Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Intervaginal space injection (ISI) is a novel mode of administration investigated over the last decade. After injecting nanoparticles into the intervaginal space, they can be transported along low flow resistance channels into the interstitial space. This transport has a certain delivery direction, and site-specific injection can work on specific organs or tissues. In this study, the thorax, a new ISI site in the interstitial surrounding the internal thoracic artery named the thoracic interstitial injection (tISI) was investigated. To prove the targeting ability of the tISI, two sizes of gold nanoparticles (AuNPs) (47 and 87 nm) were administered to mice. After 1 h, the biodistribution of AuNPs in the tissues was measured via single particle inductively coupled plasma mass spectrometry (spICP-MS). The results showed that the concentration of AuNPs in the aorta after tISI injection was significantly higher than that after intravenous injection. Moreover, fewer nanoparticles with larger particle sizes were observed to have entered the blood and were better targeted to the aorta. Thereafter, tanshinone IIa sodium sulfonate liposomes were administered for the treatment of aortic atherosclerosis. The proportion of aortic plaques in atherosclerotic Apoe-/- mice administered via tISI was significantly lower than that in other model animals (P < 0.001). Furthermore, the proteoglycan content and CD68-positive cell count in the plaques were significantly reduced. The vascular elastic fibers at the plaque site were thickened, and fractures were reduced. tISI was, therefore, determined to be an effective strategy for the treatment of atherosclerotic aortic plaques.
Liu, W. T.; Cao, Y. P.; Zhou, X. H.; Han, D. Interstitial fluid behavior and diseases. Adv. Sci. (Weinh. ) 2022, 9, 2100617.
Feng, J. T.; Wang, F.; Han, X. X.; Ao, Z.; Sun, Q. M.; Hua, W. D.; Chen, P. P.; Jing, T. W.; Li, H. Y.; Han, D. A “green pathway” different from simple diffusion in soft matter: Fast molecular transport within micro/nanoscale multiphase porous systems. Nano Res. 2014, 7, 434–442.
Zhang, Q.; Ao, Z.; Hu, N.; Zhu, Y. T.; Liao, F. L.; Han, D. Neglected interstitial space in malaria recurrence and treatment. Nano Res. 2020, 13, 2869–2878.
Shi, X. L.; Zhu, Y. T.; Hua, W. D.; Ji, Y. L.; Ha, Q.; Han, X. X.; Liu, Y.; Gao, J. W.; Zhang, Q.; Liu, S. D. et al. An in vivo study of the biodistribution of gold nanoparticles after intervaginal space injection in the tarsal tunnel. Nano Res. 2016, 9, 2097–2109.
Sun, H. Z.; Han, D.; Gao, Y.; Yan, T.; Li, T. T.; Shi, Y. H.; Gao, S. K.; Li, Z. X.; Guo, Y. T.; Shi, X. L. Particle-size-dependent biological distribution of gold nanoparticles after interstitial injection. Mater. Chem. Front. 2022, 6, 2760–2767.
Li, J.; Zhao, J. Q.; Tan, T. T.; Liu, M. M.; Zeng, Z. W.; Zeng, Y. Y.; Zhang, L. L.; Fu, C. M.; Chen, D. J.; Xie, T. Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: A comprehensive review. Int. J. Nanomedicine 2020, 15, 2563–2582.
Hu, N.; Cao, Y. P.; Ao, Z.; Han, X. X.; Zhang, Q.; Liu, W. T.; Liu, S. D.; Liao, F. L.; Han, D. Flow behavior of liquid metal in the connected fascial space: Intervaginal space injection in the rat wrist and mice with tumor. Nano Res. 2018, 11, 2265–2276.
Chen, P. Y.; Qin, L.; Li, G. X.; Wang, Z.; Dahlman, J. E.; Malagon-Lopez, J.; Gujja, S.; Cilfone, N. A.; Kauffman, K. J.; Sun, L. L. et al. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat. Metab. 2019, 1, 912–926.
Libby, P. The biology of atherosclerosis comes full circle: Lessons for conquering cardiovascular disease. Nat. Rev. Cardiol. 2021, 18, 683–684.
Ait-Oufella, H.; Salomon, B. L.; Potteaux, S.; Robertson, A. K.; Gourdy, P.; Zoll, J.; Merval, R.; Esposito, B.; Cohen, J. L.; Fisson, S. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 2006, 12, 178–180.
Wu, Z. Y.; Xu, Z. J.; Pu, H. J.; Li, W. M.; Liu, J. C.; Zhao, Z.; Lu, X. W.; Lin, K. L.; Li, B. Degradable co-delivery nanoplatforms for inflammation-targeted therapy against atherosclerosis. Appl. Mater. Today 2021, 25, 101214.
