Journal Home > Volume 16 , Issue 4

Solution blow spinning (SBS) applies high-speed airflow to prepare fibers by generating a strong stretching force. It has the advantages of scalable production, tailorable morphologies, and wide applicability. Yet, the SBS strategy can hardly prepare fibers down to the sub-100 nanometers, which limits its performance in demanding applications. Herein, we overcome the limitation of SBS by introducing a second airflow. This novel strategy is termed double-stretching SBS (DS-SBS) because an extra stretching force is exerted on the fiber when it converges with the second airflow. Polyamide6 nanofibers with an average diameter of 80 nm are successfully prepared with the DS-SBS strategy, while the SBS strategy could only prepare submicron fibers with an average diameter of 120 nm. Further, the generality of the DS-SBS strategy to reduce fiber diameter is verified on numerous solute–solvent pairs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Double-stretching as an effective and generalizable strategy towards thinner nanofibers in solution blow spinning

Show Author's information Baopu Zhang1,2Ziwei Li1Zekun Cheng1Lei Li1Chong Yang1Haiyang Wang1Hui Wu1( )
State Key Laboratory of Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA

Abstract

Solution blow spinning (SBS) applies high-speed airflow to prepare fibers by generating a strong stretching force. It has the advantages of scalable production, tailorable morphologies, and wide applicability. Yet, the SBS strategy can hardly prepare fibers down to the sub-100 nanometers, which limits its performance in demanding applications. Herein, we overcome the limitation of SBS by introducing a second airflow. This novel strategy is termed double-stretching SBS (DS-SBS) because an extra stretching force is exerted on the fiber when it converges with the second airflow. Polyamide6 nanofibers with an average diameter of 80 nm are successfully prepared with the DS-SBS strategy, while the SBS strategy could only prepare submicron fibers with an average diameter of 120 nm. Further, the generality of the DS-SBS strategy to reduce fiber diameter is verified on numerous solute–solvent pairs.

Keywords: computational fluid dynamics, nanofibers, solution blow spinning, double-stretching

References(33)

[1]

Barhoum, A.; Pal, K.; Rahier, H.; Uludag, H.; Kim, I. S.; Bechelany, M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today 2019, 17, 1–35.

[2]

Kenry; Lim, C. T. Nanofiber technology: Current status and emerging developments. Prog. Polym. Sci. 2017, 70, 1–17.

[3]
Formhals, A. Process and apparatus for preparing artificial threads. U. S. Patent 1, 975, 504, December 5, 1934.
[4]

Medeiros, E. S.; Glenn, G. M.; Klamczynski, A. P.; Orts, W. J.; Mattoso, L. H. C. Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions. J. Appl. Polym. Sci. 2009, 113, 2322–2330.

[5]

Weitz, R. T.; Harnau, L.; Rauschenbach, S.; Burghard, M.; Kern, K. Polymer nanofibers via nozzle-free centrifugal spinning. Nano Lett. 2008, 8, 1187–1191.

[6]

Li, Z. W.; Cui, Z. W.; Zhao, L. H.; Hussain, N.; Zhao, Y. Z.; Yang, C.; Jiang, X. Y.; Li, L.; Song, J. A.; Zhang, B. P. et al. High-throughput production of kilogram-scale nanofibers by Kármán vortex solution blow spinning. Sci. Adv. 2022, 8, eabn3690.

[7]

Li, Z. W.; Song, J. N.; Long, Y. Z.; Jia, C.; Liu, Z. L.; Li, L.; Yang, C.; Liu, J. C.; Lin, S.; Wang, H. Y. et al. Large-scale blow spinning of heat-resistant nanofibrous air filters. Nano Res. 2020, 13, 861–867.

[8]

Bicy, K.; Gueye, A. B.; Rouxel, D.; Kalarikkal, N.; Thomas, S. Lithium-ion battery separators based on electrospun PVDF: A review. Surf. Interfaces 2022, 31, 101977.

[9]

Lu, Y. S.; Li, X. L.; Hou, T.; Yang, B. Controlled release of tetracycline hydrochloride loaded highly absorbent alginate submicron fibers from centrifugally spinning. Fibers Polym. 2022, 23, 28–36.

[10]

Park, J. H.; Rutledge, G. C. Ultrafine high performance polyethylene fibers. J. Mater. Sci. 2018, 53, 3049–3063.

[11]

Wu, S. H.; Liu, J.; Cai, J. Y.; Zhao, J.; Duan, B.; Chen, S. J. Combining electrospinning with hot drawing process to fabricate high performance poly (L-lactic acid) nanofiber yarns for advanced nanostructured bio-textiles. Biofabrication 2021, 13, 045018.

[12]

Bai, H.; Qian, X. M.; Fan, J. T.; Shi, Y. L.; Duo, Y.; Guo, C. S.; Wang, X. B. Theoretical model of single fiber efficiency and the effect of microstructure on fibrous filtration performance: A review. Ind. Eng. Chem. Res. 2021, 60, 3–36.

[13]

Zhou, Y. J.; Liu, Y. N.; Zhang, M. X.; Feng, Z. B.; Yu, D. G.; Wang, K. Electrospun nanofiber membranes for air filtration: A review. Nanomaterials 2022, 12, 1077.

[14]

Fu, W. B.; Turcheniuk, K.; Naumov, O.; Mysyk, R.; Wang, F. J.; Liu, M.; Kim, D.; Ren, X. L.; Magasinski, A.; Yu, M. H. et al. Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Mater. Today 2021, 48, 176–197.

