.
[207]

Ma, L. B.; Zhang, W. J.; Wang, L.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Chen, R. P.; Chen, T.; Tie, Z. X.; Liu, J. et al. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries. ACS Nano 2018, 12, 4868–4876.

[208]

Hong, X. D.; Li, S. L.; Tang, X. N.; Sun, Z. H.; Li, F. Self-supporting porous CoS2/rGO sulfur host prepared by bottom-up assembly for lithium-sulfur batteries. J. Alloys Compd. 2018, 749, 586–593.

[209]

Seo, S. D.; Park, D.; Park, S.; Kim, D. W. “Brain-coral-like” mesoporous hollow CoS2@N-doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1903712.

[210]

Sun, W. W.; Li, Y. J.; Liu, S. K.; Guo, Q. P.; Zhu, Y. H.; Hong, X. B.; Zheng, C. M.; Xie, K. Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Res. 2020, 13, 2143–2148.

[211]

Wei, J.; Chen, B.; Su, H.; Jiang, C.; Li, X. T.; Qiao, S. S.; Zhang, H. Co9S8 nanotube wrapped with graphene oxide as sulfur hosts with ultra-high sulfur content for lithium-sulfur battery. Ceram. Int. 2021, 47, 2686–2693.

[212]

Zhang, H.; Zou, M. C.; Zhao, W. Q.; Wang, Y. S.; Chen, Y. J.; Wu, Y. Z.; Dai, L. X.; Cao, A. Y. Highly dispersed catalytic Co3S4 among a hierarchical carbon nanostructure for high-rate and long-life lithium-sulfur batteries. ACS Nano 2019, 13, 3982–3991.

[213]

Zhou, J.; Lin, N.; Cai, W. L.; Guo, C.; Zhang, K. L.; Zhou, J. B.; Zhu, Y. C.; Qian, Y. T. Synthesis of S/CoS2 nanoparticles-embedded N-doped carbon polyhedrons from polyhedrons ZIF-67 and their properties in lithium-sulfur batteries. Electrochim. Acta 2016, 218, 243–251.

[214]

Ai, G.; Hu, Q. Q.; Zhang, L.; Dai, K. H.; Wang, J.; Xu, Z. J.; Huang, Y.; Zhang, B.; Li, D. J.; Zhang, T. et al. Investigation of the nanocrystal CoS2 embedded in 3D honeycomb-like graphitic carbon with a synergistic effect for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 33987–33999.

[215]

Zhang, N.; Yang, Y.; Feng, X. R.; Yu, S. H.; Seok, J.; Muller, D. A.; Abruña, H. D. Sulfur encapsulation by MOF-derived CoS2 embedded in carbon hosts for high-performance Li-S batteries. J. Mater. Chem. A 2019, 7, 21128–21139.

[216]

Dai, C. L.; Lim, J. M.; Wang, M. Q.; Hu, L. Y.; Chen, Y. M.; Chen, Z. Y.; Chen, H.; Bao, S. J.; Shen, B. L.; Li, Y. et al. Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704443.

[217]

Liu, X. F.; Wang, D.; Yang, X. Z.; Zhao, Z. Z.; Yang, H.; Feng, M.; Zhang, W.; Zheng, W. T. Synergistic dual-confinement effect: Merit of hollowly metallic Co9S8 in packaging enhancement of electrochemical performance of Li-S batteries. ACS Appl. Energy Mater. 2019, 2, 1428–1435.

[218]

Pu, J.; Shen, Z. H.; Zheng, J. X.; Wu, W. L.; Zhu, C.; Zhou, Q. W.; Zhang, H. G.; Pan, F. Multifunctional Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy 2017, 37, 7–14.

[219]

Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.

[220]

Pan, Y. L.; Cheng, X. D.; Gao, M. Y.; Fu, Y. B.; Feng, J.; Ahmed, H.; Gong, L. L.; Zhang, H. P.; Battaglia, V. S. Dual-functional multichannel carbon framework embedded with CoS2 nanoparticles: Promoting the phase transformation for high-loading Li-S batteries. ACS Appl. Mater. Interfaces 2020, 12, 32726–32735.

[221]

Meng, T.; Gao, J. C.; Liu, Y. N.; Zhu, J. H.; Zhang, H.; Ma, L.; Xu, M. W.; Li, C. M.; Jiang, J. Highly puffed Co9S8/carbon nanofibers: A functionalized S carrier for superior Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 26798–26806.

[222]

Pang, Q.; Kundu, D.; Nazar, L. F. A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Mater. Horiz. 2016, 3, 130–136.

[223]

Chen, T.; Ma, L. B.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Liang, J.; Tie, Z. X.; Liu, J. et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries. Nano Energy 2017, 38, 239–248.

[224]

Chen, T.; Zhang, Z. W.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Liu, J.; Jin, Z. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J. Am. Chem. Soc. 2017, 139, 12710–12715.

[225]

Dirlam, P. T.; Park, J.; Simmonds, A. G.; Domanik, K.; Arrington, C. B.; Schaefer, J. L.; Oleshko, V. P.; Kleine, T. S.; Char, K.; Glass, R. S. et al. Elemental sulfur and molybdenum disulfide composites for Li-S batteries with long cycle life and high-rate capability. ACS Appl. Mater. Interfaces 2016, 8, 13437–13448.

[226]

Li, X. L.; Zhao, K.; Zhang, L. Y.; Ding, Z. Q.; Hu, K. MoS2-decorated coaxial nanocable carbon aerogel composites as cathode materials for high performance lithium-sulfur batteries. J. Alloys Compd. 2017, 692, 40–48.

[227]

Tang, W.; Chen, Z. X.; Tian, B. B.; Lee, H. W.; Zhao, X. X.; Fan, X. F.; Fan, Y. C.; Leng, K.; Peng, C. X.; Kim, M. H. et al. In situ observation and electrochemical study of encapsulated sulfur nanoparticles by MoS2 flakes. J. Am. Chem. Soc. 2017, 139, 10133–10141.

[228]

Wang, H. T.; Zhang, Q. F.; Yao, H. B.; Liang, Z.; Lee, H. W.; Hsu, P. C.; Zheng, G. Y.; Cui, Y. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett. 2014, 14, 7138–7144.

[229]

Yang, W.; Yang, W.; Dong, L. B.; Gao, X. C.; Wang, G. X.; Shao, G. J. Enabling immobilization and conversion of polysulfides through a nitrogen-doped carbon nanotubes/ultrathin MoS2 nanosheet core–shell architecture for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 13103–13112.

[230]

Chai, C. S.; Tan, H.; Fan, X. Y.; Huang, K. MoS2 nanosheets/graphitized porous carbon nanofiber composite: A dual-functional host for high-performance lithium-sulfur batteries. J. Alloys Compd. 2020, 820, 153144.

[231]

He, J. R.; Hartmann, G.; Lee, M.; Hwang, G. S.; Chen, Y. F.; Manthiram, A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ. Sci. 2019, 12, 344–350.

[232]

Wei, Y. J.; Kong, Z. K.; Pan, Y. K.; Cao, Y. Q.; Long, D. H.; Wang, J. T.; Qiao, W. M.; Ling, L. C. Sulfur film sandwiched between few-layered MoS2 electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 5899–5909.

[233]

You, Y.; Ye, Y. W.; Wei, M. L.; Sun, W. J.; Tang, Q.; Zhang, J.; Chen, X.; Li, H. Q.; Xu, J. Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 2019, 355, 671–678.

[234]

Li, Z. T.; Deng, S. Z.; Xu, R. F.; Wei, L. Q.; Su, X.; Wu, M. B. Combination of nitrogen-doped graphene with MoS2 nanoclusters for improved Li-S battery cathode: Synthetic effect between 2D components. Electrochim. Acta 2017, 252, 200–207.

[235]

Wei, H.; Ding, Y. S.; Li, H.; Zhang, Q.; Hu, N. T.; Wei, L. M.; Yang, Z. MoS2 quantum dots decorated reduced graphene oxide as a sulfur host for advanced lithium-sulfur batteries. Electrochim. Acta 2019, 327, 134994.

[236]

Hu, L. Y.; Dai, C. L.; Lim, J. M.; Chen, Y. M.; Lian, X.; Wang, M. Q.; Li, Y.; Xiao, P. H.; Henkelman, G.; Xu, M. W. A highly efficient double-hierarchical sulfur host for advanced lithium-sulfur batteries. Chem. Sci. 2018, 9, 666–675.