Houthoofd, S.; Vuylsteke, M.; Mordon, S.; Fourneau, I. Photodynamic therapy for atherosclerosis. The potential of indocyanine green. Photodiagn. Photodyn. Ther. 2020, 29, 101568.
Chen, J.; Zhang, X. X.; Millican, R.; Sherwood, J.; Martin, S.; Jo, H.; Yoon, Y. S.; Brott, B. C.; Jun, H. W. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv. Drug Deliv. Rev. 2021, 170, 142–199.
Song, Y. N.; Zhang, N.; Li, Q. Y.; Chen, J.; Wang, Q. Z.; Yang, H. B.; Tan, H. P.; Gao, J. F.; Dong, Z. H.; Pang, Z. Q. et al. Biomimetic liposomes hybrid with platelet membranes for targeted therapy of atherosclerosis. Chem. Eng. J. 2021, 408, 127296.
Shen, J. W.; Li, C.; Yang, M. Y.; Lin, J. F.; Yin, M. D.; Zou, J. J.; Wu, P. Y.; Chen, L.; Song, L. X.; Shao, J. W. Biomimetic nanoparticles: U937 cell membranes based core–shell nanosystems for targeted atherosclerosis therapy. Int. J. Pharm. 2022, 611, 121297.
Kim, H.; Han, J.; Park, J. H. Cyclodextrin polymer improves atherosclerosis therapy and reduces ototoxicity. J. Control. Release 2020, 319, 77–86.
Gao, Y.; Zhang, R. Y.; Sun, H. Z.; Guo, Y. T.; Chen, L.; Shi, X. L.; Ge, G. L. High-efficiency mechanically assisted alkaline extraction of nanoparticles from biological tissues for spICP-MS analysis. Anal. Bioanal. Chem. 2022, 18, 4401–4408.
Qin, Y.; Wang, L. X.; Guo, M. F.; Qu, D.; Chen, Y. Celastrol/sodium tanshinone IIA sulfonate-coloaded liposome: Preparation, characterization, and synergistic anti-breast cancer treatment. Chin. Tradit. Herb. Drugs 2018, 49, 5271–5279.
Henriquez-Pino, J. A.; Gomes, W. J.; Prates, J. C.; Buffolo, E. Surgical anatomy of the internal thoracic artery. Ann. Thorac. Surg. 1997, 64, 1041–1045.
Sahar, G.; Shavit, R.; Yosibash, Z.; Novack, L.; Matsa, M.; Medalion, B.; Hochhauser, E.; Aravot, D. The physiologic and histologic properties of the distal internal thoracic artery and its subdivisions. J. Thorac. Cardiovasc. Surg. 2015, 149, 1042–1050.
Weinberg, P. M. Aortic arch anomalies. J. Cardiovasc. Magn. Reson. 2006, 8, 633–643.
Han, X. X.; Li, H. Y.; Hua, W. D.; Dai, L. R.; Ao, Z.; Liao, F. L.; Han, D. Fluid in the tissue channels of vascular adventitia investigated by AFM and TEM. Clin. Hemorheol. Microcirc. 2017, 67, 173–182.
Hu, N.; Shi, X. L.; Zhang, Q.; Liu, W. T.; Zhu, Y. T.; Wang, Y. Q.; Hou, Y.; Ji, Y. L.; Cao, Y. P.; Zeng, Q. et al. Special interstitial route can transport nanoparticles to the brain bypassing the blood-brain barrier. Nano Res. 2019, 12, 2760–2765.
Li, H. Y.; Yang, C. Q.; Yin, Y. J.; Wang, F.; Chen, M.; Xu, L.; Wang, N. L.; Zhang, D.; Wang, X. X.; Kong, Y. Y. et al. An extravascular fluid transport system based on structural framework of fibrous connective tissues in human body. Cell Prolif. 2019, 52, e12667.
Wiig, H.; Swartz, M. A. Interstitial fluid and lymph formation and transport: Physiological regulation and roles in inflammation and cancer. Physiol. Rev. 2012, 92, 1005–1060.
Fujii, S.; Roche, M.; Jones, P. M.; Vissa, D.; Bainbridge, D.; Zhou, J. R. Transversus thoracis muscle plane block in cardiac surgery: A pilot feasibility study. Reg. Anesth. Pain Med. 2019, 44, 556–560.
Guarnieri, D.; Melone, P.; Moglianetti, M.; Marotta, R.; Netti, P. A.; Pompa, P. P. Particle size affects the cytosolic delivery of membranotropic peptide-functionalized platinum nanozymes. Nanoscale 2017, 9, 11288–11296.
