Journal Home > Volume 16 , Issue 4

Monolayer graphene has attracted enormous attention owing to its unique electronic and optical properties. However, achieving an effective approach without applying electrical bias for manipulating the charge transfer based on graphene is elusive to date. Herein, we realized the manipulation of excitons’ transition from emitter to the graphene surface with plasmonic engineering nanostructures and firstly obtained large enhancements for photon emission on the graphene surface. The localized plasmons generated from the plasmonic nanostructures of shell-isolated nanoparticle coupling to ultra-flat Au substrate would dictate a consistent junction geometry while enhancing the optical field and dominating the electron transition pathways, which may cause obvious perturbations for molecular radiation behaviors. Additionally, the three-dimensional finite-difference time-domain and time-dependent density functional theory were also carried out to simulate the distributions of electromagnetic field and energy levels of hybrid nanostructure respectively and the results agreed well with the experimental data. Therefore, this work paves a novel approach for tunning graphene charge/energy transfer processes, which may hold great potential for applications in photonic devices based on graphene.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electron transition manipulation under graphene-mediated plasmonic engineering nanostructure

Show Author's information Huaizhou Jin1Jing-Yu Wang2Xia-Guang Zhang3Weiyi Lin2Weiwei Cai2Yue-Jiao Zhang2( )Zhi-Lin Yang2Fan-Li Zhang1( )Jian-Feng Li1,2( )
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, School of Electronic Science and Engineering, Department of Physics, Xiamen University, Xiamen 361005, China
Country Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China

Abstract

Monolayer graphene has attracted enormous attention owing to its unique electronic and optical properties. However, achieving an effective approach without applying electrical bias for manipulating the charge transfer based on graphene is elusive to date. Herein, we realized the manipulation of excitons’ transition from emitter to the graphene surface with plasmonic engineering nanostructures and firstly obtained large enhancements for photon emission on the graphene surface. The localized plasmons generated from the plasmonic nanostructures of shell-isolated nanoparticle coupling to ultra-flat Au substrate would dictate a consistent junction geometry while enhancing the optical field and dominating the electron transition pathways, which may cause obvious perturbations for molecular radiation behaviors. Additionally, the three-dimensional finite-difference time-domain and time-dependent density functional theory were also carried out to simulate the distributions of electromagnetic field and energy levels of hybrid nanostructure respectively and the results agreed well with the experimental data. Therefore, this work paves a novel approach for tunning graphene charge/energy transfer processes, which may hold great potential for applications in photonic devices based on graphene.

Keywords: monolayer graphene, plasmonic nanocavity, fluorescence quenching, shell–core isolated nanoparticles, electron transition

References(44)

[1]

Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Ultraflat graphene. Nature 2009, 462, 339–341.

[2]

Fan, F. R.; Wang, R. X.; Zhang, H.; Wu, W. Z. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem. Soc. Rev. 2021, 50, 10983–11031.

[3]

Zhuang, J. H.; He, F.; Liu, X. L.; Si, P. C.; Gu, F. N.; Xu, J.; Wang, Y.; Xu, G. W.; Zhong, Z. Y.; Su, F. B. In-situ growth of heterophase Ni nanocrystals on graphene for enhanced catalytic reduction of 4-nitrophenol. Nano Res. 2022, 15, 1230–1237.

[4]

Liu, K.; Chen, Z. L.; Lv, T.; Yao, Y.; Li, N.; Li, H. L.; Chen, T. A self-supported graphene/carbon nanotube hollow fiber for integrated energy conversion and storage. Nano-Micro Lett. 2020, 12, 64.

[5]

Song, X. R.; Li, S. H.; Guo, H. H.; You, W. W.; Shang, X. Y.; Li, R. F.; Tu, D. T.; Zheng, W.; Chen, Z.; Yang, H. H. et al. Graphene-oxide-modified lanthanide nanoprobes for tumor-targeted visible/NIR-II luminescence imaging. Angew. Chem., Int. Ed. 2019, 58, 18981–18986.

[6]

Benítez-Martínez, S.; Valcárcel, M. Graphene quantum dots in analytical science. TrAC Trends Anal. Chem. 2015, 72, 93–113.

[7]

Feng, X. Y.; Wu, H. H.; Gao, B.; Świętosławski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

[8]

Loh, K. P.; Tong, S. W.; Wu, J. S. Graphene and graphene-like molecules: Prospects in solar cells. J. Am. Chem. Soc. 2016, 138, 1095–1102.

