Journal Home > Volume 16 , Issue 4

Bioadhesive hydrogels have demonstrated great potential in bone regeneration. However, the relatively simple adhesion mechanism and lack of intricate structural design restrict their further applications. Herein, inspired by multiple adhesion mechanisms of pollen particles and marine mussels, we present a novel type of dual-adhesive hydrogel particles fabricated from microfluidic electrospray for bone regeneration. As the particles are rapidly solidified via liquid nitrogen-assisted cryogelation, they exhibit pollen-mimicking hierarchical porous morphology and gain structure-related adhesion. Besides, the particles are further coated by polydopamine (PDA) to achieve molecular-level adhesion especially to physiological wet surfaces of bone issues. Benefiting from such dual-adhesion mechanisms, the particles can strongly adhere to bone tissue defects, and function as porous scaffolds. Moreover, the dual-adhesive particles can serve as effective vehicles to release key growth factors more than two weeks. In vitro experiments showed that the growth factors-loaden particles have excellent biocompatibility and more significantly promote angiogenesis (~ 2-fold) and osteogenic differentiation (~ 3-fold) than control. In vivo experiments indicated that the dual-adhesive particles could significantly enhance bone regeneration (~ 4-fold) than control by coupling osteogenesis and angiogenesis effects. Based on these features, the bio-inspired dual-adhesive particles have great potentials for bone repair and wound healing applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bio-inspired dual-adhesive particles from microfluidic electrospray for bone regeneration

Show Author's information Lei Yang1,2Xiaocheng Wang2Yunru Yu2Luoran Shang2,3( )Wei Xu4( )Yuanjin Zhao1,2( )
Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China

Abstract

Bioadhesive hydrogels have demonstrated great potential in bone regeneration. However, the relatively simple adhesion mechanism and lack of intricate structural design restrict their further applications. Herein, inspired by multiple adhesion mechanisms of pollen particles and marine mussels, we present a novel type of dual-adhesive hydrogel particles fabricated from microfluidic electrospray for bone regeneration. As the particles are rapidly solidified via liquid nitrogen-assisted cryogelation, they exhibit pollen-mimicking hierarchical porous morphology and gain structure-related adhesion. Besides, the particles are further coated by polydopamine (PDA) to achieve molecular-level adhesion especially to physiological wet surfaces of bone issues. Benefiting from such dual-adhesion mechanisms, the particles can strongly adhere to bone tissue defects, and function as porous scaffolds. Moreover, the dual-adhesive particles can serve as effective vehicles to release key growth factors more than two weeks. In vitro experiments showed that the growth factors-loaden particles have excellent biocompatibility and more significantly promote angiogenesis (~ 2-fold) and osteogenic differentiation (~ 3-fold) than control. In vivo experiments indicated that the dual-adhesive particles could significantly enhance bone regeneration (~ 4-fold) than control by coupling osteogenesis and angiogenesis effects. Based on these features, the bio-inspired dual-adhesive particles have great potentials for bone repair and wound healing applications.

Keywords: adhesion, bone regeneration, particles, microfluidics, growth factors

References(35)

[1]

Koons, G. L.; Diba, M.; Mikos, A. G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020, 5, 584–603.

[2]

Okuchi, Y.; Reeves, J.; Ng, S. S.; Doro, D. H.; Junyent, S.; Liu, K. J.; El Haj, A. J.; Habib, S. J. Wnt-modified materials mediate asymmetric stem cell division to direct human osteogenic tissue formation for bone repair. Nat. Mater. 2021, 20, 108–118.

[3]

Hasani-Sadrabadi, M. M.; Sarrion, P.; Pouraghaei, S.; Chau, Y.; Ansari, S.; Li, S.; Aghaloo, T.; Moshaverinia, A. An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Sci. Transl. Med. 2020, 12, eaay6853.

[4]

Cheng, L.; Cai, Z. W.; Zhao, J. W.; Wang, F.; Lu, M.; Deng, L. F.; Cui, W. G. Black phosphorus-based 2D materials for bone therapy. Bioact. Mater. 2020, 5, 1026–1043.

[5]

Yan, Y. F.; Chen, H.; Zhang, H. B.; Guo, C. J.; Yang, K.; Chen, K. Z.; Cheng, R. Y.; Qian, N. D.; Sandler, N.; Zhang, Y. S. et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials 2019, 190–191, 97–110.