[15]

Wani, T. U.; Rather, A. H.; Khan, R. S.; Beigh, M. A.; Park, M.; Pant, B.; Sheikh, F. A. Strategies to use nanofiber scaffolds as enzyme-based biocatalysts in tissue engineering applications. Catalysts 2021, 11, 536.

[16]

Wu, Y. T.; Gao, X.; Nguyen, T. T.; Wu, J.; Guo, M. H.; Liu, W. H.; Du, C. H. Green and low-cost natural lignocellulosic biomass-based carbon fibers-processing, properties, and applications in sports equipment: A review. Polymers 2022, 14, 2591.

[17]

Sinha-Ray, S.; Lee, M. W.; Sinha-Ray, S.; An, S.; Pourdeyhimi, B.; Yoon, S. S.; Yarin, A. L. Supersonic nanoblowing: A new ultra-stiff phase of nylon 6 in 20–50 nm confinement. J. Mater. Chem. C 2013, 1, 3491–3498.

[18]

Jian, S. J.; Zhu, J.; Jiang, S. H.; Chen, S. L.; Fang, H.; Song, Y. H.; Duan, G. G.; Zhang, Y. F.; Hou, H. Q. Nanofibers with diameter below one nanometer from electrospinning. RSC Adv. 2018, 8, 4794–4802.

[19]

Song, J. N.; Li, Z. W.; Wu, H. Blowspinning: A new choice for nanofibers. ACS Appl. Mater. Interfaces 2020, 12, 33447–33464.

[20]

Sinha-Ray, S.; Sinha-Ray, S.; Yarin, A. L.; Pourdeyhimi, B. Theoretical and experimental investigation of physical mechanisms responsible for polymer nanofiber formation in solution blowing. Polymer 2015, 56, 452–463.

[21]

Uyttendaele, M. A. J.; Shambaugh, R. L. Melt blowing general equation development and experimental verification. AIChE J. 1990, 36, 175–186.

[22]

Rao, R. S.; Shambaugh, R. L. Vibration and stability in the melt blowing process. Ind. Eng. Chem. Res. 1993, 32, 3100–3111.

[23]

Marla, V. T.; Shambaugh, R. L. Three-dimensional model of the melt blowing process. Ind. Eng. Chem. Res. 2003, 42, 6993–7005.

[24]

Atif, R.; Combrinck, M.; Khaliq, J.; Hassanin, A. H.; Shehata, N.; Elnabawy, E.; Shyha, I. Solution blow spinning of high-performance submicron polyvinylidene fluoride fibres: Computational fluid mechanics modelling and experimental results. Polymers 2020, 12, 1140.

[25]

Schmidt, J.; Shenvi Usgaonkar, S.; Kumar, S.; Lozano, K.; Ellison, C. J. Advances in melt blowing process simulations. Ind. Eng. Chem. Res. 2022, 61, 65–85.

[26]

Zheng, W. X.; Shi, C. W.; Hu, Y. B.; Wang, X. H.; Wang, Y. H. Theoretical and experimental studies on the fabrication of cylindrical-electrode-assisted solution blowing spinning nanofibers. e-Polymers 2021, 21, 411–419.

[27]
Pope, S. B. Turbulent Flows; Cambridge University Press: Cambridge, 2000.
[28]

Ura, D. P.; Karbowniczek, J. E.; Szewczyk, P. K.; Metwally, S.; Kopyściański, M.; Stachewicz, U. Cell integration with electrospun PMMA nanofibers, microfibers, ribbons, and films: A microscopy study. Bioengineering 2019, 6, 41.

[29]

Kwak, B. E.; Yoo, H. J.; Lee, E.; Kim, D. H. Large-scale centrifugal multispinning production of polymer micro- and nanofibers for mask filter application with a potential of cospinning mixed multicomponent fibers. ACS Macro Lett. 2021, 10, 382–388.

[30]

Wang, L.; Chang, M. W.; Ahmad, Z.; Zheng, H. X.; Li, J. S. Mass and controlled fabrication of aligned PVP fibers for matrix type antibiotic drug delivery systems. Chem. Eng. J. 2017, 307, 661–669.

[31]

Wang, D.; Yue, Y. Y.; Wang, Q. X.; Cheng, W. L.; Han, G. P. Preparation of cellulose acetate-polyacrylonitrile composite nanofibers by multi-fluid mixing electrospinning method: Morphology, wettability, and mechanical properties. Appl. Surf. Sci. 2020, 510, 145462.

[32]

Christ, H. A.; Ang, P. Y.; Li, F. Z.; Johannes, H. H.; Kowalsky, W.; Menzel, H. Production of highly aligned microfiber bundles from polymethyl methacrylate via stable jet electrospinning for organic solid-state lasers. J. Polym. Sci. 2022, 60, 715–725.

[33]

Dadol, G. C.; Lim, K. J. A.; Cabatingan, L. K.; Tan, N. P. B. Solution blow spinning-polyacrylonitrile-assisted cellulose acetate nanofiber membrane. Nanotechnology 2020, 31, 345602.

Video
12274_2022_5198_MOESM2_ESM.mp4
12274_2022_5198_MOESM3_ESM.mp4
File
12274_2022_5198_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 June 2022
Revised: 18 September 2022
Accepted: 14 October 2022
Published: 29 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The help of Dr. Zhiwen Cui and Xinyu Jiang on carrying out and post-processing the CFD simulation is greatly appreciated. This study is supported by the Basic Science Center Program of the National Natural Science Foundation of China (NSFC) (No. 51788104) and Beijing Natural Science Foundation (No. JQ19005).

Return