[9]

Mahmoudi, T.; Wang, Y. S.; Hahn, Y. B. Graphene and its derivatives for solar cells application. Nano Energy 2018, 47, 51–65.

[10]

Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

[11]

Polat, E. O.; Mercier, G.; Nikitskiy, I.; Puma, E.; Galan, T.; Gupta, S.; Montagut, M.; Piqueras, J. J.; Bouwens, M.; Durduran, T. et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 2019, 5, eaaw7846.

[12]

Wei, J. X.; Li, Y.; Wang, L.; Liao, W. G.; Dong, B. W.; Xu, C.; Zhu, C. X.; Ang, K. W.; Qiu, C. W.; Lee, C. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 2020, 11, 6404.

[13]

Ma, P.; Salamin, Y.; Baeuerle, B.; Josten, A.; Heni, W.; Emboras, A.; Leuthold, J. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 2019, 6, 154–161.

[14]

Schuler, S.; Muench, J. E.; Ruocco, A.; Balci, O.; Thourhout, D. V.; Sorianello, V.; Romagnoli, M.; Watanabe, K.; Taniguchi, T.; Goykhman, I. et al. High-responsivity graphene photodetectors integrated on silicon microring resonators. Nat. Commun. 2021, 12, 3733.

[15]

Konstantatos, G.; Levina, L.; Fischer, A.; Sargent, E. H. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett. 2008, 8, 1446–1450.

[16]

Lee, Y.; Yu, S. H.; Jeon, J.; Kim, H.; Lee, J. Y.; Kim, H.; Ahn, J. H.; Hwang, E.; Cho, J. H. Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors. Carbon 2015, 88, 165–172.

[17]

Chen, Z. Y.; Berciaud, S.; Nuckolls, C.; Heinz, T. F.; Brus, L. E. Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano 2010, 4, 2964–2968.

[18]

Syama, S.; Mohanan, P. V. Comprehensive application of graphene: Emphasis on biomedical concerns. Nano-Micro Lett. 2019, 11, 6.

[19]

Zhang, M.; Yin, B. C.; Tan, W. H.; Ye, B. C. A versatile graphene-based fluorescence “on/off” switch for multiplex detection of various targets. Biosens. Bioelectron. 2011, 26, 3260–3265.

[20]

Justino, C. I. L.; Gomes, A. R.; Freitas, A. C.; Duarte, A. C.; Rocha-Santos, T. A. P. Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 2017, 91, 53–66.

[21]

Yu, X. W.; Cheng, H. H.; Zhang, M.; Zhao, Y.; Qu, L. T.; Shi, G. Q. Graphene-based smart materials. Nat. Rev. Mater. 2017, 2, 17046.

[22]

Yu, X. Q.; Zhang, W. S.; Zhang, P. P.; Su, Z. Q. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges. Biosens. Bioelectron. 2017, 89, 72–84.

[23]

Kasry, A.; Ardakani, A. A.; Tulevski, G. S.; Menges, B.; Copel, M.; Vyklicky, L. Highly efficient fluorescence quenching with graphene. J. Phys. Chem. C 2012, 116, 2858–2862.

[24]

Bradac, C.; Xu, Z. Q.; Aharonovich, I. Quantum energy and charge transfer at two-dimensional interfaces. Nano Lett. 2021, 21, 1193–1204.

[25]

Kaminska, I.; Bohlen, J.; Rocchetti, S.; Selbach, F.; Acuna, G. P.; Tinnefeld, P. Distance dependence of single-molecule energy transfer to graphene measured with DNA origami nanopositioners. Nano Lett. 2019, 19, 4257–4262.

[26]

Kamińska, I.; Bohlen, J.; Yaadav, R.; Schüler, P.; Raab, M.; Schröder, T.; Zähringer, J.; Zielonka, K.; Krause, S.; Tinnefeld, P. Graphene energy transfer for single-molecule biophysics, biosensing, and super-resolution microscopy. Adv. Mater. 2021, 33, 2101099.

[27]

Hoggard, A.; Wang, L. Y.; Ma, L. L.; Fang, Y.; You, G.; Olson, J.; Liu, Z.; Chang, W. S.; Ajayan, P. M.; Link, S. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. ACS Nano 2013, 7, 11209–11217.

[28]

Baumberg, J. J.; Aizpurua, J.; Mikkelsen, M. H.; Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 2019, 18, 668–678.

[29]

Li, G. C.; Zhang, Q.; Maier, S. A.; Lei, D. Y. Plasmonic particle-on-film nanocavities: A versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics 2018, 7, 1865–1889.