[237]

Liu, M. M.; Zhang, C. C.; Su, J. M.; Chen, X.; Ma, T. Y.; Huang, T.; Yu, A. S. Propelling polysulfide conversion by defect-rich MoS2 nanosheets for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 20788–20795.

[238]

Lin, H. B.; Yang, L. Q.; Jiang, X.; Li, G. C.; Zhang, T. R.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1476–1486.

[239]

Wang, H. E.; Li, X. C.; Qin, N.; Zhao, X.; Cheng, H.; Cao, G. Z.; Zhang, W. J. Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator. J. Mater. Chem. A 2019, 7, 12068–12074.

[240]

Wang, N.; Chen, B.; Qin, K. Q.; Zhang, R.; Tang, Y.; Liu, E. Z.; Shi, C. S.; He, C. N.; Zhao, N. Q. Octopus-inspired design of apical NiS2 nanoparticles supported on hierarchical carbon composites as an efficient host for lithium sulfur batteries with high sulfur loading. ACS Appl. Mater. Interfaces 2020, 12, 17528–17537.

[241]

Asif, M.; Ali, Z.; Qiu, H. L.; Rashad, M.; Hou, Y. L. Confined polysulfide shuttle by nickel disulfide nanoparticles encapsulated in graphene nanoshells synthesized by cooking oil. ACS Appl. Energy Mater. 2020, 3, 3541–3552.

[242]

Hu, S. Y.; Yi, M. J.; Siyal, S. H.; Wu, D.; Wang, H.; Zhu, Z. Y.; Zhang, J. H. Metal-organic framework derived NiS2 hollow spheres as multifunctional reactors for synergistic regulation of polysulfide confinement and redox conversion. J. Mater. Chem. A 2021, 9, 15269–15281.

[243]

Lu, Y.; Li, X. N.; Liang, J. W.; Hu, L.; Zhu, Y. C.; Qian, Y. T. A simple melting-diffusing-reacting strategy to fabricate S/NiS2-C for lithium-sulfur batteries. Nanoscale 2016, 8, 17616–17622.

[244]

Li, Y.; Chen, J.; Zhang, Y. F.; Yu, Z. Y.; Zhang, T. Z.; Ge, W. Q.; Zhang, L. P. NiS2/rGO/S capable of lithium polysulfide trapping as an enhanced cathode material for lithium sulfur batteries. J. Alloys Compd. 2018, 766, 804–812.

[245]

Luo, L.; Chung, S. H.; Manthiram, A. Rational design of a dual-function hybrid cathode substrate for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1801014.

[246]

Guo, D. Y.; Zhang, Z. H.; Xi, B.; Yu, Z. S.; Zhou, Z.; Chen, X. A. Ni3S2 anchored to N/S co-doped reduced graphene oxide with highly pleated structure as a sulfur host for lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 3834–3844.

[247]

Ye, C.; Zhang, L.; Guo, C. X.; Li, D. D.; Vasileff, A.; Wang, H. H.; Qiao, S. Z. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1702524.

[248]

Lu, X. L.; Zhang, Q. F.; Wang, J.; Chen, S. H.; Ge, J. M.; Liu, Z. M.; Wang, L. L.; Ding, H. B.; Gong, D. C.; Yang, H. G. et al. High performance bimetal sulfides for lithium-sulfur batteries. Chem. Eng. J. 2019, 358, 955–961.

[249]

Douglas, A.; Carter, R.; Oakes, L.; Share, K.; Cohn, A. P.; Pint, C. L. Ultrafine iron pyrite (FeS2) nanocrystals improve sodium-sulfur and lithium-sulfur conversion reactions for efficient batteries. ACS Nano 2015, 9, 11156–11165.

[250]

Jin, X. Z.; Gao, S.; Wu, A. M.; Zhao, J. J.; Huang, H.; Cao, G. Z. Dual-constrained sulfur in FeS2@C nanostructured lithium-sulfide batteries. ACS Appl. Energy Mater. 2020, 3, 10950–10960.

[251]

Xi, K.; He, D. Q.; Harris, C.; Wang, Y. K.; Lai, C.; Li, H. L.; Coxon, P. R.; Ding, S. J.; Wang, C.; Kumar, R. V. Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in lithium-sulfur batteries. Adv. Sci. 2019, 6, 1800815.

[252]

Zhang, S. S.; Tran, D. T. Pyrite FeS2 as an efficient adsorbent of lithium polysulphide for improved lithium-sulphur batteries. J. Mater. Chem. A 2016, 4, 4371–4374.

[253]

Ma, L.; Wei, S. Y.; Zhuang, H. L.; Hendrickson, K. E.; Hennig, R. G.; Archer, L. A. Hybrid cathode architectures for lithium batteries based on TiS2 and sulfur. J. Mater. Chem. A 2015, 3, 19857–19866.

[254]

Xiao, Z. B.; Yang, Z.; Zhou, L. J.; Zhang, L. J.; Wang, R. H. Highly conductive porous transition metal dichalcogenides via water steam etching for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 18845–18855.

[255]

Liu, X. C.; Yang, Y.; Wu, J. J.; Liu, M.; Zhou, S. P.; Levin, B. D. A.; Zhou, X. D.; Cong, H. J.; Muller, D. A.; Ajayan, P. M. et al. Dynamic hosts for high-performance Li-S batteries studied by cryogenic transmission electron microscopy and in situ X-ray diffraction. ACS Energy Lett. 2018, 3, 1325–1330.

[256]

Huang, X.; Tang, J. Y.; Luo, B.; Knibbe, R.; Lin, T. E.; Hu, H.; Rana, M.; Hu, Y. X.; Zhu, X. B.; Gu, Q. F. et al. Sandwich-like ultrathin TiS2 nanosheets confined within N, S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901872.

[257]

Zhao, Y. Y.; Cai, W. L.; Fang, Y. T.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Sulfur-deficient TiS2−x for promoted polysulfide redox conversion in lithium-sulfur batteries. ChemElectroChem 2019, 6, 2231–2237.

[258]

Yao, S. S.; Zhang, C. J.; Xie, F. W.; Xue, S. K.; Gao, K. D.; Guo, R. D.; Shen, X. Q.; Li, T. B.; Qin, S. B. Hybrid membrane with SnS2 nanoplates decorated nitrogen-doped carbon nanofibers as binder-free electrodes with ultrahigh sulfur loading for lithium sulfur batteries. ACS Sustain. Chem. Eng. 2020, 8, 2707–2715.

[259]

Xu, J.; Zhang, W. X.; Fan, H. B.; Cheng, F. L.; Su, D. W.; Wang, G. X. Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy 2018, 51, 73–82.

[260]

Wang, Q.; Wang, Z. B.; Yang, M. H.; Li, C.; Gu, D. M. A novel synthetic route to cathode materials for Li-S batteries: From organic sulfides to sulfur/nitrogenous carbon composites. J. Mater. Chem. A 2017, 5, 16796–16802.

[261]

Hosseini, S. M.; Varzi, A.; Ito, S.; Aiharaa, Y.; Passerini, S. High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity. Energy Storage Mater. 2020, 27, 61–68.

[262]

Wang, X.; Zhao, X. S.; Ma, C. H.; Yang, Z. Z.; Chen, G.; Wang, L.; Yue, H. J.; Zhang, D.; Sun, Z. H. Electrospun carbon nanofibers with MnS sulfiphilic sites as efficient polysulfide barriers for high-performance wide-temperature-range Li-S batteries. J. Mater. Chem. A 2020, 8, 1212–1220.

[263]

Cheng, Z. B.; Xiao, Z. B.; Pan, H.; Wang, S. Q.; Wang, R. H. Elastic sandwich-type rGO-VS2/S composites with high tap density: Structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density. Adv. Energy Mater. 2018, 8, 1702337.

[264]

Guo, T. Q.; Song, Y. Z.; Sun, Z. T.; Wu, Y. H.; Xia, Y.; Li, Y. Y.; Sun, J. H.; Jiang, K.; Dou, S. X.; Sun, J. Y. Bio-templated formation of defect-abundant VS2 as a bifunctional material toward high-performance hydrogen evolution reactions and lithium-sulfur batteries. J. Energy Chem. 2020, 42, 34–42.

