Journal Home > Volume 16 , Issue 4

Two-dimensional (2D) ferroelectric (FE) materials with relatively low switching barrier and large polarization are promising candidates for next-generation miniaturized nonvolatile memory devices. Herein, we screen out 39 new 2D ferroelectric materials, MX (M: Group III-V elements; X: Group V-VII elements), in three phosphorus-analogue phases including black phosphorene-like α-phase, blue phosphorus-like β-phase, and GeSe-like γ-phase using high-throughput calculations. Seven materials (α-SbP, γ-AsP, etc.) exhibit FE switching barriers lower than 0.3 eV/f.u., ferroelectric polarization larger than 2 × 10−10 C/m, and high thermodynamic stability with energy above hull smaller than 0.2 eV/atom. We find that the larger the electronegativity difference between M and X, the larger the ferroelectric polarization. Moreover, larger electronegativity differences result in lower in-plane piezoelectric stress tensor (e11) for MX consisting of Group IV and VI elements and larger e11 for those consisting of Group V elements. Further calculations predict a giant tunneling electroresistance in ferroelectric tunnel junction α-Sb(Sn)P/α-SbP/α-Sb(Te)P (1.26 × 104%) and large piezoelectric strain coefficient in α-SnTe (396 pm/V), providing great opportunities to the design of non-volatile resistive memories, and high-performance piezoelectric devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Designing two-dimensional ferroelectric materials from phosphorus-analogue structures

Show Author's information Ziyuan Liu1,2Lei Tao2Yan-Fang Zhang2Jinbo Pan1,3( )Shixuan Du1,2,3,4( )
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
CAS Center for Excellence in Topological Quantum Computation, Beijing 100190, China

Abstract

Two-dimensional (2D) ferroelectric (FE) materials with relatively low switching barrier and large polarization are promising candidates for next-generation miniaturized nonvolatile memory devices. Herein, we screen out 39 new 2D ferroelectric materials, MX (M: Group III-V elements; X: Group V-VII elements), in three phosphorus-analogue phases including black phosphorene-like α-phase, blue phosphorus-like β-phase, and GeSe-like γ-phase using high-throughput calculations. Seven materials (α-SbP, γ-AsP, etc.) exhibit FE switching barriers lower than 0.3 eV/f.u., ferroelectric polarization larger than 2 × 10−10 C/m, and high thermodynamic stability with energy above hull smaller than 0.2 eV/atom. We find that the larger the electronegativity difference between M and X, the larger the ferroelectric polarization. Moreover, larger electronegativity differences result in lower in-plane piezoelectric stress tensor (e11) for MX consisting of Group IV and VI elements and larger e11 for those consisting of Group V elements. Further calculations predict a giant tunneling electroresistance in ferroelectric tunnel junction α-Sb(Sn)P/α-SbP/α-Sb(Te)P (1.26 × 104%) and large piezoelectric strain coefficient in α-SnTe (396 pm/V), providing great opportunities to the design of non-volatile resistive memories, and high-performance piezoelectric devices.

Keywords: two-dimensional (2D) materials, ferroelectricity, piezoelectricity, ferroelectric tunnel junction

References(73)

[1]

Li, B. C.; Li, S. F.; Wang, H.; Chen, L.; Liu, L.; Feng, X. W.; Li, Y. S.; Chen, J. S.; Gong, X.; Ang, K. W. An electronic synapse based on 2D ferroelectric CuInP2S6. Adv. Electron. Mater. 2020, 6, 2000760.

[2]

Kwon, K. C.; Zhang, Y. S.; Wang, L.; Yu, W.; Wang, X. J.; Park, I. H.; Choi, H. S.; Ma, T.; Zhu, Z. Y.; Tian, B. B. et al. In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device. ACS Nano 2020, 14, 7628–7638.

[3]

Liu, F. C.; You, L.; Seyler, K. L.; Li, X. B.; Yu, P.; Lin, J. H.; Wang, X. W.; Zhou, J. D.; Wang, H.; He, H. Y. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 2016, 7, 12357.

[4]

Cui, C. J.; Hu, W. J.; Yan, X. X.; Addiego, C.; Gao, W. P.; Wang, Y.; Wang, Z.; Li, L. Z.; Cheng, Y. C.; Li, P. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 2018, 18, 1253–1258.

[5]

Cui, C. J.; Xue, F.; Hu, W. J.; Li, L. J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2018, 2, 18.