Wang, T.; Wang, L.; Li, X. M.; Hu, X. J.; Han, Y. P.; Luo, Y.; Wang, Z. J.; Li, Q.; Aldalbahi, A.; Wang, L. H. et al. Size-dependent regulation of intracellular trafficking of polystyrene nanoparticle-based drug-delivery systems. ACS Appl. Mater. Interfaces 2017, 9, 18619–18625.
Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 2008, 69, 1–9.
Skotland, T.; Iversen, T. G.; Llorente, A.; Sandvig, K. Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: Possibilities and challenges. Adv. Drug Deliv. Rev. 2022, 186, 114326.
Li, Z. Z.; Jiang, C.; Chai, L. X.; Fan, T. J.; Li, C. Z.; Chen, Z.; Huang, W. C.; Zhang, B.; Al-Hartomy, O. A.; Al-Ghamdi, A. et al. New insights to atherosclerosis management: Role of nanomaterials. Appl. Mater. Today 2022, 27, 101466.
Wang, J.; He, W.; Cheng, L.; Zhang, H.; Wang, Y.; Liu, C.; Dong, S.; Zha, W. H.; Kong, X. H.; Yao, C. et al. A modified thin film method for large scale production of dimeric artesunate phospholipid liposomes and comparison with conventional approaches. Int. J. Pharm. 2022, 619, 121714.
Ulrich, A. S. Biophysical aspects of using liposomes as delivery vehicles. Biosci. Rep. 2002, 22, 129–150.
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017, 9, 12.
Levchenko, T. S.; Hartner, W. C.; Torchilin, V. P. Liposomes in diagnosis and treatment of cardiovascular disorders. Methodist DeBakey Cardiovasc. J. 2012, 8, 36–41.
Li, X. T.; Gu, J. Y.; Xiao, Q. Q.; Liu, Y.; Zhou, P.; Fan, L. F.; Zhang, X. L.; Lu, X.; Wu, J.; Liu, Z. X. et al. Liposomal codelivery of inflammation inhibitor and collagen protector to the plaque for effective anti-atherosclerosis. Chin. Chem. Lett. 2023, 34, 107483.
Duong, T. T.; Yen, T. T. H.; Nguyen, L. T.; Nguyen, T. D.; Nguyen, T. Q. T.; Nghiem, T. H. L.; Pham, H. T.; Raal, A.; Heinämäki, J.; Pham, T. M. H. Berberine-loaded liposomes for oral delivery: Preparation, physicochemical characterization and in-vivo evaluation in an endogenous hyperlipidemic animal model. Int. J. Pharm. 2022, 616, 121525.
de Bittencourt, P. I. H. Jr.; Lagranha, D. J.; Maslinkiewicz, A.; Senna, S. M.; Tavares, A. M. V.; Baldissera, L. P.; Janner, D. R.; Peralta, J. S.; Bock, P. M.; Gutierrez, L. L. P. et al. Lipocardium: Endothelium-directed cyclopentenone prostaglandin-based liposome formulation that completely reverses atherosclerotic lesions. Atherosclerosis. 2007, 193, 245–258.
Paulis, L. E.; Jacobs, I.; van den Akker, N. M.; Geelen, T.; Molin, D. G.; Starmans, L. W.; Nicolay, K.; Strijkers, G. J. Targeting of ICAM-1 on vascular endothelium under static and shear stress conditions using a liposomal Gd-based MRI contrast agent. J. Nanobiotechnol. 2012, 10, 25.
van Tilborg, G. A. F.; Mulder, W. J. M.; van der Schaft, D. W. J.; Reutelingsperger, C. P. M.; Griffioen, A. W.; Strijkers, G. J.; Nicolay, K. Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes. Neoplasia 2008, 10, 1459–1469.
Karathanasis, E.; Geigerman, C. M.; Parkos, C. A.; Chan, L.; Bellamkonda, R. V.; Jaye, D. L. Selective targeting of nanocarriers to neutrophils and monocytes. Ann. Biomed. Eng. 2009, 37, 1984–1992.
Wu, Y.; Zhang, Y.; Dai, L. L.; Wang, Q. Q.; Xue, L. J.; Su, Z. G.; Zhang, C. An apoptotic body-biomimic liposome in situ upregulates anti-inflammatory macrophages for stabilization of atherosclerotic plaques. J. Control. Release 2019, 316, 236–249.
Kiaie, N.; Gorabi, A. M.; Penson, P. E.; Watts, G.; Johnston, T. P.; Banach, M.; Sahebkar, A. A new approach to the diagnosis and treatment of atherosclerosis: The era of the liposome. Drug Discov. Today 2020, 25, 58–72.