[265]

Zhu, X. Y.; Zhao, W.; Song, Y. Z.; Li, Q. C.; Ding, F.; Sun, J. Y.; Zhang, L.; Liu, Z. F. In Situ assembly of 2D conductive vanadium disulfide with graphene as a high-sulfur-loading host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1800201.

[266]

Wu, H. L.; Huan, Y. H.; Wang, D. H.; Li, M. H.; Cheng, X. Q.; Bai, Z. M.; Wu, P. W.; Peng, W. C.; Zhang, R. X.; Ji, Z. et al. Hierarchical VS2 nano-flowers as sulfur host for lithium sulfur battery cathodes. J. Electrochem. Soc. 2019, 166, A188–A194.

[267]

Zhang, C. Y.; Sun, G. W.; Shi, Z. D.; Liu, Q. Y.; Pan, J. L.; Wang, Y. C.; Zhao, H.; Sun, G. Z.; Gao, X. P.; Pan, X. J. et al. Deciphering the catalysis essence of vanadium self-intercalated two-dimensional vanadium sulfides (V5S8) on lithium polysulfide towards high-rate and ultra-stable Li-S batteries. Energy Storage Mater. 2021, 43, 471–481.

[268]

Pam, M. E.; Huang, S. Z.; Fan, S.; Geng, D. C.; Kong, D. Z.; Chen, S.; Ding, M.; Guo, L.; Ang, L. K.; Yang, H. Y. Interface engineering by atomically thin layer tungsten disulfide catalyst for high performance Li-S battery. Mater. Today Energy 2020, 16, 100380.

[269]

Liu, J. T.; Xiao, S. H.; Chang, L.; Lai, L.; Wu, R.; Xiang, Y.; Liu, X. Q.; Chen, J. S. Regulating the d band in WS2@NC hierarchical nanospheres for efficient lithium polysulfide conversion in lithium-sulfur batteries. J. Energy Chem. 2021, 56, 343–352.

[270]

Liu, J. Q.; Li, K. H.; Zhang, Q.; Zhang, X. F.; Liang, X.; Yan, J.; Tan, H. H.; Yu, Y.; Wu, Y. C. 3D tungsten disulfide/carbon nanotube networks as separator coatings and cathode additives for stable and fast lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 45547–45557.

[271]

Lei, T. Y.; Chen, W.; Huang, J. W.; Yan, C. Y.; Sun, H. X.; Wang, C.; Zhang, W. L.; Li, Y. R.; Xiong, J. Multi-functional layered WS2 Nanosheets for enhancing the performance of lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1601843.

[272]

Xiao, S. J.; Zhang, J.; Deng, Y. Q.; Zhou, G. M.; Wang, R. C.; He, Y. B.; Lv, W.; Yang, Q. H. Graphene-templated growth of WS2 nanoclusters for catalytic conversion of polysulfides in lithium-sulfur batteries. ACS Appl. Energy Mater. 2020, 3, 4923–4930.

[273]

Huang, S. Z.; Wang, Y.; Hu, J. P.; Von Lim, Y.; Kong, D. Z.; Zheng, Y.; Ding, M.; Pam, M. E.; Yang, H. Y. Mechanism investigation of high-performance Li-polysulfide batteries enabled by tungsten disulfide nanopetals. ACS Nano 2018, 12, 9504–9512.

[274]

Zhang, K. L.; Chen, F. F.; Pan, H. L.; Wang, L.; Wang, D.; Jiang, Y.; Wang, L. B.; Qian, Y. T. Study on the effect of transition metal sulfide in lithium-sulfur battery. Inorg. Chem. Front. 2019, 6, 477–481.

[275]

Li, X. N.; Liang, J. W.; Lu, Y.; Hou, Z. G.; Zhang, W. Q.; Zhu, Y. C.; Qian, Y. T. Bi2S3 in-situ formed in molten S environment stabilized sulfur cathodes for high-performance lithium-sulfur batteries. J. Power Sources 2016, 329, 379–386.

[276]

Zhang, Y. S.; Zhang, P.; Li, B.; Zhang, S. J.; Liu, K. L.; Hou, R. H.; Zhang, X. L.; Silva, S. R. P.; Shao, G. S. Vertically aligned graphene nanosheets on multi-yolk/shell structured TiC@C nanofibers for stable Li-S batteries. Energy Storage Mater. 2020, 27, 159–168.

[277]

Zhang, Y. S.; Zhang, P.; Zhang, S. J.; Wang, Z.; Li, N.; Silva, S. R. P.; Shao, G. S. A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li-S batteries. InfoMat 2021, 3, 790–803.

[278]

Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 12990–12995.

[279]

Shi, H. F.; Sun, Z. H.; Lv, W.; Wang, S. G.; Shi, Y.; Zhang, Y. B.; Xiao, S. J.; Yang, H. C.; Yang, Q. H.; Li, F. Necklace-like MoC sulfiphilic sites embedded in interconnected carbon networks for Li-S batteries with high sulfur loading. J. Mater. Chem. A 2019, 7, 11298–11304.

[280]

Yu, B.; Huang, A. J.; Chen, D. J.; Srinivas, K.; Zhang, X. J.; Wang, X. Q.; Wang, B.; Ma, F.; Liu, C. L.; Zhang, W. L. et al. In situ construction of Mo2C quantum dots-decorated CNT networks as a multifunctional electrocatalyst for advanced lithium-sulfur batteries. Small 2021, 7, 2100460.

[281]

Zeng, X. Q.; Gao, X. H.; Li, G. R.; Sun, M. H.; Lin, Z.; Ling, M.; Zheng, J. C.; Liang, C. D. Conductive molybdenum carbide as the polysulfide reservoir for lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 17142–17147.

[282]

Sun, M. Z.; Wang, Z.; Li, X.; Li, H. B.; Jia, H. S.; Xue, X. X.; Jin, M.; Li, J. Q.; Xie, Y.; Feng, M. Rational understanding of the catalytic mechanism of molybdenum carbide in polysulfide conversion in lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 11818–11823.

[283]

Li, J. Y.; Zhang, H. W.; Luo, L. Q.; Li, H.; He, J. Y.; Zu, H. L.; Liu, L.; Liu, H.; Wang, F. Y.; Song, J. J. Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 2205–2213.

[284]

Wei, H.; Rodriguez, E. F.; Best, A. S.; Hollenkamp, A. F.; Chen, D. H.; Caruso, R. A. ordered mesoporous graphitic carbon/iron carbide composites with high porosity as a sulfur host for Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 13194–13204.

[285]

Zhang, Y. G.; Li, G. R.; Wang, J. Y.; Cui, G. L.; Wei, X. L.; Shui, L. L.; Kempa, K.; Zhou, G. F.; Wang, X.; Chen, Z. W. Hierarchical defective Fe3−xC@C hollow microsphere enables fast and long-lasting lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2001165.

[286]

Shen, S. H.; Xia, X. H.; Zhong, Y.; Deng, S. J.; Xie, D.; Liu, B.; Zhang, Y.; Pan, G. X.; Wang, X. L.; Tu, J. P. Implanting niobium carbide into trichoderma spore carbon: A new advanced host for sulfur cathodes. Adv. Mater. 2019, 31, 1900009.

[287]

Zhou, F.; Li, Z.; Luo, X.; Wu, T.; Jiang, B.; Lu, L. L.; Yao, H. B.; Antonietti, M.; Yu, S. H. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries. Nano Lett. 2018, 18, 1035–1043.

[288]

Chen, G. L.; Li, Y. J.; Zhong, W. T.; Zheng, F. H.; Hu, J. H.; Ji, X. H.; Liu, W. Z.; Yang, C. H.; Lin, Z.; Liu, M. L. MOFs-derived porous Mo2C-C nano-octahedrons enable high-performance lithium-sulfur batteries. Energy Storage Mater. 2020, 25, 547–554.

[289]

Qin, B.; Cai, Y. F.; Si, X. Q.; Li, C.; Cao, J.; Fei, W. D.; Xie, H. J.; Qi, J. L. All-in-one sulfur host: Smart controls of architecture and composition for accelerated liquid-solid redox conversion in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 39424–39434.