[6]

Brehm, J. A.; Neumayer, S. M.; Tao, L.; O’hara, A.; Chyasnavichus, M.; Susner, M. A.; Mcguire, M. A.; Kalinin, S. V.; Jesse, S.; Ganesh, P. et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat. Mater. 2020, 19, 43–48.

[7]

Shen, X. W.; Tong, W. Y.; Gong, S. J.; Duan, C. G. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials. 2D Mater. 2018, 5, 011001.

[8]

Liu, S.; Kim, Y.; Tan, L. Z.; Rappe, A. M. Strain-induced ferroelectric topological insulator. Nano Lett. 2016, 16, 1663–1668.

[9]

Jin, X.; Tao, L.; Zhang, Y. Y.; Pan, J. B.; Du, S. X. Intrinsically scale-free ferroelectricity in two-dimensional M2X2Y6. Nano Res. 2022, 15, 3704–3710.

[10]

Qi, L.; Ruan, S. C.; Zeng, Y. J. Review on recent developments in 2D ferroelectrics: Theories and applications. Adv. Mater. 2021, 33, 2005098.

[11]

Barraza-Lopez, S.; Fregoso, B. M.; Villanova, J. W.; Parkin, S. S. P.; Chang, K. Colloquium: Physical properties of Group-IV monochalcogenide monolayers. Rev. Mod. Phys. 2021, 93, 011001.

[12]

Bao, D. L.; O’Hara, A.; Du, S. X.; Pantelides, S. T. Tunable, ferroelectricity-inducing, spin-spiral magnetic ordering in monolayer FeOCl. Nano Lett. 2022, 22, 3598–3603.

[13]

Xiao, J.; Zhu, H. Y.; Wang, Y.; Feng, W.; Hu, Y. X.; Dasgupta, A.; Han, Y. M.; Wang, Y.; Muller, D. A.; Martin, L. W. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 2018, 120, 227601.

[14]

Yuan, S. G.; Luo, X.; Chan, H. L.; Xiao, C. C.; Dai, Y. W.; Xie, M. H.; Hao, J. H. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 2019, 10, 1775.

[15]

Chang, K.; Liu, J. W.; Lin, H. C.; Wang, N.; Zhao, K.; Zhang, A. M.; Jin, F.; Zhong, Y.; Hu, X. P.; Duan, W. H. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016, 353, 274–278.

[16]

Higashitarumizu, N.; Kawamoto, H.; Lee, C. J.; Lin, B. H.; Chu, F. H.; Yonemori, I.; Nishimura, T.; Wakabayashi, K.; Chang, W. H.; Nagashio, K. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun. 2020, 11, 2428.

[17]

Chang, K.; Küster, F.; Miller, B. J.; Ji, J. R.; Zhang, J. L.; Sessi, P.; Barraza-Lopez, S.; Parkin, S. S. P. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett. 2020, 20, 6590–6597.

[18]

Walsh, A.; Payne, D. J.; Egdell, R. G.; Watson, G. W. Stereochemistry of post-transition metal oxides: Revision of the classical lone pair model. Chem. Soc. Rev. 2011, 40, 4455–4463.

[19]

Laurita, G.; Seshadri, R. Chemistry, structure, and function of lone pairs in extended solids. Acc. Chem. Res. 2022, 55, 1004–1014.

[20]

Wu, M. H.; Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 2016, 16, 3236–3241.

[21]

Xu, T.; Zhang, J. T.; Zhu, Y. Q.; Wang, J.; Shimada, T.; Kitamura, T.; Zhang, T. Y. Two-dimensional polar metal of a PbTe monolayer by electrostatic doping. Nanoscale Horiz. 2020, 5, 1400–1406.

[22]

Shen, S. Y.; Liu, C.; Ma, Y. D.; Huang, B. B.; Dai, Y. Robust two-dimensional ferroelectricity in single-layer γ-SbP and γ-SbAs. Nanoscale 2019, 11, 11864–11871.

[23]

Guan, S.; Liu, C.; Lu, Y. H.; Yao, Y. G.; Yang, S. A. Tunable ferroelectricity and anisotropic electric transport in monolayer β-GeSe. Phys. Rev. B 2018, 97, 144104.

[24]

Wang, H.; Qian, X. F. Two-dimensional multiferroics in monolayer Group IV monochalcogenides. 2D Mater. 2017, 4, 015042.

[25]

Wang, H.; Qian, X. F. Giant optical second harmonic generation in two-dimensional multiferroics. Nano Lett. 2017, 17, 5027–5034.