Epshtein, M.; Korin, N. Shear targeted drug delivery to stenotic blood vessels. J. Biomech. 2017, 50, 217–221.
Mocanu, C. A.; Fuior, E. V.; Voicu, G.; Rebleanu, D.; Safciuc, F.; Deleanu, M.; Fenyo, I. M.; Escriou, V.; Manduteanu, I.; Simionescu, M. et al. P-selectin targeted RAGE-shRNA lipoplexes alleviate atherosclerosis-associated inflammation. J. Control. Release 2021, 338, 754–772.
Roces, C. B.; Port, E. C.; Daskalakis, N. N.; Watts, J. A.; Aylott, J. W.; Halbert, G. W.; Perrie, Y. Rapid scale-up and production of active-loaded PEGylated liposomes. Int. J. Pharm. 2020, 586, 119566.
Stenmark, K. R.; Davie, N.; Frid, M.; Gerasimovskaya, E.; Das, M. Role of the adventitia in pulmonary vascular remodeling. Physiology 2006, 21, 134–145.
Simion, V.; Zhou, H. Y.; Haemmig, S.; Pierce, J. B.; Mendes, S.; Tesmenitsky, Y.; Pérez-Cremades, D.; Lee, J. F.; Chen, A. F.; Ronda, N. et al. A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nat. Commun. 2020, 11, 6135.
Ogeng’o, J.; Ominde, B. S.; Ongeti, K.; Olabu, B.; Obimbo, M.; Mwachaka, P. Reappraisal of the structure of arterial tunica adventitia and its involvement in atherosclerosis. Anat. J. Afr. 2017, 6, 824–833.
Gujral, D. M.; Cheung, W. K.; Shah, B. N.; Chahal, N. S.; Bhattacharyya, S.; Hooper, J.; Senior, R.; Tang, M. X.; Harrington, K. J.; Nutting, C. M. Contrast enhancement of carotid adventitial vasa vasorum as a biomarker of radiation-induced atherosclerosis. Radiother. Oncol. 2016, 120, 63–68.
Wang, J. L.; Wang, Y.; Wang, J. J.; Guo, X. S.; Chan, E. C.; Fan, J. Adventitial activation in the pathogenesis of injury-induced arterial remodeling: Potential implications in transplant vasculopathy. Am. J. Pathol. 2018, 188, 838–845.
Barker, S. G. E.; Tilling, L. C.; Miller, G. C.; Beesley, J. E.; Fleetwood, G.; Stavri, G. T.; Baskerville, P. A.; Martin, J. F. The adventitia and atherogenesis: Removal initiates intimal proliferation in the rabbit which regresses on generation of a “neoadventitia”. Atherosclerosis 1994, 105, 131–144.
Wörsdörfer, P.; Mekala, S. R.; Bauer, J.; Edenhofer, F.; Kuerten, S.; Ergün, S. The vascular adventitia: An endogenous, omnipresent source of stem cells in the body. Pharmacol. Ther. 2017, 171, 13–29.
Tanaka, K.; Nagata, D.; Hirata, Y.; Tabata, Y.; Nagai, R.; Sata, M. Augmented angiogenesis in adventitia promotes growth of atherosclerotic plaque in apolipoprotein e-deficient mice. Atherosclerosis 2011, 215, 366–373.
Klotz, L.; Norman, S.; Vieira, J. M.; Masters, M.; Rohling, M.; Dube, K. N.; Bollini, S.; Matsuzaki, F.; Carr, C. A.; Riley, P. R. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 2015, 522, 62–67.
Tinajero, M. G.; Gotlieb, A. I. Recent developments in vascular adventitial pathobiology: The dynamic adventitia as a complex regulator of vascular disease. Am. J. Pathol. 2020, 190, 520–534.
Okamoto, E. I.; Couse, T.; de Leon, H.; Vinten-Johansen, J.; Goodman, R. B.; Scott, N. A.; Wilcox, J. N. Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation 2001, 104, 2228–2235.
Xu, F.; Ji, J.; Li, L.; Chen, R.; Hu, W. C. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse. Biochem. Biophys. Res. Commun. 2007, 352, 681–688.
Stenmark, K. R.; Yeager, M. E.; El Kasmi, K. C.; Nozik-Grayck, E.; Gerasimovskaya, E. V.; Li, M.; Riddle, S. R.; Frid, M. G. The adventitia: Essential regulator of vascular wall structure and function. Annu. Rev. Physiol. 2013, 75, 23–47.