[290]

Niu, S. Z.; Zhang, S. W.; Shi, R.; Wang, J. W.; Wang, W. J.; Chen, X. M.; Zhang, Z. Q.; Miao, J.; Amini, A.; Zhao, Y. S. et al. Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries. Energy Storage Mater. 2020, 33, 73–81.

[291]

Li, H. X.; Ma, S.; Cai, H. Q.; Zhou, H. H.; Huang, Z. Y.; Hou, Z. H.; Wu, J. J.; Yang, W. J.; Yi, H. B.; Fu, C. P. et al. Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. Energy Storage Mater. 2019, 18, 338–348.

[292]

Weng, W.; Xiao, J. X.; Shen, Y. J.; Liang, X. X.; Lv, T.; Xiao, W. Molten salt electrochemical modulation of iron-carbon-nitrogen for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 24905–24909.

[293]

Zhang, H. Y.; Cui, H. T.; Li, J.; Liu, Y. Y.; Yang, Y. Z.; Wang, M. R. Frogspawn inspired hollow Fe3C@N-C as an efficient sulfur host for high-rate lithium-sulfur batteries. Nanoscale 2019, 11, 21532–21541.

[294]

Gao, Z.; Schwab, Y.; Zhang, Y. Y.; Song, N. N.; Li, X. D. Ferromagnetic nanoparticle-assisted polysulfide trapping for enhanced lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1800563.

[295]

Wang, Y. Z.; Li, M.; Xu, L. C.; Tang, T. Y.; Ali, Z.; Huang, X. X.; Hou, Y. L.; Zhang, S. Q. Polar and conductive iron carbide@N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries. Chem. Eng. J. 2019, 358, 962–968.

[296]

Kou, W.; Chen, G. H.; Liu, Y.; Guan, W. X.; Li, X. C.; Zhang, N.; He, G. H. Patterned macroporous Fe3C/C membrane-induced high ionic conductivity for integrated Li-sulfur battery cathodes. J. Mater. Chem. A 2019, 7, 20614–20623.

[297]

Li, X. C.; Zhang, Y.; Wang, S. T.; Liu, Y.; Ding, Y.; He, G. H.; Zhang, N.; Yu, G. H. Hierarchically porous C/Fe3C membranes with fast ion-transporting channels and polysulfide-trapping networks for high-areal-capacity Li-S batteries. Nano Lett. 2020, 20, 701–708.

[298]

Tang, H.; Li, W. L.; Pan, L. M.; Cullen, C. P.; Liu, Y.; Pakdel, A.; Long, D. H.; Yang, J.; McEvoy, N.; Duesberg, G. S. et al. In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 2018, 5, 1800502.

[299]

Zhang, F.; Zhou, Y. L.; Zhang, Y.; Li, D. C.; Huang, Z. C. Facile synthesis of sulfur@titanium carbide Mxene as high performance cathode for lithium-sulfur batteries. Nanophotonics 2020, 9, 2025–2032.

[300]

Zhao, X. Q.; Liu, M.; Chen, Y.; Hou, B.; Zhang, N.; Chen, B. B.; Yang, N.; Chen, K.; Li, J. L.; An, L. N. Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 7870–7876.

[301]

Hou, R. H.; Zhang, S. J.; Zhang, P.; Zhang, Y. S.; Zhang, X. L.; Li, N.; Shi, Z. H.; Shao, G. S. Ti3C2 MXene as an “energy band bridge” to regulate the heterointerface mass transfer and electron reversible exchange process for Li-S batteries. J. Mater. Chem. A 2020, 8, 25255–25267.

[302]

Lee, D. K.; Chae, Y.; Yun, H.; Ahn, C. W.; Lee, J. W. CO2-oxidized Ti3C2Tx-MXenes components for lithium-sulfur batteries: Suppressing the shuttle phenomenon through physical and chemical adsorption. ACS Nano 2020, 14, 9744–9754.

[303]

Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.

[304]

Tang, H.; Li, W. L.; Pan, L. M.; Tu, K. J.; Du, F.; Qiu, T.; Yang, J.; Cullen, C. P.; McEvoy, N.; Zhang, C. F. A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries. Adv. Funct. Mater. 2019, 29, 1901907.

[305]

Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.

[306]

Xu, M. Y.; Liang, L.; Qi, J.; Wu, T. L.; Zhou, D.; Xiao, Z. B. Intralayered ostwald ripening-induced self-catalyzed growth of CNTs on MXene for robust lithium-sulfur batteries. Small 2021, 17, 2007446.

[307]

Wang, J. L.; Zhang, Z.; Yan, X. F.; Zhang, S. L.; Wu, Z. H.; Zhuang, Z. H.; Han, W. Q. Rational design of porous N-Ti3C2 MXene@CNT Microspheres for high cycling stability in Li-S battery. Nano-Micro Lett. 2020, 12, 4.

[308]

Bao, W. Z.; Su, D. W.; Zhang, W. X.; Guo, X.; Wang, G. X. 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 8746–8756.

[309]

Shen, Q. Q.; Huang, L. W.; Chen, G. J.; Zhang, X. L.; Chen, Y. G. One-step synthesis of titanium nitride/nitrogen-doped graphene nanocomposite as separator modifying material for advanced lithium-sulfur batteries. J. Alloys Compd. 2020, 845, 155543.

[310]

Zhang, J.; You, C. Y.; Zhang, W. H.; Wang, J.; Guo, S. H.; Yang, R.; Xu, Y. H. Conductive bridging effect of TiN nanoparticles on the electrochemical performance of TiN@CNT-S composite cathode. Electrochim. Acta 2017, 250, 159–166.

[311]

Deng, D. R.; An, T. H.; Li, Y. J.; Wu, Q. H.; Zheng, M. S.; Dong, Q. F. Hollow porous titanium nitride tubes as a cathode electrode for extremely stable Li-S batteries. J. Mater. Chem. A 2016, 4, 16184–16190.

[312]

Hao, Z. X.; Yuan, L. X.; Chen, C. J.; Xiang, J. W.; Li, Y. Y.; Huang, Z. M.; Hu, P.; Huang, Y. H. TiN as a simple and efficient polysulfide immobilizer for lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 17711–17717.

[313]

Zha, C. Y.; Zhu, X. R.; Deng, J.; Zhou, Y.; Li, Y. S.; Chen, J. M.; Ding, P.; Hu, Y. P.; Li, Y. F.; Chen, H. Y. Facet-tailoring five-coordinated Ti sites and structure-optimizing electron transfer in a bifunctional cathode with titanium nitride nanowire array to boost the performance of Li2S6-based lithium-sulfur batteries. Energy Storage Mater. 2020, 26, 40–45.

[314]

You, H. R.; Shi, M. C.; Hao, J. W.; Min, H. H.; Yang, H.; Liu, X. M. A spongy mesoporous titanium nitride material as sulfur host for high performance lithium-sulfur batteries. J. Alloys Compd. 2020, 823, 153879.

[315]

Cui, Z. M.; Zu, C. X.; Zhou, W. D.; Manthiram, A.; Goodenough, J. B. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 2016, 28, 6926–6931.

[316]

Mosavati, N.; Chitturi, V. R.; Salley, S. O.; Ng, K. Y. S. Nanostructured titanium nitride as a novel cathode for high performance lithium/dissolved polysulfide batteries. J. Power Sources 2016, 321, 87–93.

[317]

Li, C. C.; Shi, J. J.; Zhu, L.; Zhao, Y. Y.; Lu, J.; Xu, L. Q. Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries. Nano Res. 2018, 11, 4302–4312.

[318]

Lim, W. G.; Jo, C.; Cho, A.; Hwang, J.; Kim, S.; Han, J. W.; Lee, J. Approaching ultrastable high-rate Li-S batteries through hierarchically porous titanium nitride synthesized by multiscale phase separation. Adv. Mater. 2019, 31, 1806547.

[319]

Liao, Y. Q.; Xiang, J. W.; Yuan, L. X.; Hao, Z. X.; Gu, J. F.; Chen, X.; Yuan, K.; Kalambate, P. K.; Huang, Y. H. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 37955–37962.

[320]

Wang, Y. K.; Zhang, R. F.; Pang, Y. C.; Chen, X.; Lang, J. X.; Xu, J. J.; Xiao, C. H.; Li, H. L.; Xi, K.; Ding, S. J. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 2019, 16, 228–235.