[6]

Lin, Z. J.; Zhao, Y.; Chu, P. K.; Wang, L. N.; Pan, H. B.; Zheng, Y. F.; Wu, S. L.; Liu, X. Y.; Cheung, K. M. C.; Wong, T. et al. A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials 2019, 219, 119372.

[7]

Armiento, A. R.; Hatt, L. P.; Rosenberg, G. S.; Thompson, K.; Stoddart, M. J. Functional biomaterials for bone regeneration: A lesson in complex biology. Adv. Funct. Mater. 2020, 30, 1909874.

[8]

Wang, X. C.; Yu, Y. R.; Yang, C. Y.; Shao, C. M.; Shi, K. Q.; Shang, L. R.; Ye, F. F.; Zhao, Y. J. Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration. Adv. Funct. Mater. 2021, 31, 2105190.

[9]

Xie, C.; Ye, J. C.; Liang, R. J.; Yao, X. D.; Wu, X. Y.; Koh, Y.; Wei, W.; Zhang, X. Z.; Ouyang, H. W. Advanced strategies of biomimetic tissue-engineered grafts for bone regeneration. Adv. Healthc. Mater. 2021, 10, 2100408.

[10]

Safari, B.; Davaran, S.; Aghanejad, A. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. Int. J. Biol. Macromol. 2021, 175, 544–557.

[11]

Divband, B.; Aghazadeh, M.; Al-Qaim, Z. H.; Samiei, M.; Hussein, F. H.; Shaabani, A.; Shahi, S.; Sedghi, R. Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF carrier for osteogenesis of dental pulp stem cells. Carbohyd. Polym. 2021, 273, 118589.

[12]

Sun, H.; Dong, J.; Wang, Y. Y. F.; Shen, S. Y.; Shi, Y.; Zhang, L.; Zhao, J.; Sun, X. L.; Jiang, Q. Polydopamine-coated poly(L-lactide) nanofibers with controlled release of VEGF and BMP-2 as a regenerative periosteum. ACS Biomater. Sci. Eng. 2021, 7, 4883–4897.

[13]

Kim, S.; Lee, M. Rational design of hydrogels to enhance osteogenic potential. Chem. Mater. 2020, 32, 9508–9530.

[14]

Yang, Y. H.; Xu, T. P.; Bei, H. P.; Zhao, Y. J.; Zhao, X. Sculpting bio-inspired surface textures: An adhesive Janus periosteum. Adv. Funct. Mater. 2021, 31, 2104636.

[15]

Wang, B.; Liu, J.; Niu, D. Y.; Wu, N. Q.; Yun, W. T.; Wang, W. D.; Zhang, K. X.; Li, G. F.; Yan, S. F.; Xu, G. H. et al. Mussel-inspired bisphosphonated injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties for bone regeneration. ACS Appl. Mater. Interfaces 2021, 13, 32673–32689.

[16]

Bai, X.; Gao, M. Z.; Syed, S.; Zhuang, J.; Xu, X. Y.; Zhang, X. Q. Bioactive hydrogels for bone regeneration. Bioact. Mater. 2018, 3, 401–417.

[17]

Xue, X.; Hu, Y.; Deng, Y. H.; Su, J. C. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater. 2021, 31, 2009432.

[18]

Lei, L. J.; Lv, Q. Z.; Jin, Y.; An, H.; Shi, Z.; Hu, G.; Yang, Y. Z.; Wang, X. G.; Yang, L. Angiogenic microspheres for the treatment of a thin endometrium. ACS Biomater. Sci. Eng. 2021, 7, 4914–4920.

[19]

Xu, T. P.; Yang, Y. H.; Suo, D.; Bei, H. P.; Xu, X. X.; Zhao, X. Electrosprayed regeneration−enhancer−element microspheres power osteogenesis and angiogenesis coupling. Small 2022, 189, 2200314.

[20]

Yang, L.; Sun, L. Y.; Zhang, H.; Bian, F. K.; Zhao, Y. J. Ice-inspired lubricated drug delivery particles from microfluidic electrospray for osteoarthritis treatment. ACS Nano 2021, 15, 20600–20606.

[21]

Luo, Z. Q.; Che, J. Y.; Sun, L. Y.; Yang, L.; Zu, Y.; Wang, H.; Zhao, Y. J. Microfluidic electrospray photo-crosslinkable κ-carrageenan microparticles for wound healing. Eng. Regener. 2021, 2, 257–262.