Sakamoto, S.; Tsuruda, T.; Hatakeyama, K.; Imamura, T.; Asada, Y.; Kitamura, K. Impact of age-dependent adventitia inflammation on structural alteration of abdominal aorta in hyperlipidemic mice. PLoS One 2014, 9, e105739.
Wilcox, J. N.; Scott, N. A. Potential role of the adventitia in arteritis and atherosclerosis. Int. J. Cardiol. 1996, 54, S21–S35.
Xu, X. S.; Lu, H. X.; Lin, H. L.; Ni, M.; Sun, H. W.; Li, C. J.; Jiang, H.; Li, F. H.; Zhao, Y. X.; Zhang, M. et al. Lymphangiogenesis promotes inflammation and neointimal hyperplasia after adventitia removal in the rat carotid artery. Int. J. Cardiol. 2009, 134, 426–427.
Tuttolomondo, A.; Di Raimondo, D.; Pecoraro, R.; Serio, A.; D’Aguanno, G.; Pinto, A.; Licata, G. Immune-inflammatory markers and arterial stiffness indexes in subjects with acute ischemic stroke. Atherosclerosis 2010, 213, 311–318.
Ang, H. Y.; Xiong, G. M.; Chaw, S. Y.; Phua, J. L.; Ng, J. C. K.; Wong, P. E. H.; Venkatraman, S.; Chong, T. T.; Huang, Y. Y. Adventitial injection delivery of nano-encapsulated sirolimus (Nanolimus) to injury-induced porcine femoral vessels to reduce luminal restenosis. J. Control. Release 2020, 319, 15–24.
Shirasu, T.; Yodsanit, N.; Xie, X. J.; Wang, B. W.; Gong, S. Q.; Guo, L. W.; Kent, K. C. Tissue adhesive unimolecular micelles directly painted onto the adventitia for decreasing intimal hyperplasia. J. Vasc. Surg. 2022, 75, 13S.
Zhu, W.; Lv, Q.; Chen, H. W.; Wang, Z. H.; Zhong, Q. Protective effect and mechanism of sodium tanshinone II A sulfonate on microcirculatory disturbance of small intestine in rats with sepsis. J. Huazhong Univ. Sci. Technol. Med. Sci. 2011, 31, 441.
Liu, J.; Dong, S. X.; Ru, Y. X. A review: Pathological and molecular biological study on atherosclerosis. Clin. Chim. Acta 2022, 531, 217–222.
Tran-Lundmark, K.; Tran, P. K.; Paulsson-Berne, G.; Fridén, V.; Soininen, R.; Tryggvason, K.; Wight, T. N.; Kinsella, M. G.; Borén, J.; Hedin, U. Heparan sulfate in perlecan promotes mouse atherosclerosis: Roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circ. Res. 2008, 103, 43–52.
Pukaluk, A.; Wittgenstein, A. S.; Leitinger, G.; Kolb, D.; Pernitsch, D.; Schneider, S. A.; Knöbelreiter, P.; Horak, V.; Bredies, K.; Holzapfel, G. A. et al. An ultrastructural 3D reconstruction method for observing the arrangement of collagen fibrils and proteoglycans in the human aortic wall under mechanical load. Acta Biomater. 2022, 141, 300–314.
Katsuda, S.; Kaji, T. Atherosclerosis and extracellular matrix. J. Atheroscler. Thromb. 2003, 10, 267–274.
Bobryshev, Y. V. Calcification of elastic fibers in human atherosclerotic plaque. Atherosclerosis 2005, 180, 293–303.
Heinz, A. Elastic fibers during aging and disease. Ageing Res. Rev. 2021, 66, 101255.
Chen, T. T.; Li, M. L.; Fan, X. H.; Cheng, J.; Wang, L. Q. Sodium tanshinone IIA sulfonate prevents angiotensin II-induced differentiation of human atrial fibroblasts into myofibroblasts. Oxid. Med. Cell Longev. 2018, 2018, 6712585.
Zhu, J.; Xu, Y. L.; Ren, G. Y.; Hu, X.; Wang, C.; Yang, Z.; Li, Z. Y.; Mao, W.; Lu, D. Z. Tanshinone IIA sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur. J. Pharmacol. 2017, 815, 427–436.
Cheng, J.; Chen, T. T.; Li, P. Y.; Wen, J.; Pang, N. B.; Zhang, L. P.; Wang, L. Q. Sodium tanshinone IIA sulfonate prevents lipopolysaccharide-induced inflammation via suppressing nuclear factor-κB signaling pathway in human umbilical vein endothelial cells. Can. J. Physiol. Pharmacol. 2018, 96, 26–31.