Journal Home > Volume 16 , Issue 4

Nanotechnology has been widely applied in the development of traditional Chinese medicine (TCM). Interestingly, we found that nanostructures intrinsically existed in 12 clinically applied TCM mixtures (TCMMs). However, the role of these nanostructures in TCMMs and their potential value in improving the development of TCMMs remain unknown. Taking Qingxuechushi mixture as an example, we demonstrated that nanoparticles could be the most efficient part through the pharmacodynamics study on psoriasis model. By imitating the physical properties and chemical composition of isolated nanoparticles in Qingxuechushi mixture, a novel nanoformulation with definite components and good therapeutic effect was developed, which not only mimicked the prescription composition rules in the original TCMMs but also possessed the advantage of nanotechnology. This novel nanoformulation could notably alleviate the psoriasis-like manifestations and reduce the levels of pro-inflammatory factors in serum in the psoriasis mouse model. This work organically integrates the advantages of TCMMs and nanotechnology, which may provide a new approach and inspiration for the development of TCM.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

De novo engineering of nanoformulation from traditional Chinese medicine mixtures for psoriasis

Show Author's information Yang Li1,§Dan Zhang2,§Tianzi Shi1Yulin Yu1Yinmei Tian1Qi Xie1Jingyu Shi3Li Kong1Conglian Yang1( )Zhiping Zhang1,4( )
Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
Department of Pharmacy, Wuhan No.1 Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430022, China
Department of Pharmacy, Liyuan Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430077, China
Hubei Engineering Research Centre for Novel Drug Delivery System, Wuhan 430030, China

§ Yang Li and Dan Zhang contributed equally to this work.

Abstract

Nanotechnology has been widely applied in the development of traditional Chinese medicine (TCM). Interestingly, we found that nanostructures intrinsically existed in 12 clinically applied TCM mixtures (TCMMs). However, the role of these nanostructures in TCMMs and their potential value in improving the development of TCMMs remain unknown. Taking Qingxuechushi mixture as an example, we demonstrated that nanoparticles could be the most efficient part through the pharmacodynamics study on psoriasis model. By imitating the physical properties and chemical composition of isolated nanoparticles in Qingxuechushi mixture, a novel nanoformulation with definite components and good therapeutic effect was developed, which not only mimicked the prescription composition rules in the original TCMMs but also possessed the advantage of nanotechnology. This novel nanoformulation could notably alleviate the psoriasis-like manifestations and reduce the levels of pro-inflammatory factors in serum in the psoriasis mouse model. This work organically integrates the advantages of TCMMs and nanotechnology, which may provide a new approach and inspiration for the development of TCM.

Keywords: traditional Chinese medicine, nanostructures, nanotechnology, psoriasis, glycyrrhiza protein

References(48)

[1]

Chen, X.; Zhao, Y.; Luo, W.; Chen, S. A.; Lin, F.; Zhang, X.; Fan, S. J.; Shen, X.; Wang, Y.; Liang, G. Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells. Theranostics 2020, 10, 10290–10308.

[2]

An, L. M.; Li, Z. R.; Shi, L. Q.; Wang, L. J.; Wang, Y.; Jin, L.; Shuai, X. T.; Li, J. G. Inflammation-targeted celastrol nanodrug attenuates collagen-induced arthritis through NF-κB and notch1 pathways. Nano Lett. 2020, 20, 7728–7736.

[3]

Qiu, F.; Xi, L.; Chen, S. S.; Zhao, Y. H.; Wang, Z. P.; Zheng, Y. Celastrol niosome hydrogel has anti-inflammatory effect on skin keratinocytes and circulation without systemic drug exposure in psoriasis mice. Int. J. Nanomedicine 2021, 16, 6171–6182.

[4]

Yang, J. D.; Hainaut, P.; Gores, G. J.; Amadou, A.; Plymoth, A.; Roberts, L. R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604.

[5]

Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanomedicine. N. Engl. J. Med. 2010, 363, 2434–2443.

[6]

Huang, Y.; Zhao, Y. L.; Liu, F.; Liu, S. Q. Nano traditional Chinese medicine: Current progresses and future challenges. Curr. Drug Targets 2015, 16, 1548–1562.