[22]

Wang, Y. T.; Shang, L. R.; Chen, G. P.; Shao, C. M.; Liu, Y. X.; Lu, P. H.; Rong, F.; Zhao, Y. J. Pollen-inspired microparticles with strong adhesion for drug delivery. Appl. Mater. Today 2018, 13, 303–309.

[23]

Maric, T.; Nasir, M. Z. M.; Rosli, N. F.; Budanović, M.; Webster, R. D.; Cho, N. J.; Pumera, M. Microrobots derived from variety plant pollen grains for efficient environmental clean up and as an anti-cancer drug carrier. Adv. Funct. Mater. 2020, 30, 2000112.

[24]

Chen, K. L.; Wang, F.; Ding, R.; Cai, Z. W.; Zou, T. Y.; Zhang, A. D.; Guo, D. Y.; Ye, B.; Cui, W. G.; Xiang, M. L. Adhesive and injectable hydrogel microspheres for inner ear treatment. Small 2022, 18, 2106591.

[25]

Xiao, Y.; Wang, W. X.; Tian, X. H.; Tan, X.; Yang, T.; Gao, P.; Xiong, K. Q.; Tu, Q. F.; Wang, M.; Maitz, M. F. et al. A versatile surface bioengineering strategy based on mussel-inspired and bioclickable peptide mimic. Research 2020, 2020, 7236946.

[26]

Wang, X. K.; Zhou, X. C.; Zhao, H.; Chen, X.; Zhang, Y.; Wang, M.; Yang, H. L.; Pan, G. Q.; Shi, Q. Surface bioengineering of diverse orthopaedic implants with optional functions via bioinspired molecular adhesion and bioorthogonal conjugations. Biomed. Mater. 2021, 16, 024106.

[27]

Wang, Y.; Shang, L. R.; Chen, G. P.; Sun, L. Y.; Zhang, X. X.; Zhao, Y. J. Bioinspired structural color patch with anisotropic surface adhesion. Sci. Adv. 2020, 6, eaax8258.

[28]

Qu, X. Y.; Wang, S. Y.; Zhao, Y.; Huang, H.; Wang, Q.; Shao, J. J.; Wang, W. J.; Dong, X. C. Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor. Chem. Eng. J. 2021, 425, 131523.

[29]

Jung, H.; Kim, M. K.; Lee, J. Y.; Choi, S. W.; Kim, J. Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery. Adv. Funct. Mater. 2020, 30, 2004407.

[30]

Wang, T.; Bai, J. X.; Lu, M.; Huang, C. L.; Geng, D. C.; Chen, G.; Wang, L.; Qi, J.; Cui, W. G.; Deng, L. F. Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking. Nat. Commun. 2022, 13, 160.

[31]

Chen, G. P.; Wang, F. Y.; Nie, M.; Zhang, H.; Zhang, H.; Zhao, Y. J. Roe-inspired stem cell microcapsules for inflammatory bowel disease treatment. Proc. Natl. Acad. Sci. USA 2021, 118, e2112704118.

[32]

Zhao, Y.; Song, S. L.; Ren, X. Z.; Zhang, J. M.; Lin, Q.; Zhao, Y. L. Supramolecular adhesive hydrogels for tissue engineering applications. Chem. Rev. 2022, 122, 5604–5640.

[33]

Yang, L.; Liu, Y. X.; Sun, L. Y.; Zhao, C.; Chen, G. P.; Zhao, Y. J. Biomass microcapsules with stem cell encapsulation for bone repair. Nano-Micro Lett. 2022, 14, 4.

[34]

Han, Y. J.; You, X. L.; Xing, W. H.; Zhang, Z.; Zou, W. G. Paracrine and endocrine actions of bone—The functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018, 6, 16.

[35]

Wan, H. Y.; Shin, R. L. Y.; Chen, J. C. H.; Assunção, M.; Wang, D.; Nilsson, S. K.; Tuan, R. S.; Blocki, A. Dextran sulfate-amplified extracellular matrix deposition promotes osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 2022, 140, 163–177.

File
12274_2022_5202_MOESM1_ESM.pdf (791 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 August 2022
Revised: 11 October 2022
Accepted: 13 October 2022
Published: 09 November 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2020YFA0908200), the National Natural Science Foundation of China (No. 82202670), the Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515120054), the Shenzhen Fundamental Research Program (Nos. JCYJ20190813152616459 and JCYJ20210324133214038), and the Startup Fund of Wenzhou Institute, University of Chinese Academy of Sciences (No. WIUCASQD2022001).

Return