[321]

Chen, W. M.; Jin, H. C.; Xie, S.; Xie, H. Y.; Zhu, J. F.; Ji, H. X.; Wan, L. J. TiN nanocrystal anchored on N-doped graphene as effective sulfur hosts for high-performance lithium-sulfur batteries. J. Energy Chem. 2021, 54, 16–22.

[322]

Luo, R. J.; Yu, Q. H.; Lu, Y.; Zhang, M. J.; Peng, T.; Yan, H. L.; Liu, X. M.; Kim, J. K.; Luo, Y. S. 3D pomegranate-like TiN@graphene composites with electrochemical reaction chambers as sulfur hosts for ultralong-life lithium-sulfur batteries. Nanoscale Horiz. 2019, 4, 531–539.

[323]

Tu, J. X.; Li, H. J.; Lan, T. B.; Zeng, S. Z.; Zou, J. Z.; Zhang, Q.; Zeng, X. R. Facile synthesis of TiN nanocrystals/graphene hybrid to chemically suppress the shuttle effect for lithium-sulfur batteries. J. Alloys Compd. 2020, 822, 153751.

[324]

Xing, Z. Y.; Li, G. R.; Sy, S.; Chen, Z. W. Recessed deposition of TiN into N-doped carbon as a cathode host for superior Li-S batteries performance. Nano Energy 2018, 54, 1–9.

[325]

Li, Z. H.; He, Q.; Xu, X.; Zhao, Y.; Liu, X. W.; Zhou, C.; Ai, D.; Xia, L. X.; Mai, L. Q. A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 2018, 30, 1804089.

[326]

He, J. R.; Manthiram, A. Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor. Adv. Energy Mater. 2020, 10, 1903241.

[327]

Ma, L. B.; Yuan, H.; Zhang, W. J.; Zhu, G. Y.; Wang, Y. R.; Hu, Y.; Zhao, P. Y.; Chen, R. P.; Chen, T.; Liu, J. et al. Porous-shell vanadium nitride nanobubbles with ultrahigh areal sulfur loading for high-capacity and long-life lithium-sulfur batteries. Nano Lett. 2017, 17, 7839–7846.

[328]

Zhong, Y.; Chao, D. L.; Deng, S. J.; Zhan, J. Y.; Fang, R. Y.; Xia, Y.; Wang, Y. D.; Wang, X. L.; Xia, X. H.; Tu, J. P. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1706391.

[329]

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

[330]

Liu, R. Q.; Liu, W. H.; Bu, Y. L.; Yang, W. W.; Wang, C.; Priest, C.; Liu, Z. W.; Wang, Y. Z.; Chen, J. Y.; Wang, Y. H. et al. Conductive porous laminated vanadium nitride as carbon-free hosts for high-loading sulfur cathodes in lithium-sulfur batteries. ACS Nano 2020, 14, 17308–17320.

[331]

Deng, D. R.; Xue, F.; Jia, Y. J.; Ye, J. C.; Bai, C. D.; Zheng, M. S.; Dong, Q. F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano 2017, 11, 6031–6039.

[332]

Zhang, H.; Tian, D. X.; Zhao, Z. B.; Liu, X. G.; Hou, Y. N.; Tang, Y. J.; Liang, J. J.; Zhang, Z. C.; Wang, X. Z.; Qiu, J. S. Cobalt nitride nanoparticles embedded in porous carbon nanosheet arrays propelling polysulfides conversion for highly stable lithium-sulfur batteries. Energy Storage Mater. 2019, 21, 210–218.

[333]

Mosavati, N.; Salley, S. O.; Ng, K. Y. S. Characterization and electrochemical activities of nanostructured transition metal nitrides as cathode materials for lithium sulfur batteries. J. Power Sources 2017, 340, 210–216.

[334]

Li, R. R.; Peng, H. J.; Wu, Q. P.; Zhou, X. J.; He, J.; Shen, H. J.; Yang, M. H.; Li, C. L. Sandwich-like catalyst-carbon-catalyst trilayer structure as a compact 2D host for highly stable lithium-sulfur batteries. Angew. Chem., Int. Ed. 2020, 59, 12129–12138.

[335]

Zhang, L. L.; Chen, X.; Wan, F.; Niu, Z. Q.; Wang, Y. J.; Zhang, Q.; Chen, J. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries. ACS Nano 2018, 12, 9578–9586.

[336]

Shi, H. F.; Sun, Z. H.; Lv, W.; Xiao, S. J.; Yang, H. C.; Shi, Y.; Chen, K.; Wang, S. G.; Zhang, B. S.; Yang, Q. H. et al. Efficient polysulfide blocker from conductive niobium nitride@graphene for Li-S batteries. J. Energy Chem. 2020, 45, 135–141.

[337]

Li, X. X.; Gao, B.; Huang, X.; Guo, Z. J.; Li, Q. W.; Zhang, X. M.; Chu, P. K.; Huo, K. F. Conductive mesoporous niobium nitride microspheres/nitrogen-doped graphene hybrid with efficient polysulfide anchoring and catalytic conversion for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 2961–2969.

[338]

Li, Y.; Dong, Z. H.; Jiao, L. F. Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 2020, 10, 1902104.

[339]

Jin, J.; Cai, W. L.; Cai, J. S.; Shao, Y. L.; Song, Y. Z.; Xia, Z.; Zhang, Q.; Sun, J. Y. MOF-derived hierarchical CoP nanoflakes anchored on vertically erected graphene scaffolds as self-supported and flexible hosts for lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 3027–3034.

[340]

Cheng, Q.; Yin, Z. H.; Pan, S. Y.; Zhang, G. Z.; Pan, Z. X.; Yu, X. Y.; Fang, Y. P.; Rao, H. S.; Zhong, X. H. Enhancing adsorption and reaction kinetics of polysulfides using COP-coated N-doped mesoporous carbon for high-energy-density lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 43844–43853.

[341]

Qi, C. Y.; Li, Z.; Sun, C. Z.; Chen, C. H.; Jin, J.; Wen, Z. Y. Cobalt phosphide nanoflake-induced flower-like sulfur for high redox kinetics and fast ion transfer in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 49626–49635.

[342]

Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455–1459.

[343]

Sun, R.; Bai, Y.; Luo, M.; Qu, M. X.; Wang, Z. H.; Sun, W.; Sun, K. N. Enhancing polysulfide confinement and electrochemical kinetics by amorphous cobalt phosphide for highly efficient lithium-sulfur batteries. ACS Nano 2021, 15, 739–750.

[344]

Zhang, H. Y.; Xin, S. S.; Li, J.; Cui, H. T.; Liu, Y. Y.; Yang, Y. Z.; Wang, M. R. Synergistic regulation of polysulfides immobilization and conversion by MOF-derived CoP-HNC nanocages for high-performance lithium-sulfur batteries. Nano Energy 2021, 85, 106011.

[345]

Zhou, J. B.; Liu, X. J.; Zhu, L. Q.; Zhou, J.; Guan, Y.; Chen, L.; Niu, S. W.; Cai, J. Y.; Sun, D.; Zhu, Y. C. et al. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry. Joule 2018, 2, 2681–2693.

[346]

Li, Y. J.; Xu, P.; Chen, G. L.; Mou, J. R.; Xue, S. F.; Li, K.; Zheng, F. H.; Dong, Q. F.; Hu, J. H.; Yang, C. H. et al. Enhancing Li-S redox kinetics by fabrication of a three dimensional Co/CoP@nitrogen-doped carbon electrocatalyst. Chem. Eng. J. 2020, 380, 122595.

[347]

Ye, Z. Q.; Jiang, Y.; Qian, J.; Li, W. L.; Feng, T.; Li, L.; Wu, F.; Chen, R. J. Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium-sulfur batteries. Nano Energy 2019, 64, 103965.

[348]

Wang, Z. S.; Shen, J. D.; Liu, J.; Xu, X. J.; Liu, Z. B.; Hu, R. Z.; Yang, L. C.; Feng, Y. Z.; Liu, J.; Shi, Z. C. et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv. Mater. 2019, 31, 1902228.

[349]

Cheng, J. H.; Zhao, D.; Fan, L. S.; Wu, X.; Wang, M. X.; Wu, H. X.; Guan, B.; Zhang, N. Q.; Sun, K. N. A conductive Ni2P nanoporous composite with a 3D structure derived from a metal-organic framework for lithium-sulfur batteries. Chem.—Eur. J. 2018, 24, 13253–13258.