[7]

Wei, D. H.; Yang, H.; Zhang, Y.; Zhang, X. H.; Wang, J.; Wu, X. L.; Chang, J. Nano-traditional Chinese medicine: A promising strategy and its recent advances. J. Mater. Chem. B 2022, 10, 2973–2994.

[8]

Zheng, Y. H.; Wang, Y.; Xia, M. Y.; Gao, Y.; Zhang, L.; Song, Y. N.; Zhang, C. The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: Review on nanotechnology in TCM-based drug delivery systems. Drug Deliv. Transl. Res. 2022, 12, 1306–1325.

[9]

Li, T.; Wang, P. L.; Guo, W. B.; Huang, X. M.; Tian, X. H.; Wu, G. R.; Xu, B.; Li, F. F.; Yan, C.; Liang, X. J. et al. Natural berberine-based Chinese herb medicine assembled nanostructures with modified antibacterial application. ACS Nano 2019, 13, 6770–6781.

[10]

Xia, J. X.; Ma, S. J.; Zhu, X.; Chen, C.; Zhang, R.; Cao, Z. L.; Chen, X.; Zhang, L. L.; Zhu, Y.; Zhang, S. Y. et al. Versatile ginsenoside Rg3 liposomes inhibit tumor metastasis by capturing circulating tumor cells and destroying metastatic niches. Sci. Adv. 2022, 8, eabj1262.

[11]

Wang, P. L.; Guo, W. B.; Huang, G. R.; Zhen, J. H.; Li, Y. N.; Li, T.; Zhao, L.; Yuan, K.; Tian, X. H.; Huang, X. M. et al. Berberine-based heterogeneous linear supramolecules neutralized the acute nephrotoxicity of aristolochic acid by the self-assembly strategy. ACS Appl. Mater. Interfaces 2021, 13, 32729–32742.

[12]

Ke, L. J.; Gao, G. Z.; Shen, Y.; Zhou, J. W.; Rao, P. F. Encapsulation of aconitine in self-assembled licorice protein nanoparticles reduces the toxicity in vivo. Nanoscale Res. Lett. 2015, 10, 449.

[13]

Ma, B. L.; Yin, C.; Zhang, B. K.; Dai, Y.; Jia, Y. Q.; Yang, Y.; Li, Q.; Shi, R.; Wang, T. M.; Wu, J. S. et al. Naturally occurring proteinaceous nanoparticles in Coptidis Rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption. Sci. Rep. 2016, 6, 20110.

[14]

Wu, J. J.; Yang, Y.; Yuan, X. Y.; Xu, H. H.; Chen, Q. Q.; Ren, R. R.; Zhang, Q. Q.; Hou, Z. Y.; Jiao, F.; Yin, D. K. Role of particle aggregates in herbal medicine decoction showing they are not useless: Considering Coptis chinensis decoction as an example. Food Funct. 2020, 11, 10480–10492.

[15]

Zhang, Q. Q.; Yang, Y.; Ren, R. R.; Chen, Q. Q.; Wu, J. J.; Zheng, Y. Y.; Hou, X. H.; Zhang, Y. F.; Xue, M. S.; Yin, D. K. Self-assembled aggregations in Coptidis Rhizoma decoction dynamically regulate intestinal tissue permeability through Peyer’s patch-associated immunity. Chin. Herb. Med. 2021, 13, 370–380.

[16]

Zhao, J.; Zhao, Q.; Lu, J. Z.; Ye, D.; Mu, S.; Yang, X. D.; Zhang, W. D.; Ma, B. L. Natural nano-drug delivery system in Coptidis Rhizoma extract with modified berberine hydrochloride pharmacokinetics. Int. J. Nanomedicine 2021, 16, 6297–6311.

[17]

Luan, X.; Zhang, L. J.; Li, X. Q.; Rahman, K.; Zhang, H.; Chen, H. Z.; Zhang, W. D. Compound-based Chinese medicine formula: From discovery to compatibility mechanism. J. Ethnopharmacol. 2020, 254, 112687.

