Journal Home > Volume 16 , Issue 4

The interlayer coupling in van der Waals (vdW) crystals has substantial effects on the performance of materials. However, an in-depth understanding of the microscopic mechanism on the defect-modulated interlayer coupling is often elusive, owing partly to the challenge of atomic-scale characterization. Here we report the native Se-vacancies in a charge-density-wave metal 2H-NbSe2, as well as their influence on the local atomic configurations and interlayer coupling. Our low-temperature scanning tunneling microscopy (STM) measurements, complemented by density functional theory calculations, indicate that the Se-vacancies in few-layer NbSe2 can generate obvious atomic distortions due to the Jahn–Teller effect, thus breaking the rotational symmetry on the nanoscale. Moreover, these vacancies can locally generate an in-gap state in single-layer NbSe2, and more importantly, lead to a colossal suppression of interlayer coupling in the bilayer system. Our results provide clear structural and electronic fingerprints around the vacancies in vdW crystals, paving the way for developing functional vdW devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Colossal structural distortion and interlayer-coupling suppression in a van der Waals crystal induced by atomic vacancies

Show Author's information Liangguang Jia1,§Fei Gao2,§Yu Zhang1,3,§( )Yaoyao Chen1Baofei Hou1Zeping Huang1Quanzhen Zhang1Xu Wu1Liwei Liu1Shiwu Gao4Mads Brandbyge2Hong-Jun Gao5Yeliang Wang1( )
School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
Center for Nanostructured Graphene, Department of Physics, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
Beijing Computational Science Research Center, Beijing 100193, China
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

§ Liangguang Jia, Fei Gao, and Yu Zhang contributed equally to this work.

Abstract

The interlayer coupling in van der Waals (vdW) crystals has substantial effects on the performance of materials. However, an in-depth understanding of the microscopic mechanism on the defect-modulated interlayer coupling is often elusive, owing partly to the challenge of atomic-scale characterization. Here we report the native Se-vacancies in a charge-density-wave metal 2H-NbSe2, as well as their influence on the local atomic configurations and interlayer coupling. Our low-temperature scanning tunneling microscopy (STM) measurements, complemented by density functional theory calculations, indicate that the Se-vacancies in few-layer NbSe2 can generate obvious atomic distortions due to the Jahn–Teller effect, thus breaking the rotational symmetry on the nanoscale. Moreover, these vacancies can locally generate an in-gap state in single-layer NbSe2, and more importantly, lead to a colossal suppression of interlayer coupling in the bilayer system. Our results provide clear structural and electronic fingerprints around the vacancies in vdW crystals, paving the way for developing functional vdW devices.

Keywords: scanning tunneling microscopy, interlayer coupling, atomic vacancies, structural distortion

References(35)

[1]

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

[2]

Rhodes, D.; Chae, S. H.; Ribeiro-Palau, R.; Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 2019, 18, 541–549.

[3]

Liu, H.; Grasseschi, D.; Dodda, A.; Fujisawa, K.; Olson, D.; Kahn, E.; Zhang, F.; Zhang, T. Y.; Lei, Y.; Branco, R. B. N. et al. Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS2. Sci. Adv. 2020, 6, eabc9308.

[4]

Liang, Q. J.; Zhang, Q.; Zhao, X. X.; Liu, M. Z.; Wee, A. T. S. Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano 2021, 15, 2165–2181.

[5]

Nair, R. R.; Sepioni, M.; Tsai, I. L.; Lehtinen, O.; Keinonen, J.; Krasheninnikov, A. V.; Thomson, T.; Geim, A. K.; Grigorieva, I. V. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 2012, 8, 199–202.

[6]

González-Herrero, H.; Gómez-Rodríguez, J. M.; Mallet, P.; Moaied, M.; Palacios, J. J.; Salgado, C.; Ugeda, M. M.; Veuillen, J. Y.; Yndurain, F.; Brihuega, I. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 2016, 352, 437–441.

[7]

Zhang, Y.; Li, S. Y.; Huang, H. Q.; Li, W. T.; Qiao, J. B.; Wang, W. X.; Yin, L. J.; Bai, K. K.; Duan, W. H.; He, L. Scanning tunneling microscopy of the π magnetism of a single carbon vacancy in graphene. Phys. Rev. Lett. 2016, 117, 166801.