[350]

Zhang, F.; Li, Z.; Cao, T.; Qin, K.; Xu, Q. J.; Liu, H. M.; Xia, Y. Y. Multishelled Ni2P microspheres as multifunctional sulfur host 3D-printed cathode materials ensuring high areal capacity of lithium-sulfur batteries. ACS Sustain. Chem. Eng. 2021, 9, 6097–6106.

[351]

Cheng, J. H.; Zhao, D.; Fan, L. S.; Wu, X.; Wang, M. X.; Zhang, N. Q.; Sun, K. N. Ultra-high rate Li-S batteries based on a novel conductive Ni2P yolk–shell material as the host for the S cathode. J. Mater. Chem. A 2017, 5, 14519–14524.

[352]

Zhong, Y.; Xia, X. H.; Deng, S. J.; Xie, D.; Shen, S. H.; Zhang, K. L.; Guo, W. H.; Wang, X. L.; Tu, J. P. Spore carbon from Aspergillus oryzae for advanced electrochemical energy storage. Adv. Mater. 2018, 30, 1805165.

[353]

Yu, X. F.; Tian, D. X.; Li, W. C.; He, B.; Zhang, Y.; Chen, Z. Y.; Lu, A. H. One-pot synthesis of highly conductive nickel-rich phosphide/CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li-S battery. Nano Res. 2019, 12, 1193–1197.

[354]

Liu, G. Z.; Zhang, Z. C. Y.; Tian, W. Z.; Chen, W. H.; Xi, B. J.; Li, H. B.; Feng, J. K.; Xiong, S. L. Ni12P5 nanoparticles bound on graphene sheets for advanced lithium-sulfur batteries. Nanoscale 2020, 12, 10760–10770.

[355]

Zhao, Z. X.; Pathak, R.; Wang, X. M.; Yang, Z. W.; Li, H. J.; Qiao, Q. Q. Sulfiphilic FeP/rGO as a highly efficient sulfur host for propelling redox kinetics toward stable lithium-sulfur battery. Electrochim. Acta 2020, 364, 137117.

[356]

Xia, G.; Zheng, Z. Q.; Ye, J. J.; Li, X. T.; Biggs, M. J.; Hu, C. Carbon microspheres with embedded FeP nanoparticles as a cathode electrocatalyst in Li-S batteries. Chem. Eng. J. 2021, 406, 126823.

[357]

Huang, S. Z.; Von Lim, Y.; Zhang, X. M.; Wang, Y.; Zheng, Y.; Kong, D. Z.; Ding, M.; Yang, S. A.; Yang, H. Y. Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery. Nano Energy 2018, 51, 340–348.

[358]

Xia, G.; Ye, J. J.; Zheng, Z. Q.; Li, X. T.; Chen, C. Z.; Hu, C. Catalytic FeP decorated carbon black as a multifunctional conducting additive for high-performance lithium-sulfur batteries. Carbon 2021, 172, 96–105.

[359]

Ma, F.; Wang, X. M.; Wang, J. Y.; Tian, Y.; Liang, J. S.; Fan, Y. N.; Wang, L.; Wang, T. Y.; Cao, R. G.; Jiao, S. H. et al. Phase-transformed Mo4P3 nanoparticles as efficient catalysts towards lithium polysulfide conversion for lithium-sulfur battery. Electrochim. Acta 2020, 330, 135310.

[360]

Yang, Y. X.; Zhong, Y. R.; Shi, Q. W.; Wang, Z. H.; Sun, K. N.; Wang, H. L. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angew. Chem., Int. Ed. 2018, 57, 15549–15552.

[361]

Mi, Y. Y.; Liu, W.; Li, X. L.; Zhuang, J. L.; Zhou, H. H.; Wang, H. L. High-performance Li-S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res. 2017, 10, 3698–3705.

[362]

Ye, Z. Q.; Jiang, Y.; Feng, T.; Wang, Z. H.; Li, L.; Wu, F.; Chen, R. J. Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries. Nano Energy 2020, 70, 104532.

[363]

Suriyakumar, S.; Stephan, A. M. Mitigation of polysulfide shuttling by interlayer/permselective separators in lithium-sulfur batteries. ACS Appl. Energy Mater. 2020, 3, 8095–8129.

[364]

Hao, Y. C.; Xiong, D. B.; Liu, W.; Fan, L. L.; Li, D. J.; Li, X. F. Controllably designed “vice-electrode” interlayers harvesting high performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 40273–40280.

[365]

Wang, J. N.; Wu, T.; Zhang, S. P.; Gu, S.; Jin, J.; Wen, Z. Y. Metal-organic-framework-derived N-C-Co film as a shuttle-suppressing interlayer for lithium sulfur battery. Chem. Eng. J. 2018, 334, 2356–2362.

[366]

Xie, J.; Li, B. Q.; Peng, H. J.; Song, Y. W.; Zhao, M.; Chen, X.; Zhang, Q.; Huang, J. Q. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903813.

[367]

Song, C. L.; Li, G. H.; Yang, Y.; Hong, X. J.; Huang, S.; Zheng, Q. F.; Si, L. P.; Zhang, M.; Cai, Y. P. 3D catalytic MOF-based nanocomposite as separator coatings for high-performance Li-S battery. Chem. Eng. J. 2020, 381, 122701.

[368]

Li, Y. J.; Zhou, P.; Li, H.; Gao, T. T.; Zhou, L.; Zhang, Y. L.; Xiao, N.; Xia, Z. H.; Wang, L.; Zhang, Q. H. et al. A freestanding flexible single-atom cobalt-based multifunctional interlayer toward reversible and durable lithium-sulfur batteries. Small Methods 2020, 4, 1900701.

[369]

Zhang, K.; Chen, Z. X.; Ning, R. Q.; Xi, S. B.; Tang, W.; Du, Y. H.; Liu, C. B.; Ren, Z. Y.; Chi, X.; Bai, M. H. et al. Single-atom coated separator for robust lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 25147–25154.

[370]

Song, X.; Wang, S. Q.; Chen, G. P.; Gao, T.; Bao, Y.; Ding, L. X.; Wang, H. H. Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries. Chem. Eng. J. 2018, 333, 564–571.

[371]

Zhang, K.; Qin, F. R.; Fang, J.; Li, Q.; Jia, M.; Lai, Y. Q.; Zhang, Z. A.; Li, J. Nickel foam as interlayer to improve the performance of lithium-sulfur battery. J. Solid State Electrochem. 2014, 18, 1025–1029.

[372]

Zuo, X. T.; Zhen, M. M.; Wang, C. Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Res. 2019, 12, 829–836.

[373]

Chen, M. F.; Zhao, X. M.; Li, Y. F.; Zeng, P.; Liu, H.; Yu, H.; Wu, M.; Li, Z. H.; Shao, D. S.; Miao, C. Q. et al. Kinetically elevated redox conversion of polysulfides of lithium-sulfur battery using a separator modified with transition metals coordinated g-C3N4 with carbon-conjugated. Chem. Eng. J. 2020, 385, 123905.

[374]

Kumar, G. G.; Chung, S. H.; Raj Kumar, T.; Manthiram, A. Three-dimensional graphene-carbon nanotube-Ni hierarchical architecture as a polysulfide trap for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 20627–20634.

[375]

Zhang, L. L.; Liu, D. B.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y. J.; Song, L.; Niu, Z. Q.; Chen, J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903955.

[376]

Liu, S. Y.; Fan, C. Y.; Shi, Y. H.; Wang, H. C.; Wu, X. L.; Zhang, J. P. Effective cathode design of three-layered configuration for high-energy Li-S batteries. ACS Appl. Mater. Interfaces 2018, 10, 509–516.

[377]

Xu, G. Y.; Yan, Q. B.; Wang, S. T.; Kushima, A.; Bai, P.; Liu, K.; Zhang, X. G.; Tang, Z. L.; Li, J. A thin multifunctional coating on a separator improves the cyclability and safety of lithium sulfur batteries. Chem. Sci. 2017, 8, 6619–6625.

[378]

Shao, H. Y.; Wang, W. K.; Zhang, H.; Wang, A. B.; Chen, X. N.; Huang, Y. Q. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery. J. Power Sources 2018, 378, 537–545.

