Journal Home > Volume 16 , Issue 4

The commercial application of non-precious metal-based electrocatalysts is not only limited by the intrinsic activity of the catalysts, but also the stability of the catalysts is extremely important. Herein, we fabricated an ultra-stable NiFe armored catalyst (Ar-NiFe/NC) by a simple secondary pyrolysis strategy. The as-obtained Ar-NiFe/NC electrocatalyst exhibits an excellent bifunctional oxygen electrocatalytic performance with an activity indicator ∆E of 0.74 V vs. reversible hydrogen electrode (RHE). More importantly, the Ar-NiFe/NC electrocatalyst also shows a remarkable operational and storage stability. After accelerated durability test (ADT) cycles, no obvious degradation of oxygen electrocatalytic performance could be observed. In addition, the Ar-NiFe/NC electrocatalyst still exhibits an unbated oxygen electrocatalytic performance comparable to fresh catalysts after three months of air-exposed storage. The assembled liquid and flexible quasi-solid-state rechargeable Zn–air batteries with the Ar-NiFe/NC electrocatalyst exhibit impressive performance. The liquid rechargeable Zn–air batteries possess a high open-circuit voltage (OCV) of 1.43 V and a salient peak power density of 146.40 mW·cm−2, while the flexible quasi-solid-state rechargeable Zn–air batteries also exhibit an excellent OCV of 1.60 V and an exciting peak power density of 41.99 mW·cm−2.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Construction of ultra-stable NiFe armored catalyst for liquid and flexible quasi-solid-state rechargeable Zn–air batteries

Show Author's information Hanqin Sun1,§Meiqi Zhao1,§Chao Ma2,§Wen Chen1Yong Yang3( )Yunhu Han1,4,5( )
Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Hanqin Sun, Meiqi Zhao, and Chao Ma contributed equally to this work.

Abstract

The commercial application of non-precious metal-based electrocatalysts is not only limited by the intrinsic activity of the catalysts, but also the stability of the catalysts is extremely important. Herein, we fabricated an ultra-stable NiFe armored catalyst (Ar-NiFe/NC) by a simple secondary pyrolysis strategy. The as-obtained Ar-NiFe/NC electrocatalyst exhibits an excellent bifunctional oxygen electrocatalytic performance with an activity indicator ∆E of 0.74 V vs. reversible hydrogen electrode (RHE). More importantly, the Ar-NiFe/NC electrocatalyst also shows a remarkable operational and storage stability. After accelerated durability test (ADT) cycles, no obvious degradation of oxygen electrocatalytic performance could be observed. In addition, the Ar-NiFe/NC electrocatalyst still exhibits an unbated oxygen electrocatalytic performance comparable to fresh catalysts after three months of air-exposed storage. The assembled liquid and flexible quasi-solid-state rechargeable Zn–air batteries with the Ar-NiFe/NC electrocatalyst exhibit impressive performance. The liquid rechargeable Zn–air batteries possess a high open-circuit voltage (OCV) of 1.43 V and a salient peak power density of 146.40 mW·cm−2, while the flexible quasi-solid-state rechargeable Zn–air batteries also exhibit an excellent OCV of 1.60 V and an exciting peak power density of 41.99 mW·cm−2.

Keywords: bifunctional oxygen electrocatalyst, outstanding durability, liquid Zn–air batteries, flexible quasi-solid-state Zn–air batteries

References(48)

[1]

Wagh, N. K.; Kim, D. H.; Kim, S. H.; Shinde, S. S.; Lee, J. H. Heuristic iron-cobalt-mediated robust pH-universal oxygen bifunctional lusters for reversible aqueous and flexible solid-state Zn–air cells. ACS Nano 2021, 15, 14683–14696.

[2]

Tiwari, A. P.; Kim, D.; Kim, Y.; Lee, H. Bifunctional oxygen electrocatalysis through chemical bonding of transition metal chalcogenides on conductive carbons. Adv. Energy Mater. 2017, 7, 1602217.