[8]

Zhang, Y.; Gao, F.; Gao, S. W.; He, L. Tunable magnetism of a single-carbon vacancy in graphene. Sci. Bull. 2020, 65, 194–200.

[9]

Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41.

[10]

Li, G. Q.; Zhang, D.; Qiao, Q.; Yu, Y. F.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 16632–16638.

[11]

Kwon, I. S.; Kwak, I. H.; Kim, J. Y.; Debela, T. T.; Park, Y. C.; Park, J.; Kang, H. S. Concurrent vacancy and adatom defects of Mo1−xNbxSe2 alloy nanosheets enhance electrochemical performance of hydrogen evolution reaction. ACS Nano 2021, 15, 5467–5477.

[12]

Lin, Y. C.; Dumcenco, D. O.; Komsa, H. P.; Niimi, Y.; Krasheninnikov, A. V.; Huang, Y. S.; Suenaga, K. Properties of individual dopant atoms in single-layer MoS2: Atomic structure, migration, and enhanced reactivity. Adv. Mater. 2014, 26, 2857–2861.

[13]

Nguyen, L.; Komsa, H. P.; Khestanova, E.; Kashtiban, R. J.; Peters, J. J. P.; Lawlor, S.; Sanchez, A. M.; Sloan, J.; Gorbachev, R. V.; Grigorieva, I. V. et al. Atomic defects and doping of monolayer NbSe2. ACS Nano 2017, 11, 2894–2904.

[14]

Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. N.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.

[15]

Bradley, A. J.; Ugeda, M. M.; Da Jornada, F. H.; Qiu, D. Y.; Ruan, W.; Zhang, Y.; Wickenburg, S.; Riss, A.; Lu, J.; Mo, S. K. et al. Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe2 nanostructures. Nano Lett. 2015, 15, 2594–2599.

[16]

Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139–143.

[17]

Hamill, A.; Heischmidt, B.; Sohn, E.; Shaffer, D.; Tsai, K. T.; Zhang, X.; Xi, X. X.; Suslov, A.; Berger, H.; Forró, L. et al. Two-fold symmetric superconductivity in few-layer NbSe2. Nat. Phys. 2021, 17, 949–954.

[18]

Liu, L. W.; Yang, H.; Huang, Y. T.; Song, X.; Zhang, Q. Z.; Huang, Z. P.; Hou, Y. H.; Chen, Y. Y.; Xu, Z. Q.; Zhang, T. et al. Direct identification of Mott Hubbard band pattern beyond charge density wave superlattice in monolayer 1T-NbSe2. Nat. Commun. 2021, 12, 1978.

[19]

Zhang, Q. Z.; Zhang, Y.; Hou, Y. H.; Xu, R. Z.; Jia, L. G.; Huang, Z. P.; Hao, X. Y.; Zhou, J. D.; Zhang, T.; Liu, L. W. et al. Nanoscale control of one-dimensional confined states in strongly correlated homojunctions. Nano Lett. 2022, 22, 1190–1197.

[20]

Zhang, Q. Z.; Fan, J. H.; Zhang, T.; Wang, J. Z.; Hao, X. Y.; Xie, Y. M.; Huang, Z. P.; Chen, Y. Y.; Liu, M.; Jia, L. G. et al. Visualization of edge-modulated charge-density-wave orders in monolayer transition-metal-dichalcogenide metal. Commun. Phys. 2022, 5, 117.

[21]

Lin, D. J.; Li, S. C.; Wen, J. S.; Berger, H.; Forró, L.; Zhou, H. B.; Jia, S.; Taniguchi, T.; Watanabe, K.; Xi, X. X. et al. Patterns and driving forces of dimensionality-dependent charge density waves in 2H-type transition metal dichalcogenides. Nat. Commun. 2020, 11, 2406.

[22]

Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765–769.

[23]

Gye, G.; Oh, E.; Yeom, H. W. Topological landscape of competing charge density waves in 2H-NbSe2. Phys. Rev. Lett. 2019, 122, 016403.