[379]

Lai, Y. Q.; Wang, P.; Qin, F. R.; Xu, M.; Li, J.; Zhang, K.; Zhang, Z. N. A carbon nanofiber@mesoporous δ-MnO2 nanosheet-coated separator for high-performance lithium-sulfur batteries. Energy Storage Mater. 2017, 9, 179–187.

[380]

Liang, G. M.; Wu, J. X.; Qin, X. Y.; Liu, M.; Li, Q.; He, Y. B.; Kim, J. K.; Li, B. H.; Kang, F. Y. Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium-sulfur battery. ACS Appl. Mater. Interfaces 2016, 8, 23105–23113.

[381]

Zhao, T.; Ye, Y. S.; Lao, C. Y.; Divitini, G.; Coxon, P. R.; Peng, X. Y.; He, X.; Kim, H. K.; Xi, K.; Ducati, C. et al. A praline-like flexible interlayer with highly mounted polysulfide anchors for lithium-sulfur batteries. Small 2017, 13, 1700357.

[382]

Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO2/Graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 2015, 27, 2891–2898.

[383]

Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Xu, X.; Mai, L. Q. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

[384]

Guo, Y.; Li, J.; Pitcheri, R.; Zhu, J. H.; Wen, P.; Qiu, Y. J. Electrospun Ti4O7/C conductive nanofibers as interlayer for lithium-sulfur batteries with ultra long cycle life and high-rate capability. Chem. Eng. J. 2019, 355, 390–398.

[385]

Yao, M. J.; Wang, R.; Zhao, Z. F.; Liu, Y.; Niu, Z. Q.; Chen, J. A flexible all-in-one lithium-sulfur battery. ACS Nano 2018, 12, 12503–12511.

[386]

Kong, W. B.; Yan, L. J.; Luo, Y. F.; Wang, D. T.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Ultrathin MnO2/Graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li-S batteries. Adv. Funct. Mater. 2017, 27, 1606663.

[387]

Han, X. G.; Xu, Y. H.; Chen, X. Y.; Chen, Y. C.; Weadock, N.; Wan, J. Y.; Zhu, H. L.; Liu, Y. L.; Li, H. Q.; Rubloff, G. et al. Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth. Nano Energy 2013, 2, 1197–1206.

[388]

Zhang, Z. Y.; Lai, Y. Q.; Zhang, Z. A.; Zhang, K.; Li, J. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim. Acta 2014, 129, 55–61.

[389]

Luo, L. Y.; Qin, X. Y.; Wu, J. X.; Liang, G. M.; Li, Q.; Liu, M.; Kang, F. Y.; Chen, G. H.; Li, B. H. An interwoven MoO3@CNT scaffold interlayer for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 8612–8619.

[390]

Yue, X. Y.; Li, X. L.; Meng, J. K.; Wu, X. J.; Zhou, Y. N. Padding molybdenum net with graphite/MoO3 composite as a multi-functional interlayer enabling high-performance lithium-sulfur batteries. J. Power Sources 2018, 397, 150–156.

[391]

Guo, P. Q.; Sun, K.; Shang, X. N.; Liu, D. Q.; Wang, Y. R.; Liu, Q. M.; Fu, Y. J.; He, D. Y. Nb2O5/RGO nanocomposite modified separators with robust polysulfide traps and catalytic centers for boosting performance of lithium-sulfur batteries. Small 2019, 15, 1902363.

[392]

Liu, M.; Li, Q.; Qin, X. Y.; Liang, G. M.; Han, W. J.; Zhou, D.; He, Y. B.; Li, B. H.; Kang, F. Y. Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V2O5-decorated carbon nanofiber interlayer. Small 2017, 13, 1602539.

[393]

Ghazi, Z. A.; He, X.; Khattak, A. M.; Khan, N. A.; Liang, B.; Iqbal, A.; Wang, J. X.; Sin, H.; Li, L. S.; Tang, Z. Y. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606817.

[394]

Jeong, Y. C.; Kim, J. H.; Kwon, S. H.; Oh, J. Y.; Park, J.; Jung, Y.; Lee, S. G.; Yang, S. J.; Park, C. R. Rational design of exfoliated 1T MoS2@CNT-based bifunctional separators for lithium sulfur batteries. J. Mater. Chem. A 2017, 5, 23909–23918.

[395]

Yan, L. J.; Luo, N. N.; Kong, W. B.; Luo, S.; Wu, H. C.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Duan, W. H.; Wang, J. P. Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. J. Power Sources 2018, 389, 169–177.

[396]

Guo, P. Q.; Liu, D. Q.; Liu, Z. J.; Shang, X. N.; Liu, Q. M.; He, D. Y. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. Electrochim. Acta 2017, 256, 28–36.

[397]

Tan, L.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Wang, J. X. Lightweight reduced graphene oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 3707–3713.

[398]

Wu, J. Y.; Li, X. W.; Zeng, H. X.; Xue, Y.; Chen, F. Y.; Xue, Z. G.; Ye, Y. S.; Xie, X. L. Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS2 nanosheet@N-doped carbon interlayer for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 7897–7906.

[399]

Wang, P. F.; Shen, Z. H.; Xia, C.; Lv, K. Z.; Zhang, H. G.; He, P.; Zhou, H. S. Renewable polysulfide regulation by versatile films toward high-loading lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 47590–47598.

[400]

Qian, J.; Xing, Y.; Yang, Y.; Li, Y.; Yu, K. X.; Li, W. L.; Zhao, T.; Ye, Y. S.; Li, L.; Wu, F. et al. Enhanced electrochemical kinetics with highly dispersed conductive and electrocatalytic mediators for lithium-sulfur batteries. Adv. Mater. 2021, 33, 2100810.

[401]

Huang, J. Q.; Zhang, B.; Xu, Z. L.; Abouali, S.; Akbari Garakani, M.; Huang, J. Q.; Kim, J. K. Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithium-sulfur batteries. J. Power Sources 2015, 285, 43–50.

[402]

Pan, H. Y.; Tan, Z.; Zhou, H. H.; Jiang, L. L.; Huang, Z. Y.; Feng, Q. X.; Zhou, Q.; Ma, S.; Kuang, Y. F. Fe3C-N-doped carbon modified separator for high performance lithium-sulfur batteries. J. Energy Chem. 2019, 39, 101–108.

[403]

Cai, W. L.; Li, G. R.; Zhang, K. L.; Xiao, G. N.; Wang, C.; Ye, K. F.; Chen, Z. W.; Zhu, Y. C.; Qian, Y. T. Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704865.

[404]

Zhou, T. H.; Zhao, Y.; Zhou, G. M.; Lv, W.; Sun, P. J.; Kang, F. Y.; Li, B. H.; Yang, Q. H. An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement. Nano Energy 2017, 39, 291–296.

[405]

Li, H. T.; Jin, Q.; Li, D. M.; Huan, X. H.; Liu, Y. M.; Feng, G. L.; Zhao, J.; Yang, W.; Wu, Z. G.; Zhong, B. H. et al. Mo2C-embedded carambola-like N,S-rich carbon framework as the interlayer material for high-rate lithium-sulfur batteries in a wide temperature range. ACS Appl. Mater. Interfaces 2020, 12, 22971–22980.

[406]

Zhang, M.; Guo, Y.; Wei, Y. H.; Wang, B. Y.; Zhang, Y.; Wu, H.; Zhou, X. G.; Zhang, Y.; Wang, Q. Integrating conductivity and active sites: Fe/Fe3C@GNC as an trapping-catalyst interlayer and dendrite-free lithium host for the lithium-sulfur cell with outstanding rate performance. J. Mater. Chem. A 2020, 8, 18987–19000.

[407]

Song, J. J.; Su, D. W.; Xie, X. Q.; Guo, X.; Bao, W. Z.; Shao, G. J.; Wang, G. X. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 29427–29433.

[408]

Dong, Y. F.; Zheng, S. H.; Qin, J. Q.; Zhao, X. J.; Shi, H. D.; Wang, X. H.; Chen, J.; Wu, Z. S. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 2018, 12, 2381–2388.

[409]

Liu, P.; Qu, L.; Tian, X. L.; Yi, Y. K.; Xia, J. X.; Wang, T.; Nan, J. Z.; Yang, P.; Wang, T.; Fang, B. R. et al. Ti3C2Tx/graphene oxide free-standing membranes as modified separators for lithium-sulfur batteries with enhanced rate performance. ACS Appl. Energy Mater. 2020, 3, 2708–2718.