[3]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[4]

Wang, B.; Srinivas, K.; Liu, Y. F.; Liu, D. W.; Zhang, X. J.; Zhang, W. L.; Chen, Y. F. N-doped CNTs capped with carbon layer armored CoFe alloy as highly stable bifunctional catalyst for oxygen electrocatalysis. Nano Res 2022, 15, 3971–3979.

[5]

Pan, J.; Xu, Y. Y.; Yang, H.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Advanced architectures and relatives of air electrodes in Zn–air batteries. Adv. Sci. 2018, 5, 1700691.

[6]

Lei, Y. P.; Wang, Q. C.; Peng, S. J.; Ramakrishna, S.; Zhang, D.; Zhou, K. C. Electrospun inorganic nanofibers for oxygen electrocatalysis: Design, fabrication, and progress. Adv. Energy Mater. 2020, 10, 1902115.

[7]

Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu. W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc–air batteries. Nano Res. 2021, 14, 868–878.

[8]

Wang, C. Y.; Xie, N. H.; Zhang, Y. L.; Huang, Z. H.; Xia, K. L.; Wang, H. M.; Guo, S. J.; Xu, B. Q.; Zhang, Y. Y. Silk-derived highly active oxygen electrocatalysts for flexible and rechargeable Zn–air batteries. Chem. Mater. 2019, 31, 1023–1029.

[9]

Sun, C.; Zhao, Y. J.; Yuan, X. Y.; Li, J. B.; Jin, H. B. Bimetal nanoparticles hybridized with carbon nanotube boosting bifunctional oxygen electrocatalytic performance. Rare Met. 2022, 41, 2616–2623.

[10]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[11]

Zhu, Z.; Shi, X. M.; Zhu, D. D.; Wang, L. B.; Lei, K. X.; Li, F. J. A hybrid Na//K+-containing electrolyte//O2 battery with high rechargeability and cycle stability. Research 2019, 2019, 6180615.

[12]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[13]

Fu, G. T.; Chen, Y. F.; Cui, Z. M.; Li, Y. T.; Zhou, W. D.; Xin, S.; Tang, Y. W.; Goodenough, J. B. Novel hydrogel-derived bifunctional oxygen electrocatalyst for rechargeable air cathodes. Nano Lett. 2016, 16, 6516–6522.

[14]

Zhang, J. X.; Zhao, X.; Du, L.; Li, Y. T.; Zhang, L. H.; Liao, S. J.; Goodenough, J. B.; Cui, Z. M. Antiperovskite nitrides CuNCo3−xVx: Highly efficient and durable electrocatalysts for the oxygen-evolution reaction. Nano Lett. 2019, 19, 7457–7463.

[15]

Chen, J. J.; Gu, S.; Hao, R.; Wang, Z. Y.; Li, M. Q.; Li, Z. Q.; Liu, K.; Liao, K. M.; Wang, Z. Q.; Huang, H. et al. Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn–air batteries. Rare Met. 2022, 41, 2055–2062.

[16]

Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

[17]

Wang, Y. C.; Chu, F. L.; Zeng, J.; Wang, Q. J.; Naren, T.; Li, Y. Y.; Cheng, Y.; Lei, Y. P.; Wu, F. X. Single atom catalysts for fuel cells and rechargeable batteries: Principles, advances, and opportunities. ACS Nano 2021, 15, 210–239.

[18]

Jiao, Y.; Zheng, Y.; Jaroniecb, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[19]

Naeem, M.; Rizwan, M.; Bakhtawar, R.; Usman, Z.; Ma, X. L.; Cao, C. B. Oxynitride perovskite: Computational approach to correlate structural, electronic, and optical properties of c-BiAlO3/N3. ACS Appl. Electron. Mater. 2022, 4, 375–385.