[26]

Ding, W. J.; Zeng, J.; Qin, W.; Cui, P.; Zhang, Z. Y. Exploring high transition temperature superconductivity in a freestanding or SrTiO3-supported CoSb monolayer. Phys. Rev. Lett. 2020, 124, 027002.

[27]

Yang, J. H.; Zhang, Y. Y.; Yin, W. J.; Gong, X. G.; Yakobson, B. I.; Wei, S. H. Two-dimensional SiS layers with promising electronic and optoelectronic properties: Theoretical prediction. Nano Lett. 2016, 16, 1110–1117.

[28]

Barber, C. B.; Dobkin, D. P.; Huhdanpaa, H. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 1996, 22, 469–483.

[29]

Song, Y.; Pan, J. B.; Zhang, Y. F.; Yang, H. T.; Du, S. X. Monolayer iridium sulfide halides with high mobility transport anisotropy and highly efficient light harvesting. J. Phys. Chem. Lett. 2021, 12, 6007–6013.

[30]

Haastrup, S.; Strange, M.; Pandey, M.; Deilmann, T.; Schmidt, P. S.; Hinsche, N. F.; Gjerding, M. N.; Torelli, D.; Larsen, P. M.; Riis-Jensen, A. C. et al. The computational 2D materials database: High-throughput modeling and discovery of atomically thin crystals. 2D Mater. 2018, 5, 042002.

[31]

Gjerding, M. N.; Taghizadeh, A.; Rasmussen, A.; Ali, S.; Bertoldo, F.; Deilmann, T.; Knøsgaard, N. R.; Kruse, M.; Larsen, A. H.; Manti, S. et al. Recent progress of the computational 2D materials database (C2DB). 2D Mater. 2021, 8, 044002.

[32]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[33]

Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

[34]

Sheppard, D.; Xiao, P. H.; Chemelewski, W.; Johnson, D. D.; Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 2012, 136, 074103.

[35]

Spaldin, N. A. A beginner's guide to the modern theory of polarization. J. Solid State Chem. 2012, 195, 2–10.

[36]

Ghosez, P.; Michenaud, J. P.; Gonze, X. Dynamical atomic charges: The case of ABO3 compounds. Phys. Rev. B 1998, 58, 6224–6240.

[37]

King-Smith, R. D.; Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 1993, 47, 1651–1654.

[38]

Resta, R. Macroscopic polarization in crystalline dielectrics: The geometric phase approach. Rev. Mod. Phys. 1994, 66, 899–915.

[39]

Kamal, C.; Chakrabarti, A.; Ezawa, M. Direct band gaps in Group IV-VI monolayer materials: Binary counterparts of phosphorene. Phys. Rev. B 2016, 93, 125428.

[40]

Velev, J. P.; Duan, C. G.; Burton, J. D.; Smogunov, A.; Niranjan, M. K.; Tosatti, E.; Jaswal, S. S.; Tsymbal, E. Y. Magnetic tunnel junctions with ferroelectric barriers: Prediction of four resistance states from first principles. Nano Lett. 2009, 9, 427–432.

[41]

Shen, X. W.; Fang, Y. W.; Tian, B. B.; Duan, C. G. Two-dimensional ferroelectric tunnel junction: The case of monolayer In:SnSe/SnSe/Sb:SnSe homostructure. ACS Appl. Electron. Mater. 2019, 1, 1133–1140.

[42]

Kang, L. L.; Jiang, P.; Cao, N.; Hao, H.; Zheng, X. H.; Zhang, L.; Zeng, Z. Realizing giant tunneling electroresistance in two-dimensional graphene/BiP ferroelectric tunnel junction. Nanoscale 2019, 11, 16837–16843.

[43]

Yin, H. B.; Gao, J. W.; Zheng, G. P.; Wang, Y. X.; Ma, Y. C. Giant piezoelectric effects in monolayer Group-V binary compounds with honeycomb phases: A first-principles prediction. J. Phys. Chem. C 2017, 121, 25576–25584.

[44]

Blonsky, M. N.; Zhuang, H. L.; Singh, A. K.; Hennig, R. G. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 2015, 9, 9885–9891.

[45]

Bechmann, R. Elastic and piezoelectric constants of alpha-quartz. Phys. Rev. 1958, 110, 1060–1061.

[46]

Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Polarization-based calculation of the dielectric tensor of polar crystals. Phys. Rev. Lett. 1997, 79, 3958–3961.