[410]

Li, N.; Xie, Y.; Peng, S. T.; Xiong, X.; Han, K. Ultra-lightweight Ti3C2Tx MXene modified separator for Li-S batteries: Thickness regulation enabled polysulfide inhibition and lithium ion transportation. J. Energy Chem. 2020, 42, 116–125.

[411]

Zhang, S. Z.; Zhong, N.; Zhou, X.; Zhang, M. J.; Huang, X. P.; Yang, X. L.; Meng, R. J.; Liang, X. Comprehensive design of the high-sulfur-loading Li-S battery based on MXene nanosheets. Nano-Micro Lett. 2020, 12, 112.

[412]

Jiang, G. Y.; Zheng, N.; Chen, X.; Ding, G. Y.; Li, Y. H.; Sun, F. G.; Li, Y. S. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 2019, 373, 1309–1318.

[413]

Hao, B. Y.; Li, H.; Lv, W.; Zhang, Y. B.; Niu, S. Z.; Qi, Q.; Xiao, S. J.; Li, J.; Kang, F. Y.; Yang, Q. H. Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries. Nano Energy 2019, 60, 305–311.

[414]

Qi, B.; Zhao, X. S.; Wang, S. G.; Chen, K.; Wei, Y. J.; Chen, G.; Gao, Y.; Zhang, D.; Sun, Z. H.; Li, F. Mesoporous TiN microspheres as an efficient polysulfide barrier for lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 14359–14366.

[415]

He, X.; Shuai, Y.; Na, L.; Chen, K. H.; Zhang, Y. Q.; Zhang, Z. P.; Gan, F. Y. High performance lithium-sulfur batteries with facile titanium nitride particles modified separator. Mater. Lett. 2018, 215, 91–94.

[416]

Song, Y. Z.; Zhao, S. Y.; Chen, Y. R.; Cai, J. S.; Li, J.; Yang, Q. H.; Sun, J. Y.; Liu, Z. F. Enhanced sulfur redox and polysulfide regulation via porous VN-modified separator for Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 5687–5694.

[417]

Xiao, K. K.; Wang, J.; Chen, Z.; Qian, Y. H.; Liu, Z.; Zhang, L. L.; Chen, X. H.; Liu, J. L.; Fan, X. F.; Shen, Z. X. Improving polysulfides adsorption and redox kinetics by the Co4N nanoparticle/N-doped carbon composites for lithium-sulfur batteries. Small 2019, 15, 1901454.

[418]

Chen, G. P.; Song, X.; Wang, S. Q.; Chen, X. Z.; Wang, H. H. Two-dimensional molybdenum nitride nanosheets modified Celgard separator with multifunction for Li-S batteries. J. Power Sources 2018, 408, 58–64.

[419]

Tian, D.; Song, X. Q.; Wang, M. X.; Wu, X.; Qiu, Y.; Guan, B.; Xu, X. Z.; Fan, L. S.; Zhang, N. Q.; Sun, K. N. MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv. Energy Mater. 2019, 9, 1901940.

[420]

Qiu, W. J.; An, C. H.; Yan, Y. W.; Xu, J.; Zhang, Z. J.; Guo, W.; Wang, Z.; Zheng, Z. J.; Wang, Z. B.; Deng, Q. B. et al. Suppressed polysulfide shuttling and improved Li+ transport in Li-S batteries enabled by NbN modified PP separator. J. Power Sources 2019, 423, 98–105.

[421]

Fan, S.; Huang, S. Z.; Pam, M. E.; Chen, S.; Wu, Q. Y.; Hu, J. P.; Wang, Y.; Ang, L. K.; Yan, C. C.; Shi, Y. M. et al. Design multifunctional catalytic interface: Toward regulation of polysulfide and Li2S redox conversion in Li-S batteries. Small 2019, 15, 1906132.

[422]

Wang, Y. G.; Luo, R. J.; Zhang, Y. G.; Guo, Y.; Lu, Y.; Liu, X. M.; Kim, J. K.; Luo, Y. S. Tungsten nitride/carbon cloth as bifunctional electrode for effective polysulfide recycling. ACS Appl. Energy Mater. 2019, 2, 3314–3322.

[423]

Chen, X. X.; Ding, X. Y.; Wang, C. S.; Feng, Z. Y.; Xu, L. G.; Gao, X.; Zhai, Y. J.; Wang, D. B. A multi-shelled CoP nanosphere modified separator for highly efficient Li-S batteries. Nanoscale 2018, 10, 13694–13701.

[424]

Lin, J. H.; Zhang, K. F.; Zhu, Z. Q.; Zhang, R. Z.; Li, N.; Zhao, C. H. CoP/C nanocubes-modified separator suppressing polysulfide dissolution for high-rate and stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 2497–2504.

[425]

Luo, Y. F.; Luo, N. N.; Kong, W. B.; Wu, H. C.; Wang, K.; Fan, S. S.; Duan, W. H.; Wang, J. P. Multifunctional interlayer based on molybdenum diphosphide electrocatalyst and carbon nanotube film for lithium-sulfur batteries. Small 2018, 14, 1702853.

[426]

Sun, Z. H.; Wu, X. L.; Peng, Z. Q.; Wang, J. W.; Gan, S. Y.; Zhang, Y. W.; Han, D. X.; Niu, L. Compactly coupled nitrogen-doped carbon nanosheets/molybdenum phosphide nanocrystal hollow nanospheres as polysulfide reservoirs for high-performance lithium-sulfur chemistry. Small 2019, 15, 1902491.

[427]

Li, M.; Wang, C.; Miao, L. X.; Xiang, J. W.; Wang, T. Y.; Yuan, K.; Chen, J.; Huang, Y. H. A separator-based lithium polysulfide recirculator for high-loading and high-performance Li-S batteries. J. Mater. Chem. A 2018, 6, 5862–5869.

[428]

Wang, R. R.; Wu, R. B.; Yan, X. X.; Liu, D.; Guo, P. F.; Li, W.; Pan, H. G. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200424.

[429]

Ding, Y. F.; Cheng, Q. S.; Wu, J. H.; Yan, T. R.; Shi, Z. X.; Wang, M. L.; Yang, D. Z.; Wang, P.; Zhang, L.; Sun, J. Y. Enhanced dual-directional sulfur redox via a biotemplated single-atomic Fe-N2 mediator promises durable Li-S batteries. Adv. Mater. 2022, 34, 2202256.

[430]

Wang, P.; Xi, B. J.; Zhang, Z. C. Y.; Huang, M.; Feng, J. K.; Xiong, S. L. Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 15563–15571.

[431]

Guo, D. Y.; Zhang, X.; Liu, M. L.; Yu, Z. S.; Chen, X. A.; Yang, B.; Zhou, Z.; Wang, S. Single Mo-N4 atomic sites anchored on N-doped carbon nanoflowers as sulfur host with multiple immobilization and catalytic effects for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2204458.

[432]

Ma, L. B.; Qian, J.; Li, Y. T.; Cheng, Y. W.; Wang, S. Y.; Wang, Z. W.; Peng, C.; Wu, K. L.; Xu, J.; Manke, I. et al. Binary metal single atom electrocatalysts with synergistic catalytic activity toward high-rate and high areal-capacity lithium-sulfur batteries. Adv. Funct. Mater. 2022, 2208666.

[433]
Song, Y. W.; Shen, L.; Yao, N.; Li, X. Y.; Bi, C. X.; Li, Z.; Zhou, M. Y.; Zhang, X. Q.; Chen, X.; Li, B. Q. et al. Cationic lithium polysulfides in lithium-sulfur batteries. Chem, in press, https://doi.org/10.1016/j.chempr.2022.07.004.
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 September 2022
Revised: 16 October 2022
Accepted: 17 October 2022
Published: 03 January 2023
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This project was financially supported by the Yong Scientific Foundation of Anhui University of Technology for Top Talent (No. DT2100000947), Natural Science Foundation of Anhui Province Education Commission (No. KJ2020A0269), the Scientific Research Foundation of Anhui University of Technology for Talent Introduction (No. DT19100069), and the Yong Scientific Research Foundation of Anhui University of Technology (No. QZ202003).

Return