[20]

Ullah, H. M. N.; Rizwan, M.; Ali, S. S.; Usman, Z.; Ma, X. L.; Cao, C. B. A computational study for mechanical, thermoelectric and optoelectronic applications of BiAlO3 under static pressure. J. Phys. Chem. Solids 2022, 168, 110819.

[21]

Wang, X. J.; Li, Y.; Jin, T.; Meng, J.; Jiao, L. F.; Zhu, M.; Chen, J. Electrospun thin-walled CuCo2O4@C nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Nano Lett. 2017, 17, 7989–7994.

[22]

Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of Fe Co-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc–air battery. Adv. Energy Mater. 2017, 7, 1602420.

[23]

Han, X. P.; Zhang, W.; Ma, X. Y.; Zhong, C.; Zhao, N. Q.; Hu, W. B.; Deng, Y. D. Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 2019, 31, 1808281.

[24]

Yang, Z. K.; Zhao, C. M.; Qu, Y. T.; Zhou, H.; Zhou, F. Y.; Wang, J.; Wu, Y. E.; Li, Y. D. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk meta. Adv. Mater. 2019, 31, 1808043.

[25]

Zeng, S.; Chen, H. Y.; Wang, H.; Tong, X.; Chen, M. H.; Di, J. T.; Li, Q. W. Crosslinked carbon nanotube aerogel films decorated with cobalt oxides for flexible rechargeable Zn–air batteries. Small 2017, 13, 1700518.

[26]

Lin, Y. X.; Yang, L.; Zhang, Y. K.; Jiang, H. L.; Xiao, Z. J.; Wu, C. Q.; Zhang, G. B.; Jiang, J.; Song, L. Defective carbon-CoP nanoparticles hybrids with interfacial charges polarization for efficient bifunctional oxygen electrocatalysis. Adv. Energy Mater. 2018, 8, 1703623.

[27]

Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Li, Y. T.; Tang, Y. W.; Goodenough, J. B. Ni3Fe-N doped carbon sheets as a bifunctional electrocatalyst for air cathodes. Adv. Energy Mater. 2017, 7, 1601172.

[28]

Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

[29]

Chai, G. L.; Qiu, K. P.; Qiao, M.; Titirici, M. M.; Shang, C. X.; Guo, Z. X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks. Energy Environ. Sci. 2017, 10, 1186–1195.

[30]

Wang, X. R.; Liu, J. Y.; Liu, Z. W.; Wang, W. C.; Luo, J.; Han, X. P.; Du, X. W.; Qiao, S. Z.; Yang, J. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 2018, 30, 1800005.

[31]

Younas, W.; Naveed, M.; Cao, C. B.; Zhu, Y. Q.; Du, C. L.; Ma, X. L.; Mushtaq, N.; Tahir, M.; Naeem, M. Facile one-step microwave-assisted method to synthesize nickel selenide nanosheets for high-performance hybrid supercapacitor. J. Colloid Interface Sci. 2022, 608, 1005–1014.

[32]

Cheng, W. R.; Zhao, X.; Su, H.; Tang, F. M.; Che, W.; Zhang, H.; Liu, Q. H. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115–122.

[33]

Shinde, S. S.; Lee, C. H.; Jung, J. Y.; Wagh, N. K.; Kim, S. H.; Kim, D. H.; Lin, C.; Lee, S. U.; Lee, J. H. Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy Environ. Sci. 2019, 12, 727–738.

[34]

Liu, S. H.; Wang, Z. Y.; Zhou, S.; Yu, F. J.; Yu, M. Z.; Chiang, C. Y.; Zhou, W. Z.; Zhao, J. J.; Qiu, J. S. Metal–organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 2017, 29, 1700874.

[35]

Feng, S. Q.; Liu, C.; Chai, Z. G.; Li, Q.; Xu, D. S. Cobalt-based hydroxide nanoparticles@N-doping carbonic frameworks core−shell structures as highly efficient bifunctional electrocatalysts for oxygen evolution and oxygen reduction reactions. Nano Res. 2018, 11, 1482–1489.