[47]

Coleman, J. N.; Lotya, M.; O’neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

[48]

Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2015, 10, 151–155.

[49]

Fei, R. X.; Li, W. B.; Li, J.; Yang, L. Giant piezoelectricity of monolayer Group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 2015, 107, 173104.

[50]

Dal Corso, A.; Posternak, M.; Resta, R.; Baldereschi, A. Ab initio study of piezoelectricity and spontaneous polarization in ZnO. Phys. Rev. B 1994, 50, 10715–10721.

[51]

Bernardini, F.; Fiorentini, V.; Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 1997, 56, R10024–R10027.

[52]

Sághi-Szabó, G.; Cohen, R. E.; Krakauer, H. First-principles study of piezoelectricity in PbTiO3. Phys. Rev. Lett. 1998, 80, 4321–4324.

[53]

Sághi-Szabó, G.; Cohen, R. E.; Krakauer, H. First-principles study of piezoelectricity in tetragonal PbTiO3 and PbZr1/2Ti1/2O3. Phys. Rev. B 1999, 59, 12771–12776.

[54]

Bellaiche, L.; Vanderbilt, D. Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B 2000, 61, 7877–7882.

[55]

Qi, Y. B.; Rappe, A. M. Widespread negative longitudinal piezoelectric responses in ferroelectric crystals with layered structures. Phys. Rev. Lett. 2021, 126, 217601.

[56]

Noor-A-Alam, M.; Nolan, M. Negative piezoelectric coefficient in ferromagnetic 1H-LaBr2 monolayer. ACS Appl. Electron. Mater. 2022, 4, 850–855.

[57]

Wu, Y. Z.; Abdelwahab, I.; Kwon, K. C.; Verzhbitskiy, I.; Wang, L.; Liew, W. H.; Yao, K.; Eda, G.; Loh, K. P.; Shen, L. et al. Data-driven discovery of high performance layered van der Waals piezoelectric NbOI2. Nat. Commun. 2022, 13, 1884.

[58]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

[59]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[60]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[61]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[62]

Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5.

[63]

Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52, 255–268.

[64]

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

[65]

Ong, S. P.; Cholia, S.; Jain, A.; Brafman, M.; Gunter, D.; Ceder, G.; Persson, K. A. The materials application programming interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles. Comput. Mater. Sci. 2015, 97, 209–215.

[66]

Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G. The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 2005, 122, 234102.

[67]

Maassen, J.; Harb, M.; Michaud-Rioux, V.; Zhu, Y.; Guo, H. Quantum transport modeling from first principles. Proc. IEEE 2013, 101, 518–530.

[68]

Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 2001, 63, 245407.

[69]

Wan, W. H.; Liu, C.; Xiao, W. D.; Yao, Y. G. Promising ferroelectricity in 2D Group IV tellurides: A first-principles study. Appl. Phys. Lett. 2017, 111, 132904.

[70]

Jia, Y. Z.; Luo, F. X.; Hao, X. M.; Meng, Q. L.; Dou, W. Z.; Zhang, L.; Wu, J. G.; Zhai, S. W.; Zhou, M. Intrinsic valley polarization and high-temperature ferroelectricity in two-dimensional orthorhombic lead oxide. ACS Appl. Mater. Interfaces 2021, 13, 6480–6488.

[71]

Liu, C.; Wan, W. H.; Ma, J.; Guo, W.; Yao, Y. G. Robust ferroelectricity in two-dimensional SbN and BiP. Nanoscale 2018, 10, 7984–7990.

[72]

Chen, P.; Zhang, X. J.; Liu, B. G. Mechanically-controllable strong 2D ferroelectricity and optical properties of semiconducting BiN monolayer. ACS Appl. Nano Mater. 2019, 2, 58–63.

[73]

Liu, C.; Guan, S.; Yin, H. B.; Wan, W. H.; Wang, Y. X.; Zhang, Y. γ-GeSe: A two-dimensional ferroelectric material with doping-induced ferromagnetism. Appl. Phys. Lett. 2019, 115, 252904.

File
12274_2022_5213_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 September 2022
Revised: 15 October 2022
Accepted: 15 October 2022
Published: 09 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos. 52272172, 61888102, and 52102193), the Major Program of National Natural Science Foundation of China (No. 92163206), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB30000000), and the Fundamental Research Funds for the Central Universities. Computational resources were provided by the National Supercomputing Center in Tianjin.

Return