[30]

Zhang, F. L.; Yi, J.; Lin, W. Y.; You, E. M.; Lin, J. S.; Jin, H. Z.; Cai, W. W.; Tian, Z. Q.; Li, J. F. Gap-mode plasmons at 2 nm spatial-resolution under a graphene-mediated hot spot. Nano Today 2022, 44, 101464.

[31]

Xia, C. M. Y.; Zhang, D. Q.; Li, H. N.; Li, S.; Liu, H. M.; Ding, L.; Liu, X. Y.; Lyu, M.; Li, R. M.; Yang, J. et al. Single-walled carbon nanotube based SERS substrate with single molecule sensitivity. Nano Res. 2022, 15, 694–700.

[32]

Itoh, T.; Yamamoto, Y. S.; Ozaki, Y. Plasmon-enhanced spectroscopy of absorption and spontaneous emissions explained using cavity quantum optics. Chem. Soc. Rev. 2017, 46, 3904–3921.

[33]

Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

[34]

Liu, D. J.; Wu, T. T.; Zhang, Q.; Wang, X. M.; Guo, X. Y.; Su, Y. K.; Zhu, Y.; Shao, M. H.; Chen, H. J.; Luo, Y. et al. Probing the in-plane near-field enhancement limit in a plasmonic particle-on-film nanocavity with surface-enhanced Raman spectroscopy of graphene. ACS Nano 2019, 13, 7644–7654.

[35]

Lin, W. Y.; Tian, B.; Zhuang, P. P.; Yin, J.; Zhang, C. K.; Li, Q. Y.; Shih, T. M.; Cai, W. W. Graphene-based fluorescence-quenching-related Fermi level elevation and electron-concentration surge. Nano Lett. 2016, 16, 5737–5741.

[36]

Wang, X. X.; Cao, E.; Zong, H.; Sun, M. T. Plasmonic electrons enhanced resonance Raman scattering (EERRS) and electrons enhanced fluorescence (EEF) spectra. Appl. Mater. Today 2018, 13, 298–302.

[37]

Park, J. E.; Kim, J.; Nam, J. M. Emerging plasmonic nanostructures for controlling and enhancing photoluminescence. Chem. Sci. 2017, 8, 4696–4704.

[38]

Ding, B. Y.; Hrelescu, C.; Arnold, N.; Isic, G.; Klar, T. A. Spectral and directional reshaping of fluorescence in large area self-assembled plasmonic-photonic crystals. Nano Lett. 2013, 13, 378–386.

[39]

Xu, W. G.; Ling, X.; Xiao, J. Q.; Dresselhaus, M. S.; Kong, J.; Xu, H. X.; Liu, Z. F.; Zhang, J. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA 2012, 109, 9281–9286.

[40]

Aguirregabiria, G.; Marinica, D. C.; Esteban, R.; Kazansky, A. K.; Aizpurua, J.; Borisov, A. G. Role of electron tunneling in the nonlinear response of plasmonic nanogaps. Phys. Rev. B 2018, 97, 115430.

[41]

Zhang, F. L.; Yi, J.; Peng, W.; Radjenovic, P. M.; Zhang, H.; Tian, Z. Q.; Li, J. F. Elucidating molecule–plasmon interactions in nanocavities with 2 nm spatial resolution and at the single-molecule level. Angew. Chem. 2019, 131, 12261–12265.

[42]

Akselrod, G. M.; Argyropoulos, C.; Hoang, T. B.; Ciracì, C.; Fang, C.; Huang, J. N.; Smith, D. R.; Mikkelsen, M. H. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 2014, 8, 835–840.

[43]

Rose, A.; Hoang, T. B.; McGuire, F.; Mock, J. J.; Ciracì, C.; Smith, D. R.; Mikkelsen, M. H. Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Lett. 2014, 14, 4797–4802.

[44]

Ma, X.; Xu, Y. K.; Li, S. Q.; Lo, T. W.; Zhang, B. L.; Rogach, A. L.; Lei, D. Y. A flexible plasmonic-membrane-enhanced broadband tin-based perovskite photodetector. Nano Lett. 2021, 21, 9195–9202.

File
12274_2022_5209_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 August 2022
Revised: 13 October 2022
Accepted: 15 October 2022
Published: 29 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2019YFA0705400) and the National Natural Science Foundation of China (Nos. 21925404, 22002128, 22104135, 62004095, and 22021001) and Zhejiang Provincial Natural Science Foundation of China (No. LY23B050003).

Return