[18]

Jiang, X.; Sun, Y.; Shang, L. H.; Yang, C. L.; Kong, L.; Zhang, Z. P. Green tea extract-assembled nanoclusters for combinational photothermal and chemotherapy. J. Mater. Chem. B 2019, 7, 5972–5982.

[19]

Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M. H.; Bahramsoltani, R.; Karimi-Soureh, Z.; Rahimi, R.; Abdollahi, M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int. J. Nanomedicine 2017, 12, 2689–2702.

[20]

Pang, G. B.; Chen, C.; Liu, Y.; Jiang, T. Y.; Yu, H.; Wu, Y. X.; Wang, Y. Y.; Wang, F. J.; Liu, Z. Y.; Zhang, L. W. Bioactive polysaccharide nanoparticles improve radiation-induced abscopal effect through manipulation of dendritic cells. ACS Appl. Mater. Interfaces 2019, 11, 42661–42670.

[21]

Huang, Y. J.; Wang, Y. J.; Wang, Y. Z.; Yi, S. J.; Fan, Z.; Sun, L. M.; Lin, D.; Anreddy, N.; Zhu, H.; Schmidt, M. et al. Exploring naturally occurring ivy nanoparticles as an alternative biomaterial. Acta Biomater. 2015, 25, 268–283.

[22]

Frisoli, M. L.; Essien, K.; Harris, J. E. Vitiligo: Mechanisms of pathogenesis and treatment. Annu. Rev. Immunol. 2020, 38, 621–648.

[23]

Wang, Y. H.; Li, S. L.; Li, C. Y. Perspectives of new advances in the pathogenesis of vitiligo: From oxidative stress to autoimmunity. Med. Sci. Monit. 2019, 25, 1017–1023.

[24]

Zhou, J. W.; Zhang, J.; Gao, G. Z.; Wang, H. Q.; He, X. Y.; Chen, T. B.; Ke, L. J.; Rao, P. F.; Wang, Q. Boiling licorice produces self-assembled protein nanoparticles: A novel source of bioactive nanomaterials. J. Agric. Food Chem. 2019, 67, 9354–9361.

[25]

Wu, X. L.; Gong, F. P.; Wang, W. Protein extraction from plant tissues for 2DE and its application in proteomic analysis. Proteomics 2014, 14, 645–658.

[26]

Zhang, M. Z.; Viennois, E.; Prasad, M.; Zhang, Y. C.; Wang, L. X.; Zhang, Z.; Han, M. K.; Xiao, B.; Xu, C. L.; Srinivasan, S. et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016, 101, 321–340.

[27]

Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S. et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71.

[28]

Zhang, J.; Hu, K. L.; Di, L. Q.; Wang, P. L.; Liu, Z. D.; Zhang, J. M.; Yue, P. F.; Song, W. T.; Zhang, J. W.; Chen, T. K. et al. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv. Drug Deliv. Rev. 2021, 178, 113964.

[29]

Wei, Y. C.; Quan, L.; Zhou, C.; Zhan, Q. Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine (Lond.) 2018, 13, 1495–1512.

[30]

Wang, Y. F.; Wang, X. Y. Binding, stability, and antioxidant activity of quercetin with soy protein isolate particles. Food Chem. 2015, 188, 24–29.

[31]

Armstrong, A. W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA 2020, 323, 1945–1960.

[32]

Boehncke, W. H.; Schön, M. P. Psoriasis. Lancet 2015, 386, 983–994.

[33]

Lowes, M. A.; Bowcock, A. M.; Krueger, J. G. Pathogenesis and therapy of psoriasis. Nature 2007, 445, 866–873.

[34]

Feldman, S. R. Psoriasis causes as much disability as other major medical diseases. J. Am. Acad. Dermatol. 2020, 82, 256–257.

[35]

Wang, Z. Y.; Nixon, D. W. Licorice and cancer. Nutr. Cancer 2001, 39, 1–11.

[36]

Wang, L.; Xian, Y. F.; Loo, S. K. F.; Ip, S. P.; Yang, W.; Chan, W. Y.; Lin, Z. X.; Wu, J. C. Y. Baicalin ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice through modulating skin barrier function, gut microbiota and JAK/STAT pathway. Bioorg. Chem. 2022, 119, 105538.