[36]

Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv. Mater. 2019, 31, 1808173.

[37]

Li, B. Q.; Zhao, C. X.; Chen, S. M.; Liu, J. N.; Chen, X.; Song, L.; Zhang, Q. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn–air batteries. Adv. Mater. 2019, 31, 1900592.

[38]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal–organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[39]

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[40]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc–air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[41]

Yang, L.; Zeng, X. F.; Wang, D.; Cao, D. P. Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn–air battery. Energy Storage Mater. 2018, 12, 277–283.

[42]

Zhong, L. X.; Jiang, C. Y.; Zheng, M. T.; Peng, X. W.; Liu, T. C.; Xi, S. B.; Chi, X.; Zhang, Q. H.; Gu, L.; Zhang, S. Q. et al. Wood carbon based single-atom catalyst for rechargeable Zn–air batteries. ACS Energy Lett. 2021, 6, 3624–3633.

[43]

Zhang, N. N.; Xie, S. L.; Wang, W. L.; Xie, D.; Zhu, D. L.; Cheng, F. L. Ultra-small Fe2N/N-CNTs as efficient bifunctional catalysts for rechargeable Zn–air batteries. J. Electrochem. Soc. 2020, 167, 020505.

[44]

Wang, C.; Li, Z. F.; Wang, L. K.; Niu, X. L.; Wang, S. W. Facile synthesis of 3D Fe/N codoped mesoporous graphene as efficient bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. ACS Sustainable Chem. Eng. 2019, 7, 13873–13885.

[45]

Du, C.; Gao, Y. G.; Wang, J. G.; Chen, W. A new strategy for engineering a hierarchical porous carbon-anchored Fe single-atom electrocatalyst and the insights into its bifunctional catalysis for flexible rechargeable Zn–air batteries. J. Mater. Chem. A 2020, 8, 9981–9990.

[46]

Ren, J. T.; Chen, L.; Wang, Y. S.; Tian, W. W.; Gao, L. J.; Yuan, Z. Y. FeNi nanoalloys encapsulated in N-doped CNTs tangled with N-doped carbon nanosheets as efficient multifunctional catalysts for overall water splitting and rechargeable Zn–air batteries. ACS Sustainable Chem. Eng. 2020, 8, 223–237.

[47]

Ma, Y. F.; Chen, W. H.; Jiang, Z. Q.; Tian, X. N.; Wangguo, X. Y.; Chen, G. L.; Jiang, Z. J. NiFe nanoparticles supported on N-doped graphene hollow spheres entangled with self-grown N-doped carbon nanotubes for liquid electrolyte/flexible all-solid-state rechargeable zinc–air batteries. J. Mater. Chem. A 2022, 10, 12616–12631.

[48]

Qiao, X. C.; Jin, J. T.; Luo, J. M.; Fan, H. B.; Cui, L. F.; Wang, W. L.; Liu, D.; Liao, S. J. In-situ formation of N doped hollow graphene nanospheres/CNTs architecture with encapsulated Fe3C@C nanoparticles as efficient bifunctional oxygen electrocatalysts. J. Alloys Compd. 2020, 828, 154238.

Video
12274_2022_5197_MOESM3_ESM.mp4
12274_2022_5197_MOESM4_ESM.mp4
File
12274_2022_5197_MOESM1_ESM.pdf (3.2 MB)
12274_2022_5197_MOESM2_ESM.pdf (755.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 September 2022
Revised: 10 October 2022
Accepted: 12 October 2022
Published: 07 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22102132), the Funds for Basic Scientific Research in Central Universities and the Youth Project of the Natural Science Foundation of Shaanxi Province, China (No. 2021JQ-087), Ningbo Natural Science Foundation (No. 2021J053), and the open research fund of Key Laboratory for Organic Electronics and Information Displays.

Return