[24]

Pásztor, Á.; Scarfato, A.; Spera, M.; Flicker, F.; Barreteau, C.; Giannini, E.; Van Wezel, J.; Renner, C. Multiband charge density wave exposed in a transition metal dichalcogenide. Nat. Commun. 2021, 12, 6037.

[25]

Dreher, P.; Wan, W.; Chikina, A.; Bianchi, M.; Guo, H. J.; Harsh, R.; Mañas-Valero, S.; Coronado, E.; Martínez-Galera, A. J.; Hofmann, P. et al. Proximity effects on the charge density wave order and superconductivity in single-layer NbSe2. ACS Nano 2021, 15, 19430–19438.

[26]

Lian, C. S.; Si, C.; Duan, W. H. Unveiling charge-density wave, superconductivity, and their competitive nature in two-dimensional NbSe2. Nano Lett. 2018, 18, 2924–2929.

[27]

Guster, B.; Rubio-Verdú, C.; Robles, R.; Zaldívar, J.; Dreher, P.; Pruneda, M.; Silva-Guillén, J. Á.; Choi, D. J.; Pascual, J. I.; Ugeda, M. M. et al. Coexistence of elastic modulations in the charge density wave state of 2H-NbSe2. Nano Lett. 2019, 19, 3027–3032.

[28]

Ugeda, M. M.; Bradley, A. J.; Zhang, Y.; Onishi, S.; Chen, Y.; Ruan, W.; Ojeda-Aristizabal, C.; Ryu, H.; Edmonds, M. T.; Tsai, H. Z. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 2016, 12, 92–97.

[29]

Silva-Guillén, J. Á.; Ordejón, P.; Guinea, F.; Canadell, E. Electronic structure of 2H-NbSe2 single-layers in the CDW state. 2D Mater. 2016, 3, 035028.

[30]

Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

[31]

Arguello, C. J.; Chockalingam, S. P.; Rosenthal, E. P.; Zhao, L.; Gutiérrez, C.; Kang, J. H.; Chung, W. C.; Fernandes, R. M.; Jia, S.; Millis, A. J. et al. Visualizing the charge density wave transition in 2H-NbSe2 in real space. Phys. Rev. B 2014, 89, 235115.

[32]

Okamoto, J. I.; Arguello, C. J.; Rosenthal, E. P.; Pasupathy, A. N.; Millis, A. J. Experimental evidence for a Bragg glass density wave phase in a transition-metal dichalcogenide. Phys. Rev. Lett. 2015, 114, 026802.

[33]

Hildebrand, B.; Jaouen, T.; Mottas, M. L.; Monney, G.; Barreteau, C.; Giannini, E.; Bowler, D. R.; Aebi, P. Local real-space view of the achiral 1T-TiSe2 2 × 2 × 2 charge density wave. Phys. Rev. Lett. 2018, 120, 136404.

[34]

Zheng, H. S.; Choi, Y.; Baniasadi, F.; Hu, D. K.; Jiao, L. Y.; Park, K.; Tao, C. G. Visualization of point defects in ultrathin layered 1T-PtSe2. 2D Mater. 2019, 6, 041005.

[35]

Oh, E.; Gye, G.; Yeom, H. W. Defect-selective charge-density-wave condensation in 2H-NbSe2. Phys. Rev. Lett. 2020, 125, 036804.

File
12274_2022_5203_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 August 2022
Revised: 06 October 2022
Accepted: 13 October 2022
Published: 29 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is financial supported by National Natural Science Foundation of China (Nos. 92163206, 61725107, 12274026, 61971035, 62271048, 11934003, 21961132023, and U1930402), National Key Research and Development Program Program of China (Nos. 2020YFA0308800, 2021YFA1400100, 2022YFA1402502, and 2022YFA1402602), Beijing Natural Science Foundation (No. Z190006), China Postdoctoral Science Foundation (No. 2021M700407), Villum Fonden (No. 00013340), and the Danish Research Foundation (No. DNRF103) for the Center for Nanostructured Graphene (CNG). Computer infrastructure resources are provided by the Niflheim supercomputer.

Return