[37]

Hung, C. H.; Wang, C. N.; Cheng, H. H.; Liao, J. W.; Chen, Y. T.; Chao, Y. W.; Jiang, J. L.; Lee, C. C. Baicalin ameliorates imiquimod-induced psoriasis-like inflammation in mice. Planta Med. 2018, 84, 1110–1117.

[38]

Ghoreschi, K.; Balato, A.; Enerbäck, C.; Sabat, R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 2021, 397, 754–766.

[39]

Zhang, L. L.; Wei, W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol. Ther. 2020, 207, 107452.

[40]

Zhao, J. X.; Di, T. T.; Wang, Y.; Wang, Y.; Liu, X.; Liang, D. Y.; Li, P. Paeoniflorin inhibits imiquimod-induced psoriasis in mice by regulating Th17 cell response and cytokine secretion. Eur. J. Pharmacol. 2016, 772, 131–143.

[41]

Liu, Z. H.; Wang, P. W.; Lu, S. S.; Guo, R.; Gao, W.; Tong, H. Y.; Yin, Y.; Han, X. Z.; Liu, T. T.; Chen, X. Y. et al. Liquiritin, a novel inhibitor of TRPV1 and TRPA1, protects against LPS-induced acute lung injury. Cell Calcium 2020, 88, 102198.

[42]

Ni, H. D.; Xu, M.; Xie, K. Y.; Fei, Y.; Deng, H. S.; He, Q. L.; Wang, T. T.; Liu, S. L.; Zhu, J. J.; Xu, L. S. et al. Liquiritin alleviates pain through inhibiting CXCL1/CXCR2 signaling pathway in bone cancer pain rat. Front. Pharmacol. 2020, 11, 436.

[43]

Yang, X. H.; Dang, X. W.; Zhang, X.; Zhao, S. R. Liquiritin reduces lipopolysaccharide-aroused HaCaT cell inflammation damage via regulation of microRNA-31/MyD88. Int. Immunopharmacol. 2021, 101, 108283.

[44]

Guo, Q. Y.; Li, W. J.; Wang, C.; Mao, X.; Wang, X. Y.; Chen, W. J.; Xu, H. Y.; Wang, Q.; Zhang, Y. Q.; Lin, N. Biomolecular network-based synergistic drug combination discovery: A combination of paeoniflorin and liquiritin alleviates neuropathic pain by inhibiting neuroinflammation via suppressing the chemokine signaling pathway. Signal Transduct. Target. Ther. 2020, 5, 73.

[45]

Zhao, Q.; Luan, X.; Zheng, M.; Tian, X. H.; Zhao, J.; Zhang, W. D.; Ma, B. L. Synergistic mechanisms of constituents in herbal extracts during intestinal absorption: Focus on natural occurring nanoparticles. Pharmaceutics 2020, 12, 128.

[46]

Shi, Q.; He, Q.; Chen, W. M.; Long, J. W.; Zhang, B. Ginsenoside Rg1 abolish imiquimod-induced psoriasis-like dermatitis in BALB/c mice via downregulating NF-κB signaling pathway. J. Food Biochem. 2019, 43, e13032.

[47]

Chung, C. H.; Jung, W.; Keum, H.; Kim, T. W.; Jon, S. Nanoparticles derived from the natural antioxidant rosmarinic acid ameliorate acute inflammatory bowel disease. ACS Nano 2020, 14, 6887–6896.

[48]

Xi, L.; Lin, Z. B.; Qiu, F.; Chen, S. K.; Li, P.; Chen, X.; Wang, Z. P.; Zheng, Y. Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment. Acta Pharm. Sin. B 2022, 12, 339–352.

File
12274_2022_5199_MOESM1_ESM.pdf (978.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 July 2022
Revised: 12 October 2022
Accepted: 13 October 2022
Published: 19 January 2023
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 82173760 and 82104098), the Program for HUST Academic Frontier Youth Team (No. 2018QYTD13), and Scientific Research Project of Wuhan Municipal Health Commission (No. WX20Q16). Thanks to the TEM provided by the Analytical and Testing Center of Huazhong University of Science and Technology.

Return